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CHARACTERIZING S-FLAT MODULES AND S-VON

NEUMANN REGULAR RINGS BY UNIFORMITY

Xiaolei Zhang

Abstract. Let R be a ring and S a multiplicative subset of R. An R-

module T is called u-S-torsion (u-always abbreviates uniformly) provided
that sT = 0 for some s ∈ S. The notion of u-S-exact sequences is also

introduced from the viewpoint of uniformity. An R-module F is called
u-S-flat provided that the induced sequence 0 → A ⊗R F → B ⊗R F →
C⊗RF → 0 is u-S-exact for any u-S-exact sequence 0→ A→ B → C →
0. A ring R is called u-S-von Neumann regular provided there exists an
element s ∈ S satisfying that for any a ∈ R there exists r ∈ R such that

sa = ra2. We obtain that a ring R is a u-S-von Neumann regular ring

if and only if any R-module is u-S-flat. Several properties of u-S-flat
modules and u-S-von Neumann regular rings are obtained.

1. Introduction

Throughout this article, R is always a commutative ring with identity and
S is always a multiplicative subset of R, that is, 1 ∈ S and s1s2 ∈ S for
any s1 ∈ S, s2 ∈ S. Let S be a multiplicative subset of R. Recall from
[11, Definition 1.6.10] that an R-module M is called an S-torsion module if for
any m ∈ M , there is an s ∈ S such that sm = 0. S-torsion-free modules can
be defined as the right part of the hereditary torsion theory τS generated by
S-torsion modules (see [10]). Early in 1965, Nǎstǎsescu et al. [9] defined τS-
Noetherian rings as rings R satisfying that for any ideal I of R there is a finitely
generated sub-ideal J of I such that I/J is S-torsion. However, to tie together
some Noetherian properties of commutative rings and their polynomial rings or
formal power series rings, Anderson and Dumitrescu [1] defined S-Noetherian
rings R, that is, any ideal of R is S-finite in 2002. Recall from [1] that an
R-module M is called S-finite provided that sM ⊆ F for some s ∈ S and
some finitely generated submodule F of M . One can see that there is some
uniformity is hidden in the definition of S-finite modules. In fact, an R-module
M is S-finite if and only if s(M/F ) = 0 for some s ∈ S and some finitely
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generated submodule F of M . In this article, we introduce the notion of u-S-
torsion modules T for which there exists s ∈ S such that sT = 0. The notion of
u-S-torsion modules is different from that of S-torsion modules (see Example
2.2). In the past few years, the notions of S-analogues of Noetherian rings,
coherent rings, almost perfect rings and strong Mori domains are introduced
and studied extensively in [1–3,6–8].

In this article, we introduce the notions of u-S-monomorphisms, u-S-epi-
morphisms, u-S-isomorphisms and u-S-exact sequences according to the idea
of uniformity (see Definition 2.7). Some properties of u-S-torsion modules and
S-finite modules with respect to u-S-exact sequences are given in Proposition
2.8 and Proposition 2.9. We say an R-module F is u-S-flat provided that the
induced sequence 0→ A⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact for any
u-S-exact sequence 0 → A → B → C → 0 (see Definition 3.1). Some basic
characterizations of u-S-flat modules are given (see Theorem 3.2). It is well

known that an R-module F is flat if and only TorR1 (R/I, F ) = 0 for any ideal I
of R. However, the S-analogue of this result is not true (see Example 3.3). It
is also worth remarking that the class of u-S-flat modules is not closed under
direct limits and direct sums (see Remark 3.5). If an R-module F is u-S-flat,
then FS is flat over RS (see Corollary 3.6). However, the converse does not
hold (see Remark 3.7). A new local characterization of flat modules is given
in Proposition 3.9. A ring R is called a u-S-von Neumann regular ring if there
exists an element s ∈ S satisfies that for any a ∈ R there exists r ∈ R such that
sa = ra2 (see Definition 3.12). A ring R is u-S-von Neumann regular if and
only if any R-module is u-S-flat (see Theorem 3.13). Every u-S-von Neumann
regular ring is locally von Neumann regular at S (see Corollary 3.14). However,
the converse is also not true in general (see Example 3.15). We also give a
non-trivial example of u-S-von Neumann regular which is not von Neumann
regular (see Example 3.18). Finally, we give a new local characterization of
von Neumann regular rings in Proposition 3.19.

2. u-S-torsion modules

Recall from [11, Definition 1.6.10] that an R-module T is said to be an S-
torsion module if for any t ∈ T there is an element s ∈ S such that st = 0.
Note that the choice of s is decided by the element t. In this article, we care
more about the uniformity of s on T .

Definition 2.1. Let R be a ring and S a multiplicative subset of R. An
R-module T is called a u-S-torsion (abbreviates uniformly S-torsion) module
provided that there exists an element s ∈ S such that sT = 0.

Obviously, the submodules and quotients of u-S-torsion modules are also
u-S-torsion. Note that finitely generated S-torsion modules are u-S-torsion
and any u-S-torsion modules are S-torsion. However, S-torsion modules are
not necessary u-S-torsion. We also note that every R-module does not have a
maximal u-S-torsion submodule.
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Example 2.2. Let Z be the ring of integers, p a prime in Z and S = {pn |n ≥
0}. Let M = Z(p)/Z be a Z-module where Z(p) is the localization of Z at S.
Then

(1) M is S-torsion but not u-S-torsion.
(2) M has no maximal u-S-torsion submodule.

