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NOTES ON THE REGULAR MODULES

KEIVAN MOHAJER AND SIAMAK YASSEMI

ABSTRACT. It is a well-known result that a commutative ring R is
von Neumann regular if and only if for any maximal ideal m of R the
R-module R/m is flat. In this note we bring a generalization of this
result for modules.

0. Introduction

Let R be a commutative ring with non—zero identity. Recall that an
element a € R is said to be regular if there exists z € R such that
a’z = a, and R is said to be von Neumann regular if each of its elements
is regular.

The familiar notion of a von Neumann regular ring has a generalization
for modules. In [4], Fieldhouse defines a regular module as one whose
submodules are all pure (the submodule N of M is said pure submodule
if the inclusion 0 — N — M remains exact upon tensoring by any R—
module).

In [10], Xu showed that R is a von Neumann regular ring if and only
if for any maximal ideal m of R the R—module R/m is flat. We show the
same result (in some sense) for modules; The R-module M is flat and
regular if and only if for any maximal element m of support of M the
R-module R/m is flat. o
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1. Regular Modules

Let M be an R-module. The support of M is denoted by Supp(M)
and it is defined by

Supp(M)
= {p € Spec(R)|p 2 Ann(N) for some cyclic submodule N of M}.

Note that this definition is equivalent with the classical definition of
support (cf. [7, page 26]) that is

Supp(M) = {p € Spec(R)|Mp # 0}.
The Jacobson radical of M is denoted by J(M) and it is the intersec-
tion of all elements in MaxSupp(M).

PROPOSITION 1.1. Let M be an R—module. Then the following are
equivalent:
(i) M is regular
(ii) For any submodule N of M, MaxSupp(N) = Supp(N) and Ann(N)
= J(N).
(ili) For any z € M MaxSupp(Rz) = Supp(Rz) and Ann(Rz) = J(Rzx).

Proof. (i)=(ii). Let p € Supp(N). Then there exists a non—zero
z € N such that Ann(z) C p. By [2; Page 315] we know that R/Ann(z)
is a von Neumann regular ring and hence p € Max(R). Therefore
MaxSupp(N) = Supp(NV). Since R/Ann(z) is a von Neumann regular
ring we have that

Ann(N) = NyeyAnn(z) = J(N).

= MNueSupp)™
(ii)=(iii). It is obvious.
(iii)=(i). Let z € M is a non—zero element. Since MaxSupp(Rz) =
Supp(Rz) and Ann(Rz) = J(Rz) we have that R/Ann(z) is a von Neu-

mann regular ring, cf. [6; Theorem 1.16]. Now the assertion follows from
[2; Page 315]. : O

THEOREM 1.2. Let M be an R-module. Then the following are
equivalent:

(i) M is regular

(ii) M, is a semisimple Ry—module for any p € Supp(M).
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(iii) My, is a semisimple Ry—module for any m € MaxSupp(M).

Proof. (i)=(ii). Let p € Supp(M). Let N, be an arbitrary R,-
submodule of M,. For any R,~module L we have the exact sequence
0— L®rN — L®rM. Therefore 0 — (LQrN), — (LOr M), is exact
and hence 0 — L ®g, N, — L ®g, M, is exact. Thus M, is a regular
Ry— module. By proposition (1.1) we know that Supp(M,) = {pR,} and
Ann(M,) = pR, and hence M, is a semisimple R,—~module.

(i1)=>(iii). Tt is obvious.

(iii)=>(i). We know that any semisimple module is regular. Therefore
M, 1s regular for any m € MaxSupp(M). Now it is easy to see that M
is regular. a

2. F-regular Modules

The R-module M is called F-regular if M is a flat and regular module.
Note that any von Neumann regular ring is an F-regular as an R-module.

