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CHARACTERIZING S-FLAT MODULES AND S-VON
NEUMANN REGULAR RINGS BY UNIFORMITY

XIAOLEI ZHANG

ABSTRACT. Let R be a ring and S a multiplicative subset of R. An R-
module 7T is called u-S-torsion (u-always abbreviates uniformly) provided
that sT° = 0 for some s € S. The notion of u-S-exact sequences is also
introduced from the viewpoint of uniformity. An R-module F is called
u-S-flat provided that the induced sequence 0 - A ®r F — BQ®r F —
C®grF — 0is u-S-exact for any u-S-exact sequence 0 - A - B — C —
0. A ring R is called u-S-von Neumann regular provided there exists an
element s € S satisfying that for any a € R there exists r € R such that
sa = ra®. We obtain that a ring R is a u-S-von Neumann regular ring
if and only if any R-module is u-S-flat. Several properties of u-S-flat
modules and u-S-von Neumann regular rings are obtained.

1. Introduction

Throughout this article, R is always a commutative ring with identity and
S is always a multiplicative subset of R, that is, 1 € S and sys2 € S for
any s; € S, so € S. Let S be a multiplicative subset of R. Recall from
[11, Definition 1.6.10] that an R-module M is called an S-torsion module if for
any m € M, there is an s € S such that sm = 0. S-torsion-free modules can
be defined as the right part of the hereditary torsion theory 7g generated by
S-torsion modules (see [10]). Early in 1965, Nastasescu et al. [9] defined 7g-
Noetherian rings as rings R satisfying that for any ideal I of R there is a finitely
generated sub-ideal J of I such that I/J is S-torsion. However, to tie together
some Noetherian properties of commutative rings and their polynomial rings or
formal power series rings, Anderson and Dumitrescu [1] defined S-Noetherian
rings R, that is, any ideal of R is S-finite in 2002. Recall from [1] that an
R-module M is called S-finite provided that sM C F for some s € S and
some finitely generated submodule F' of M. One can see that there is some
uniformity is hidden in the definition of S-finite modules. In fact, an R-module
M is S-finite if and only if s(M/F) = 0 for some s € S and some finitely
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generated submodule F' of M. In this article, we introduce the notion of u-S-
torsion modules T for which there exists s € S such that sT" = 0. The notion of
u-S-torsion modules is different from that of S-torsion modules (see Example
2.2). In the past few years, the notions of S-analogues of Noetherian rings,
coherent rings, almost perfect rings and strong Mori domains are introduced
and studied extensively in [1-3,6-8].

In this article, we introduce the notions of u-S-monomorphisms, u-S-epi-
morphisms, u-S-isomorphisms and u-S-exact sequences according to the idea
of uniformity (see Definition 2.7). Some properties of u-S-torsion modules and
S-finite modules with respect to u-S-exact sequences are given in Proposition
2.8 and Proposition 2.9. We say an R-module F is u-S-flat provided that the
induced sequence 0 > AQr F - BRr F — C gz F — 0 is u-S-exact for any
u-S-exact sequence 0 - A — B — C' — 0 (see Definition 3.1). Some basic
characterizations of u-S-flat modules are given (see Theorem 3.2). It is well
known that an R-module F is flat if and only Tor®(R/I, F) = 0 for any ideal I
of R. However, the S-analogue of this result is not true (see Example 3.3). It
is also worth remarking that the class of u-S-flat modules is not closed under
direct limits and direct sums (see Remark 3.5). If an R-module F is u-S-flat,
then Fg is flat over Rg (see Corollary 3.6). However, the converse does not
hold (see Remark 3.7). A new local characterization of flat modules is given
in Proposition 3.9. A ring R is called a u-S-von Neumann regular ring if there
exists an element s € S satisfies that for any a € R there exists r € R such that
sa = ra® (see Definition 3.12). A ring R is u-S-von Neumann regular if and
only if any R-module is u-S-flat (see Theorem 3.13). Every u-S-von Neumann
regular ring is locally von Neumann regular at S (see Corollary 3.14). However,
the converse is also not true in general (see Example 3.15). We also give a
non-trivial example of u-S-von Neumann regular which is not von Neumann
regular (see Example 3.18). Finally, we give a new local characterization of
von Neumann regular rings in Proposition 3.19.

2. u-S-torsion modules

Recall from [11, Definition 1.6.10] that an R-module T is said to be an S-
torsion module if for any ¢t € T there is an element s € S such that st = 0.
Note that the choice of s is decided by the element ¢. In this article, we care
more about the uniformity of s on 7.

Definition 2.1. Let R be a ring and S a multiplicative subset of R. An
R-module T is called a u-S-torsion (abbreviates uniformly S-torsion) module
provided that there exists an element s € S such that sT" = 0.

Obviously, the submodules and quotients of u-S-torsion modules are also
u-S-torsion. Note that finitely generated S-torsion modules are u-S-torsion
and any u-S-torsion modules are S-torsion. However, S-torsion modules are
not necessary u-S-torsion. We also note that every R-module does not have a
maximal u-S-torsion submodule.
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Example 2.2. Let Z be the ring of integers, p a prime in Z and S = {p" |n >
0}. Let M = Z,)/7Z be a Z-module where Z ) is the localization of Z at S.
Then

(1) M is S-torsion but not u-S-torsion.
(2) M has no maximal u-S-torsion submodule.

Proof. (1) Obviously, M is an S-torsion module. Suppose there is a p™ such
that p” M = 0. However, p”(pn% +7Z) = % +7Z #0+7Z in M. Thus M is not
u-S-torsion.

(2) Suppose N is a maximal u-S-torsion submodule of M. Then there is an
element p™ € S such that p" N = 0. Note N is a submodule of M,, := {ﬁ—i—Z €
M |a € Z}. Since M1 :={=21+Z € M |a € Z} is a u-S-torsion submodule

P
of M and N is a proper submodule of M, 1, which is a contradiction. 0

Proposition 2.3. Let R be a ring and M an R-module. Let S be a multiplica-
tive subset of R consisting of finite elements. Then M is S-torsion if and only
if M is u-S-torsion.

Proof. If M is u-S-torsion, then M is trivially S-torsion. Let S = {s1,...,s,}
and s = $1---Sp. Suppose M is an S-torsion module. Then for any m € M,

there is an element s; € S such that s;;m = 0. Thus sm = 0 for any m € M.
So sM = 0. O

Proposition 2.4. Let R be a ring and S a multiplicative subset of R. If
an R-module M has a maximal u-S-torsion submodule, then M has only one
maximal u-S-torsion submodule.

Proof. Let M; and Ms be maximal u-S-torsion submodules of M such that
s1 My = 0 and so M5 = 0 for some s, s5 € S. We claim that M7 = Ms. Indeed,
otherwise we may assume there is an m € My — M;. Let M3 be a submodule
of M generated by M; and m. Then s;soM3 = 0. Thus M3 is a u-S-torsion
submodule properly containing M7, which is a contradiction. O

Recall from [11, Definition 1.6.10] that an R-module M is said to be an
S-torsion-free module if sm = 0 for some s € S and m € M implies that
m = 0. The classes of S-torsion modules and S-torsion-free modules constitute
a hereditary torsion theory (see [10]). From this result it follows immediately
the next result (see [11, Theorem 6.1.6]). However we give a direct proof for
completeness.

Proposition 2.5. Let R be a ring and S a multiplicative subset of R. Then
an R-module F is S-torsion-free if and only if Homg(T, F) = 0 for any u-S-
torsion module T .

Proof. Assume that F'is an S-torsion-free module and let T" be a u-S-torsion
module and f € Hompg(T, F'). Then there exists s € S such that sT = 0. Thus
forany t € T, sf(t) = f(st) =0 € F. Thus f(t) = 0 for any t € T. Conversely
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suppose that sm = 0 for some s € S and m € F. Set Fy = {z € F|sz = 0}.
Then Fj is a u-S-torsion submodule of F. Thus Hompg(Fs, F) = 0. It follows
that Iy = 0 and thus m=0. So F' is S-torsion-free. [l

Corollary 2.6. Let R be a rmg, S a multiplicative subset of R and T a u-
S-torsion module. Then TorZ(M,T) is u-S-torsion for any R-module M and
n > 0.

Proof. Let T be a u-S-torsion module with sT' = 0. If n = 0, then for any
Ya®be M rT, wehave s> a®b=> a®sb=0. Thus s(M @rT) = 0.
Let 0 — Q( ) = P — M — 0 be a short exact sequence with P projective.
Then Tor®(M,T) is a submodule of Q(M) ®g T which is u-S-torsion. Thus
Tor1 (M, T) is u-S-torsion. For n > 2, we have an isomorphism Tor (M, T)) =

Torf(Q"=1(M),T), where Q" 1(M) is the (n — 1) th syzygy of M. Since
Torf ("1 (M), T) is u-S-torsion by induction, Tor(M,T) is u-S-torsion. [J

Definition 2.7. Let R be a ring and S a multiplicative subset of R. Let M,
N and L be R-modules.

(1) An R-homomorphism f : M — N is called a u-S-monomorphism
(resp., u-S-epimorphism) provided that Ker(f) (resp., Coker(f)) is a
u-S-torsion module.

(2) An R-homomorphism f : M — N is called a u-S-isomorphism provided
that f is both a u-S-monomorphism and a u-S-epimorphism.

(3) An R-sequence M Lo N % L is called u-S-exact provided that there
is an element s € S such that sKer(g) C Im(f) and sIm(f) C Ker(g).

It is easy to verify that f : M — N is a u-S-monomorphism (resp., u-S-
epimorphism) if and only if 0 — M ENS Y (resp., M ENG YNy ) is u-S-exact.

Proposition 2.8. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then the following assertions hold.

(1) Suppose M is u-S-torsion and f : L — M is a u-S-monomorphism.
Then L is u-S-torsion.

(2) Suppose M is u-S-torsion and g : M — N is a u-S-epimorphism. Then
N is u-S-torsion.