LEMMA 2.1. The following are equivalent:
(i) M is F-regular.
(if) For any m € MaxSupp(M), R/w is a flat R—module
(iti) For any m € MaxSupp(M), R/m is an injective R~module.
(iv) For any m € MaxSupp(M), R,, is a field.
(v) For any R-module N with Supp(N) C Supp(M), N is a flat R~
module.
(vi) For any cyclic R-module C' with Supp(C) C Supp(M), C is a flat
R-module.

Proof. (i)=>(ii). Let M be an F-regular module. Set m € MaxSupp(M).
There exists a non—zero element z € M such that Ann(z) € m. Consider
the surjective homomorphism ¢ : Rz — R/m. Since Rz is a pure sub-
module of the flat module M, we have that M/Rz is flat (cf. [8; 3.55])
and hence Rz is flat. Since Rz is regular we have that Ker(y) is a pure
submodule of Rz. Thus R/m is flat, cf. [8; 3.55].

(ii)=(iii) and (iii)=(i1) are well-known, cf. [10; 1.1].

(ii)=(iv). Since R/m is a flat R-module we have that (R/m), =
Ry /mRy is a flat Ry—module and hence R /mR,, is a free Ry~module,
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cf. [1; Chap. II, § 3 Exercise 3(e)]. Therefore mR, = 0 and so the
assertion holds.

(iv)=>(v). Let N be an R-module with Supp(N) C Supp(M). Then
for any m € MaxSupp(N), Ry is a field and hence N, is a flat Ry—
module. Therefore N is a flat R—module.

(v)=(vi). It is clear.

(vi)=(ii). Set m € MaxSupp(M). Now the assertion follows from the
fact that Supp(R/m) = {m}.

(v)=(i). We have M is flat. Let N be an arbitrary submodule of M.
Since Supp(M/N) C Supp(M) we have that M/N is flat and hence N is
a pure submodule of M. Thus M is regular. a

COROLLARY 2.2. The following are equivalent:

(i) R is a von Neumann regular ring.
(i1) Every R-module is F-regular.
(iii) Every cyclic R—-module is F-regular.

Proof. (i)=>(ii). Since MaxSupp(M) C MaxSpec(R) we have that
R/m is a flat R—module for any m € MaxSupp(M).

(ii)=(iii). This is clear.

(iii)=>(i). Since R is a cyclic R—module we have that R is a regular
R-module and hence R is a von Neumann regular ring. O

COROLLARY 2.3. The following are hold:

(a) Every submodule and homomorphic image of an F-regular module
is F-regular.

(b) If R/Ann(M) is an F-regular R—module then M is F-regular.

(c) If M is a finitely generated F-regular module then R/Ann(M) is a
(von Neumann) regular ring.

Proof. (a) For any submodule N of M and any homomorphic image
L of M we have MaxSupp(N) C MaxSupp(M) and MaxSupp(L) C
MaxSupp(M).

(b) The assertion holds from the fact that MaxSupp(M) C MaxSupp
(R/Ann(M)).

(c) We have that MaxSupp(M) = MaxSpec(R/Ann(M)). O
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REMARK 2.4. In part (b) of corollary 2.3 we can not change the
condition F-regular module for R/Ann(M) to a von Neumann regular
-ring. For example let m € MaxSpec(R) such that M = R/m is not a flat
R-module. Then R/Ann(M) is a von Neumann regular ring but M is
not an F-regular module.

THEOREM 2.5. Let M and N be R-modules and M be a finitely
presented module. If M or N are F-regular then Hom(M,N) is F-
regular. ;

Proof. For any p € Spec(R), (Hom(M, N)), = Homp, (M,, N,), cf. [8;
3.84]. Therefore Supp(Hom(M, N)) C Supp(M) N Supp(N) and hence
MaxSupp(Hom(M, N)) C MaxSupp(M) N MaxSupp(N). Now the asser-
tion follows from lemma 2.1. 0

THEOREM 2.6. Let M and N are R—modules. If M or N is F-regular
then M ® N is F-regular.