(3) Let f : M — N be a u-S-isomorphism. If one of M and N is u-S-
torsion, so is the other.

(4) Let 0 — L I M % N = 0 be a u-S-ezact sequence. Then M is
u-S-torsion if and only if L and N are u-S-torsion.

Proof. We only prove (4) since (1), (2) and (3) are the consequences of (4).
Suppose M is u-S-torsion with sM = 0. Since Ker(f) (resp., Coker(g)) is
u-S-torsion with s;Ker(f) = 0 (resp., s2Coker(g) = 0) for some s; € S (resp.,
s € 5), it follows that ss;1L = 0 (resp., ssoN = 0). Consequently, L (resp.,
N) is u-S-torsion. Now suppose L and N are u-S-torsion with s;L = s N =0
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for some s1,s9 € S. Since the u-S-exact sequence is exact at M, there exists
s € S such that sKer(g) C Im(f) and sIm(f) C Ker(g). Let m € M. Then
sag(m) = g(sam) = 0. Thus there exists I € L such that ssom = f(I). So
s1ssgm = s1f(1) = f(s1l) = 0. So M is u-S-torsion. O

Let R be a ring and S a multiplicative subset of R. Recall from [1] that
an R-module M is called S-finite provided that there exists s € S such that
sM C N C M, where N is a finitely generated R-module. Let M be an
R-module, {m;};cn € M and N = (m;);en. We say an R-module M is S-
generated by {m;}iea provided that sM C N for some s € S. Thus an R-
module M is S-finite provided that M can be S-generated by finite elements.

Proposition 2.9. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then the following assertions hold.

(1) Let M be an S-finite R-module and f : M — N a u-S-epimorphism.
Then N is S-finite.

(2) Let 0 — L LM % N =0 be au-S-evact sequence. If L and N are
S-finite, so is M.

(3) Let f: M — N be a u-S-isomorphism. If one of M and N is S-finite,
so is the other.

Proof. (1) Consider the exact sequence M LN 5 T — 0 with sT = 0 for
some s € S. Let F be a finitely generated submodule of M such that s’ M C F
for some s’ € S. Then f(F) is a finitely generated submodule of N such that
ss'N C f(F).

(2) Suppose 0 — L oM % N = 0is a u-S-exact sequence. Let L; and
N1 be finitely generated submodules of L and N such that s, C L; and
syIN C Nj for some sp,,sy € S, respectively. Let M; be a finitely generated
submodule of M generated by the finite images of generators of L; and the finite
pre-images of finite generators of Nj. Then for any m € M, syg(m) € Nj.
Thus there exists m; € My such that syg(m) = g(m1). We have sym —mq €
Ker(g). Since there exists s € S such that sKer(g) C Im(f). So there exists
I € L such that s(sym —mq) = f(I). Then there exists Iy € L; such that
spl =13, Thus sps(sym —my) = spf(l) = f(spl) = f(l1). Consequently,
spssym = spsmy + sf(l1) € My. So spssyM C M. Since M; is finitely
generated, we have M is S-finite.

(3) It is a consequence of (2). O

3. u-S-flat modules and u-S-von Neumann regular rings

Recall from [11] that an R-module F is called flat provided that for any short
exact sequence 0 - A — B — C' — 0, the induced sequence 0 - A ®g F —
BrF — C®rF — 0is exact. Now, we give an S-analogue of flat modules.
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Definition 3.1. Let R be a ring, S a multiplicative subset of R. An R-module
F is called u-S-flat (abbreviates uniformly S-flat) provided that for any u-S-
exact sequence 0 - A — B — C' — 0, the induced sequence 0 - A ®g F —
B®rF — CQ®grF — 0 is u-S-exact.

Recall from [11] that an R-module F is flat if and only if Torf(M, F) = 0
for any R-module M if and only if Tor’(M, F) = 0 for any R-module M and
n > 1. We give an S-analogue of this result.

Theorem 3.2. Let R be a ring, S a multiplicative subset of R and F an
R-module. The following statements are equivalent:

(1) F is u-S-flat

(2) For any short exact sequence 0 — A Lp%oo 0, the induced

sequence 0 - AQr F f®—RF> B®grF % C®rF — 0 isu-S-exact;

(3) Torf (M, F) is u-S-torsion for any R-module M:;
(4) Tor®(M, F) is u-S-torsion for any R-module M andn > 1.

Proof. (1) = (2), (3) = (2) and (4) = (3): Trivial.
(2) = (3): Let 0 = L - P — M — 0 be a short exact sequence with P
projective. Then there exists a long exact sequence

0— Tor(M,F) s FQL—+PQF - M®F —0.

Thus Torf(M, F) is u-S-torsion by (2).

(3) = (4): Let M be an R-module. Denote the (n — 1)-th syzygy of M by
Q"= Y(M). Then Tor(M, F) = Torf(Q"~ (M), F) is u-S-torsion by (3).

(2) = (1): Let F be an R-module satisfies (2). Suppose 0 — A Lo
0 is a u-S-exact sequence. Then there is an exact sequence B % C' — T — 0,
where T = Coker(g) is u-S-torsion. Tensoring F' over R, we have an exact
sequence

BopF L2, Cor F > Ter F —0.

Then T ®g F' is u-S-torsion by Corollary 2.6. Thus 0 — A ®p F ELILIN

B®RFM%C®RF%Oisu—S—exact at C®p F.

There are naturally two short exact sequences: 0 — Ker(f) - A — Im(f) —
0, 0 = Im(f) — B — Coker(f) — 0, where Ker(f) is u-S-torsion. Consider
the induced exact sequences

iKer(f)ORF
—r

— Ker(f) ®@r F' A®pF — Im(f)®@r F — 0,

iIm F
S Im(f) @ F 0@l

where Ker(ipmr) ®@r F) and Ker(ike(s) @r F) are u-S-torsion. We have the
following pull-back diagram:

B®pg F — Coker(f) @r F — 0,



S-FLAT MODULES AND S-VON NEUMANN REGULAR RINGS 649

0 0
Im(iKer(f) KRR F) e Im(iKer(f) RRr F)
0 Y A@RF—>Im(iIm(f) ®RF)*>0

Im(ilm(f) QR F) —0

0—— Kor(ilm(f) ®p F) ———1Im(f) ®g F

0 0

Since Ker(f) is u-S-torsion, so is Ker(f) ®g F by Corollary 2.6. Hence
Im(iger(r) ®r F) is u-S-torsion, and thus Y is also u-S-torsion by Proposi-
tion 2.8. So the composition f@r F': AQr F — Im(ity ) @r F) — BRp Fis

a u-S-monomorphism. Thus 0 - A @z F f®—RF> B®grF M) CRrF —0

is u-S-exact at A @p F.

Since the sequence 0 — A 1B % ¢ = 0is u-S-exact at B, there exists
s1 € S such that s1Ker(g) € Im(f) and s;Im(f) C Ker(g). By (2), there are
two exact sequences 0 — T7 — s1Ker(g) ®p F — Im(f) ®r F with s377 =0
for some s5 € S, and 0 = T — s1Im(f) @ F — Ker(g) ®g F with s3T5 =0
for some s3 € S. Consider the induced sequence 0 — T — Ker(g) ®p F —
B®rF — Coker(g)®@gr F — 0 with s47 = 0 for some s4 € S. Set s = 51528354,
we will show sKer(g ®g F) C Im(f ®g F) and slm(f ®@r F) C Ker(g Qg F).
Consider the following exact sequence

Ker(g) ORF gRRF
Rl

0T — Ker(g) ®r F BrF —— C®g F.

Then Im(iker(g) ®r F) = Ker(g@gr F'). Thus sKer(9®r F) = s1s25354Ker(g®p
F) = s1828354Im(iker(g) ®r F) C s15283Ker(g) @p F C s3lm(f) @r F =
ssim(f @ F) C Im(f ®r F), and slm(f ®gr F) = s1828384Im(f) Qg F C
s284Ker(g) @r F C solm(iger(q) @r F') = s2Ker(9®@g F) C Ker(g ®g F'). Thus
0> AQRrF > B®rF — C®grF — 0is u-S-exact at BRg F. O

By Corollary 2.6 and Theorem 3.2, flat modules and u-S-torsion modules
are u-S-flat. And u-S-flat modules are flat provided that any element in S is
a unit. Moreover, if any element in S is regular and all u-S-flat modules are
flat, then any element in S is a unit. Indeed, for any s € S, we have R/(s)
is u-S-flat and thus flat. So (s) is a pure ideal of R. By [5, Theorem 1.2.15],
there exists r € R such that s(1 —rs) = 0. Since s is regular, s is a unit.

The following example shows that the condition “Torf'(M, F) is u-S-torsion
for any R-module M” in Theorem 3.2 can not be replaced by “Torf(R/I, F)
is u-S-torsion for any ideal I of R”.



650 X. ZHANG

Example 3.3. Let Z be the ring of integers, p a prime in Z and S = {p" |n >
0} as in Example 2.2. Let M = Z,)/Z. Then Torf(R/I, M) is u-S-torsion for
any ideal I of R. However, M is not u-S-flat.

Proof. Let (n) be an ideal of Z. It follows from [4, Chapter I, Lemma 6.2(a)]
that Tor?(Z/(n), M) = {m € M |nm = 0} = {p% + 7 € ZLpy/Z] a,b satisfies
p® | nb}. Write n = p*m where (p,m) = 1. If k = 0, then Tor?(Z/(n), M) =
0. If k > 1, then Tor{(Z/(n), M) = {% +Z € Zy)/Z|a,b € Z}. Thus
p* - Tor¥(Z/(n), M) = 0. So TorZ(Z/(n), M) is u-S-torsion for any ideal (n)
of Z. However, Tor%(Q/Z,Z(p)/Z) 2 t(Z)/Z) = L)/ 7 by [4, Chapter I,
Lemma 6.2(b)]. Since Z,)/Z is not u-S-torsion by Example 2.2, M = Z,)/Z
is not u-S-flat. g

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. Then
the following statements hold.