Proof. We know that Supp(M ® N) C Supp(M)NSupp(N). Therefore
MaxSupp(M ® N) C MaxSupp(M) N MaxSupp(N).

Now the assertion follows from lemma 2.1. o 0

THEOREM 2.7. Let M be F-regular and let S be a multiplicative
closed subset of R. Then S™*M is F-regular as an R—module and as an
S~ R-module. ‘

Proof. By theorem 2.6 we have S™'M is F-regular as an R-module.
Now set g € MaxSuppg-1 RS“M . then there exists m € MaxSupp(M)
such that mNS is empty and S™'m = q. Since M is F-regular we have that
R/m is a flat R~module and hence S'R/q = ST'R/S™'m 2 S™Y(R/m) is
a flat S™' R-module. O

The pure dimension of the R-module M is denoted by pure dimy(M)
and it is the least integer n such that for any finitely presented R-module
P, the R-—module Extt!( P, M) is zero, cf. [5]. The R—module M is called
absolutely pure if the pure dimension of M is zero. If R is a coherent
ring and M is a regular module then we will show that the flat and the
pure dimension of M are equal. First we bring a lemma.
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LEMMA 2.8. Let R be a coherent ring and let M be an R-module.
Then the following conditions are equivalent;

(i) M is absolutely pure.
(ii) M, is an absolutely pure R,-module for each p € Spec(R).
(iii) My, is an absolutely pure Rn—module for each m € Max(R).

Proof. (i)=(ii). Let K’ be an arbitrary finitely generated R, submod-
ule of a finitely generated free R,—module L'. There exist a finitely gen-
erated R—module K and a finitely generated free R—module L such that
K' =K,and L' = L,D Since M is an absolutely pure then Hom(L, M) —
Hom(K,M) — 0 is an exact sequence and hence (Hom(L, M)),
(Hom(K, M)), — 0 is exact. We know that K is finitely presented
cf. [5, 2.3.2]. Therefore Homg, (L', M) — Homg,(K', M) — 0 is an
exact sequence. Thus M, is absolutely pure.

(if)=(iii). It is clear.

(iii)=>(i). Let K be a finitely generated submodule of a finitely gen-
erated free module L. Then for each m € Max(R), the sequence Homg,,
(L, M) — Hompg, (Km, Mn) — 0 is exact. By the same reason as
above, for any m € Max(R) we have the exact sequence (Hom(L, M))m —
(Hom(K, M))m — 0 and hence the sequence Hom(L, M) — Hom(K, M)
— 0 is exact. Thus M is absolutely pure. a

COROLLARY 2.9. Let R be a coherent ring. Then for any R-module
M

pure dimp(M) = sup{pure dimp_(Mp)|m € MaxSupp(M)}.

THEOREM 2.10. Let R be a coherent ring and let M be a regular
R-module. Then flat dimg(M) = pure dimp(M).

Proof. “>" Let M be a regular module with flat dimg(M) = n. By
theorem 1.2 we know that M, is a semisimple Ry—module, for any m €
Max(R). Since flat dimp, Mw < 7, we have that each simple direct
summand of M,, has flat dimension not greater than n and hence has
injective dimension not greater than n. Since every injective module is
absolutely pure, we have that pure dimension is not greater than injective
dimension. Thus the pure dimension of any simple direct summand of
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My, is not greater than n. Therefore pure dimp My < n, cf. [9; corollary
2.4]. Now the assertion follows from corollary 2.9.

“<” Suppose that pure dimgp(M) = n. By corollary 2.9 for any
m € Max(R), pure dimp_My, < n. therefore for any simple direct sum-
mand S of M, we have pure dimg_S < n. By [2; Corollary 2] the char-
acter module S* = Homg(S,Q/ Z) is semlslmple and consists of copies
of S. By using [3; Theorem 1] we have flat dimp_S* < n and hence
flat dimp S < n. Thus flat dimp M., < n. Now the assertion holds. O
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