(1) Any pure quotient of u-S-flat modules is u-S-flat.

(2) Any finite direct sum of u-S-flat modules is u-S-flat.

(3) Let 0 - A 1B % ¢ 0 be a u-S-exact sequence. If A and C are
u-S-flat modules, so is B.

(4) Let A — B be a u-S-isomorphism. If one of A and B is u-S-flat, so is
the other.

(5) Let0 — A 5B % ¢ =0 be au-S-eract sequence. If B and C' are
u-S-flat, then A is u-S-flat.

Proof. (1) Let 0 = A — B — C — 0 be a pure exact sequence with B u-S-
flat. Let M be an R-module. Then there is an exact sequence Tor(M, B) —
Torf'(M,C) — 0. Since Torf'(M, B) is u-S-torsion, Tor'(M, C) also is u-S-
torsion. Thus C' is u-S-flat.

(2) Let Fy,...,F, be u-S-flat modules. Let M be an R-module. Then
there exists s; € S such that siTorf(M, F;) = 0. Set s = s1---8,. Then
sTorf'(M, @ F;) = @ sTorf'(M, F;) = 0. Thus @ F; is u-S-flat.

i=1 i=1 i=1

(3) Let 0 —» A 1B % ¢ = 0 be a u-S-exact sequence. Then there are
three short exact sequences: 0 — Ker(f) - A — Im(f) — 0, 0 — Ker(g) —
B — Im(g) — 0 and 0 — Im(g9) - C — Coker(g) — 0. Then Ker(f) and
Coker(g) are all u-S-torsion and sKer(g) C Im(f) and sIm(f) C Ker(g) for
some s € S. Let M be an R-module. Suppose A and C are u-S-flat. Then

Tor® (M, A) — Torl(M,Im(f)) — M ®r Ker(f)

is exact. Since Ker(f) is u-S-torsion and A is u-S-flat, it follows that
Torf (M, Im(f)) is u-S-torsion. Note

Tor (M, Coker(g)) — Torf (M, Im(g)) — Tori (M, C)
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is exact. Since Coker(g) is u-S-torsion, Tors (M, Coker(g)) is u-S-torsion by
Corollary 2.6. Thus Torf(M,Im(g)) is u-S-torsion as Tori'(M,C) is u-S-
torsion. We also note that

Torf (M, Ker(g)) — Torf (M, B) — Tort (M, Im(g))

is exact. Thus to verify Tor®(M, B) is u-S-torsion, we just need to show
Torf (M, Ker(g)) is u-S-torsion. Set N = Ker(g) 4+ Im(f). Consider the follow-
ing two exact sequences

0 — Ker(g) - N — N/Ker(g) — 0 and 0 — Im(f) = N — N/Im(f) — 0.

Then it is easy to verify N/Ker(g) and N/Im(f) are all u-S-torsion. Consider
the following induced two exact sequences

Tory (M, N/Im(f)) — Torff(M, Ker(g)) — Tori (M, N)— Tor{ (M, N/Im(f)),
Tork (M, N/Ker(g)) = Torf (M, Im(f)) — Torf (M, N)— Torf'(M, N/Ker(g)).
Thus Torf(M,Ker(g)) is u-S-torsion if and only if Torf(M,Im(f)) is u-S-
torsion. Consequently, B is u-S-flat since Tor?(M ,Im(f)) is proved to be

u-S-torsion as above.
(4) It can be certainly deduced from (3).

(5)Let0 — A L B % ¢ — 0be au-S-exact sequence. Then, as in the proof
of (3), there are three short exact sequences: 0 — Ker(f) = A — Im(f) — 0,
0 — Ker(g) - B — Im(g) — 0 and 0 — Im(g) — C — Coker(g) — 0. Then
Ker(f) and Coker(g) are all u-S-torsion and sKer(g) C Im(f) and sIm(f) C
Ker(g) for some s € S. Let M be an R-module. Note that

Torf (M, Ker(f)) — Torl(M, A) — Torl (M, Im(f)) — M ®r Ker(f)

is exact. Since Ker(f) is u-S-torsion, Torf (M, Ker(f)) and M @ Ker(f) are u-

S-torsion by Corollary 2.6. Tt just need to verify Tori* (M, Im(f)) is u-S-torsion.

By the proof of (3), we just need to show Torj* (M, Ker(g)) is u-S-torsion. Since
Tory (M, Im(g)) — Torf (M, Ker(g)) — Torf(M, B)

is exact and Tort (M, B) is u-S-torsion, we just need to show Tord (M, Im(g))
is u-S-torsion. Note that
Torf (M, Coker(g)) — Tord(M,Im(g)) — Tord(M, C)
is exact. Since Coker(g) is u-S-torsion and C' is u-S-flat, we have
Torf (M, Coker(g)) and Tor¥ (M, C)
are u-S-torsion. So Torgz(M7 Im(g)) is u-S-torsion. O

Remark 3.5. It is well known that any direct limit of flat modules is flat.
However, every direct limit of u-S-flat modules is not u-S-flat. Let Z be the
ring of integers, p a prime in Z and S = {p™|n > 0} as in Example 3.3. Let
F, =7Z/{p") be a Z-module. Then F), is u-S-torsion, and thus u-S-flat. Note
that each F), is isomorphic to My, = { ;% + Z € Z,)/Z|a € Z}. 1t is easy to
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verify Z,) /Z = 191 M, = hg1Fn. However, Z,)/Z is not u-S-flat (see Example

3.3).
It is also worth noting infinite direct sums of u-S-flat modules need not be
u-S-flat. Let My, = {5 +Z € Z,)/Z|a € Z} as above. Then M, is u-S-flat.

o0
Set N = @ M,. Then N is a torsion module. Thus Tor?(Q/Z, N) = N by

n=1
[4, Chapter I, Lemma 6.2(b)]. It can similarly be deduced from the proof of
Example 2.2 that N is not u-S-torsion. Thus N is not u-S-flat.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R. If F is
u-S-flat over a ring R, then Fg is flat over Rg.

Proof. Let Ig be a finitely generated ideal of Rg, where [ is a finitely generated
ideal of R. Then there exists s € S such that sTor(R/I,F) = 0. Thus
0 = Tori(R/I, F)s = Torls(Rg/Is, Fs). So Fs is flat over Rg. 0

Remark 3.7. Note that the converse of Corollary 3.6 does not hold. Consider
Z-module M = Z,) /7 in Example 2.2. Let S = {p"|n > 0}. Then Ms =0
and thus is flat over Zg. However, M is not u-S-flat over Z (see Example 3.3).

Proposition 3.8. Let R be a ring and F' an R-module. Let S be a multiplica-
tive subset of R consisting of finite elements. Then F is u-S-flat over a ring
R if and only if Fg is flat over Rg.

Proof. We just need to show that if Fi is flat over Rg, then F is u-S-flat over

aring R. Let 0 - A 1. B - ¢ = 0 be a short exact sequence over R. By

tensoring F', we have an exact sequence 0 - T — AQgr F f®—RF> B®rF —

C ®r F — 0, where T is the kernel of f ®g F'. By tensoring Rg, we have an
exact sequence 0 — Tg — Ag ®ry Fs - Bs Qrs Fs — Cs ®pry Fs — 0 over
Rg. Since Fg is flat over Rg, Ts = 0. Thus T is S-torsion. By Proposition
2.3, T is u-S-torsion. So F' is u-S-flat over a ring R. (]

Let p be a prime ideal of R. We say an R-module F is u-p-flat shortly
provided that F' is u-(R \ p)-flat.

Proposition 3.9. Let R be a ring and F' an R-module. Then the following
statements are equivalent:

(1) F is flat;

(2) F is u-p-flat for any p € Spec(R);

(3) F is u-m-flat for any m € Max(R).

Proof. (1) = (2) = (3) : Trivial.

(3) = (1) : Let M be an R-module. Then Torf(M, F) is (R \ m)-torsion.
Thus for any m € Max(R), there exists sy € S such that s, Tor (M, F) = 0.
Since the ideal generated by all sy is R, Torl (M, F) = 0. So F is flat. O
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Recall that a ring R is called von Neumann regular provided that for any
a € R, there exists r € R such that a = ra?. One of the main topics is the
S-analogue of von Neumann regular rings. In order to study further, we will
characterize when a ring Rg is von Neumann regular in the next result.

Proposition 3.10. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent:

(1) Rg is a von Neumann regular ring;

(2) Any principal ideal of R is S-generated by an idempotent;

(3) Any S-finite ideal of R is S-generated by an idempotent;

(4) For any a € R, there exist s € S and r € R such that sa = ra?;
(5) Fny Rs-module is flat over Rg.

Proof. (1) < (5) : It is well known. (3) = (2) : Trivial.

(1) = (4) : Let @ € R. Then there exists i+ € Rg such that § = T—I%. Thus
there exists sy € S such that s;sea = sor1a?. Set s = 5159 and 7 = so11, (4)
holds naturally.

(4) = (1) : Let ¢ be an element in Rg. Then there are s’ € S and z € R
such that s'a = za?. Thus ¢ = 22(2)?. So Rg is a von Neumann regular ring.

(4) = (2) : Let (a) be a principal ideal of R. Then there exists s € S such
that sa = ra? for some r € R. Set e = ra. Then se = ¢? and e € {(a). Since
sa = ea € {e), we have s{a) C (e) C (a).

(2) = (3) : Let K be an S-finite ideal and I = Raj + --- + Ra, be a
finitely generated sub-ideal of I such that 'K C I for some s’ € S. By
(2), for each i there is an idempotent e; € Ra; such that s;{(a;) C (e;) for
some s; € S (i = 1,...,n). Set s = §'sy--+8,. Then s{a;) C (e;). Set
J = Re; + -+ + Re,. Then J is a sub-ideal of I (thus of K) such that
sK C s1---s,1 C J. Claim that J is generated by an idempotent. Indeed,
for any z € J, we have x = rieq + -+ + rpe, = rief + -+ +r,e2 € J2 Thus
J? = J. Since J is finitely generated, J = (e) for some idempotent e € I by
[11, Theorem 1.8.22].

(2) = (4) : Let a € R. Then there is an idempotent e such that s{a) C (e) C
{a). If e = ba for some b € R, then e = e = b?a%. Thus sa = ce = cb*a? for
some cb? € R. So (4) holds. O

Recall from [3] that a ring R is called ¢-S-coherent if any S-finite ideal T is
c-S-finitely presented, that is, there exists a finitely presented sub-ideal J of I
such that sI C J C I. By Proposition 3.10, the following result holds since any
ideal generated by an idempotent is projective, and thus is finitely presented.

Corollary 3.11. Let R be a ring and S a multiplicative subset of R. If Rg is
a von Neumann regular ring, then R is c-S-coherent.

It is certain that for a ring R such that Rg is von Neumann regular, the
element s € S such that sa = ra? for some r € R depends on a € R by



654 X. ZHANG

Proposition 3.10. Now we give the definition of u-S-von Neumann regular ring
for which the element s € S is uniform on any element a € R.

Definition 3.12. Let R be a ring and S a multiplicative subset of R. R is
called a u-S-von Neumann regular ring (abbreviates uniformly S-von Neumann
regular ring) provided there exists an element s € S satisfying that for any
a € R there exists r € R such that sa = ra®.

Let {M;}jer be a family of R-modules. Let {m;;}icn, C M; for each
Jj € T'and N; = (myj)ien,- We say a family of R-modules {M;}er is u-
S-generated by {{m;;}ica,}jer provided that there exists an element s €
such that sM; C N; for each j € I'. It is well known that a ring R is a
von Neumann regular ring if and only if every R-module is flat if and only
if any principal (finitely generated) ideal is generated by an idempotent (see
[11, Theorem 3.6.3]). Now we give an S-analogue of this result.

Theorem 3.13. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent:

(1) R is a u-S-von Neumann regular ring;

(2) For any R-module M and N, there exists s € S such that sTorl(M, N)
=0;

(3) There exists s € S such that sTorl(R/I, R/J) = 0 for any ideals I and
J of R;

(4) There exists s € S such that sTor¥(R/I,R/J) = 0 for any S-finite
ideals I and J of R;

(5) There exists s € S such that sTor(R/(a), R/{a)) = 0 for any element
a € R;

(6) Any R-module is u-S-flat;

(7) The class of all principal ideals of R is u-S-generated by idempotents;

(8) The class of all finitely generated ideals of R is u-S-generated by idem-
potents.

Proof. (1) & (5) : It follows from the equivalences: sTori(R/{(a), R/(a)) = 0

if and only if % = 0, if and only if there exists r € R such that sa = ra?.

(2) & (6), (8) = (7) and (3) = (4) = (5) : Trivial.
(2) = (3): Set M = N = @ R/I. Then (3) holds naturally.
IGR

(3) = (2) : Suppose M is generated by {m;|i € '} and N is generated
by {n;|i € A}. Let I and A be well-ordered sets. Set My = 0 and M, =
(m;|i < a) for each o <T. Then M have a continuous filtration {M, |a < T}
with Myy1/My = R/In41 and I, = Anng(me + M, N Rmy,). Similarly N
has a continuous filtration {Ng |3 < A} with Ngy1/Ng = R/Jgyq and Jg =
Anng(ng + Ng N Rng). Since sTorf(R/1,, R/Js) = 0 for each a < T' and
B < A, it is easy to verify sTorl(M, N) = 0 by transfinite induction on both
positions of M and N.
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(5) = (3) : By [11, Exercise 3.20], we have sTorf(R/I,R/J) = 5(1179‘1) for

any ideals I and J of R. So we just need to show s(INJ) C IJ. Leta € INJ.

Since sTor’(R/{a), R/(a)) = jj;;; = 0, it follows that sa € s{a) C (a?) C I.J.
Thus sTorf(R/I,R/J) = 0.

(1) = (7) : Let s be an element in S such that sa = ra? for some r € R and
any a € R. Set e = ra. Then se = €2 and e € (a). Since sa = ea € (e), we
have s{a) C (e) C (a) for any a € R.

(7) = (8) : Let {I; = Rayj + -+ + Ray, ;|j € T} be the family of all
finitely generated ideals of R. By (3), there exists an element s € S such that
for each j € I' and 7 = 1,...,n; there is an idempotent e; ; € Ra; ; such that
s{aij) C (esj). Set J; = Rey j+---+ Rey; j. Then Jj is a sub-ideal of I; such
that sJ; C I; C J;. Claim that J; is generated by an idempotent. Indeed, for
any = € Jj, we have & = rie; + -+ + rpe, = rief 4+ - + rpe2 € J]-Q. Thus
Jj2 = J;. Since J; is finitely generated, J; = (e;) for some idempotent e; € I;
by [11, Theorem 1.8.22]. So {I;|j € I'} is u-S-generated by {{e;}|j € I'}.

(7) = (1) : There are an element s € S and a family of idempotents {e, |a €
R} such that s{a) C (e,) C (a) for any a € R. Write e, = ba for some b € R.
Then e, = €2 = b%a®. Thus sa = ce, = cb?a?® for some cb*> € R. So R is
u-S-von Neumann regular. O

Corollary 3.14. Let R be a ring and S a multiplicative subset of R. If R
is a u-S-von Neumann reqular ring, then Rg is a von Neumann regular ring.
Consequently, any u-S-von Neumann reqular ring is c-S-coherent.

Proof. Tt follows from Proposition 3.10, Corollary 3.11 and Theorem 3.13. O

Note that a ring R such that Rg is von Neumann regular is not necessary
u-S-von Neumann regular.

Example 3.15. Let Z be the ring of all integers, S = Z \ {0}. Then Zg = Q
is a von Neumann regular ring. Let p be a prime in Z and M = Z,)/Z. Then
Tor?(Q/Z, Zpy| ) = L) /Z by [4, Chapter I, Lemma 6.2(b)]. It is easy to
verify that nZ,)/Z # 0 for any n € S. Thus M is not u-S-torsion, and so Z is
not a u-S-von Neumann regular ring.

Corollary 3.16. Let R be a ring. Let S be a multiplicative subset of R con-
sisting of finite elements. Then R is a u-S-von Neumann regular ring if and
only if Rg is a von Neumann regular ring.

Proof. We just need to show that if Rg is a von Neumann regular ring, then

R is a u-S-von Neumann regular ring. Let S = {s1,...,8,}. Set s =81+ s,.
By Proposition 3.10, for any a € R, there exist s; € S and r, € R such that
sia = rqa’. Thus sa = ra® for any a € R and some r € R. O

Since every flat module is u-S-flat, von Neumann regular rings are u-S-von
Neumann regular. The following result shows u-S-von Neumann regular rings
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are always von Neumann regular provided S is a regular multiplicative set, i.e.,
the multiplicative set S is composed of non-zero-divisors.

Proposition 3.17. Let R be a ring and S a reqular multiplicative subset of R.
Then R is u-S-von Neumann regular if and only if R is von Neumann reqular.

Proof. We just need to show if R is u-S-von Neumann regular, then R is von
Neumann regular. Suppose R is a u-S-von Neumann regular ring. Then there
exists s € S such that for any a € R there exists r € R satisfying sa = ra?.
Taking a = s2, we have s = rs*. Since s is a non-zero-divisor of R, we have
1 = sr. Thus s is a unit. So for any a € R there exists r € R such that

a = (s71r)a?. Tt follows that R is a von Neumann regular ring. O

However, the condition that “any element in S is a non-zero-divisor” in
Proposition 3.17 cannot be removed. Let R be any ring and S a multiplicative
subset of R containing a nilpotent element. Then R is a u-S-von Neumann
regular ring. Indeed, let s be a nilpotent element in R with nilpotent index n.
Then 0 = s™ € S. Thus for any a € R, we have 0a = 0a? = 0. So R is u-S-von
Neumann regular. If the multiplicative subset S of R does not contain 0, the
condition that “any element in S is a non-zero-divisor” in Corollary 3.17 also
cannot be removed.

Example 3.18. Let T = Zs X Zs be a semi-simple ring and s = (1,0) € T.
Then any element a € T satisfies > = a and 2a = 0. Let R = T[z]/(sz, 2?)
with x the indeterminate and S = {1, s} be a multiplicative subset of R. Then
R is a u-S-von Neumann regular ring, but R is not von Neumann regular.
Indeed, let r = a 4 bT be any element in R, where T is the residual element of
zin R and a,b € T. Then sr = s(a + bT) = sa = sa® = s(a® + 2abT + b*7T?) =
s(a+bx)? = sr?. Thus R is u-S-von Neumann regular. However, since R is not
reduced, R is not von Neumann regular by [11, Theorem 3.6.16(2), Exercise
3.48].

Let p be a prime ideal of R. We say a ring R is a u-p-von Neumann regular
ring shortly provided R is a u-(R \ p)-von Neumann regular ring. The final
result gives a new local characterization of von Neumann regular rings.

Proposition 3.19. Let R be a ring. Then the following statements are equi-
valent:

(1) R is a von Neumann regular ring;
(2) R is a u-p-von Neumann regular ring for any p € Spec(R);
(3) R is a u-m-von Neumann regular ring for any m € Max(R).

Proof. (1) = (2) : Let F' be an R-module and m € Max(R). Then F is flat,
and thus u-m-flat. So R is a u-m-von Neumann regular ring.

(2) = (3) : Trivial.

(3) = (1) : Let M be an R-module. Then M is m-flat for any m € Max(R).
Thus M is flat by Proposition 3.9. So R is a von Neumann regular ring. (|
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