Proof. (1) Obviously, M is an S-torsion module. Suppose there is a pn such
that pnM = 0. However, pn( 1

pn+1 + Z) = 1
p + Z 6= 0 + Z in M . Thus M is not

u-S-torsion.
(2) Suppose N is a maximal u-S-torsion submodule of M . Then there is an

element pn ∈ S such that pnN = 0. Note N is a submodule of Mn := { apn +Z ∈
M | a ∈ Z}. Since Mn+1 := { a

pn+1 +Z ∈M | a ∈ Z} is a u-S-torsion submodule

of M and N is a proper submodule of Mn+1, which is a contradiction. �

Proposition 2.3. Let R be a ring and M an R-module. Let S be a multiplica-
tive subset of R consisting of finite elements. Then M is S-torsion if and only
if M is u-S-torsion.

Proof. If M is u-S-torsion, then M is trivially S-torsion. Let S = {s1, . . . , sn}
and s = s1 · · · sn. Suppose M is an S-torsion module. Then for any m ∈ M ,
there is an element si ∈ S such that sim = 0. Thus sm = 0 for any m ∈ M .
So sM = 0. �

Proposition 2.4. Let R be a ring and S a multiplicative subset of R. If
an R-module M has a maximal u-S-torsion submodule, then M has only one
maximal u-S-torsion submodule.

Proof. Let M1 and M2 be maximal u-S-torsion submodules of M such that
s1M1 = 0 and s2M2 = 0 for some s1, s2 ∈ S. We claim that M1 = M2. Indeed,
otherwise we may assume there is an m ∈ M2 −M1. Let M3 be a submodule
of M generated by M1 and m. Then s1s2M3 = 0. Thus M3 is a u-S-torsion
submodule properly containing M1, which is a contradiction. �

Recall from [11, Definition 1.6.10] that an R-module M is said to be an
S-torsion-free module if sm = 0 for some s ∈ S and m ∈ M implies that
m = 0. The classes of S-torsion modules and S-torsion-free modules constitute
a hereditary torsion theory (see [10]). From this result it follows immediately
the next result (see [11, Theorem 6.1.6]). However we give a direct proof for
completeness.

Proposition 2.5. Let R be a ring and S a multiplicative subset of R. Then
an R-module F is S-torsion-free if and only if HomR(T, F ) = 0 for any u-S-
torsion module T .

Proof. Assume that F is an S-torsion-free module and let T be a u-S-torsion
module and f ∈ HomR(T, F ). Then there exists s ∈ S such that sT = 0. Thus
for any t ∈ T , sf(t) = f(st) = 0 ∈ F . Thus f(t) = 0 for any t ∈ T . Conversely
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suppose that sm = 0 for some s ∈ S and m ∈ F . Set Fs = {x ∈ F | sx = 0}.
Then Fs is a u-S-torsion submodule of F . Thus HomR(Fs, F ) = 0. It follows
that Fs = 0 and thus m=0. So F is S-torsion-free. �

Corollary 2.6. Let R be a ring, S a multiplicative subset of R and T a u-
S-torsion module. Then TorRn (M,T ) is u-S-torsion for any R-module M and
n ≥ 0.

Proof. Let T be a u-S-torsion module with sT = 0. If n = 0, then for any∑
a⊗ b ∈M ⊗R T , we have s

∑
a⊗ b =

∑
a⊗ sb = 0. Thus s(M ⊗R T ) = 0.

Let 0 → Ω(M) → P → M → 0 be a short exact sequence with P projective.

Then TorR1 (M,T ) is a submodule of Ω(M) ⊗R T which is u-S-torsion. Thus

TorR1 (M,T ) is u-S-torsion. For n ≥ 2, we have an isomorphism TorRn (M,T ) ∼=
TorR1 (Ωn−1(M), T ), where Ωn−1(M) is the (n − 1)-th syzygy of M . Since

TorR1 (Ωn−1(M), T ) is u-S-torsion by induction, TorRn (M,T ) is u-S-torsion. �

Definition 2.7. Let R be a ring and S a multiplicative subset of R. Let M ,
N and L be R-modules.

(1) An R-homomorphism f : M → N is called a u-S-monomorphism
(resp., u-S-epimorphism) provided that Ker(f) (resp., Coker(f)) is a
u-S-torsion module.

(2) An R-homomorphism f : M → N is called a u-S-isomorphism provided
that f is both a u-S-monomorphism and a u-S-epimorphism.

(3) An R-sequence M
f−→ N

g−→ L is called u-S-exact provided that there
is an element s ∈ S such that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g).

It is easy to verify that f : M → N is a u-S-monomorphism (resp., u-S-

epimorphism) if and only if 0→M
f−→ N (resp., M

f−→ N → 0 ) is u-S-exact.

Proposition 2.8. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then the following assertions hold.

(1) Suppose M is u-S-torsion and f : L → M is a u-S-monomorphism.
Then L is u-S-torsion.

(2) Suppose M is u-S-torsion and g : M → N is a u-S-epimorphism. Then
N is u-S-torsion.

(3) Let f : M → N be a u-S-isomorphism. If one of M and N is u-S-
torsion, so is the other.

(4) Let 0 → L
f−→ M

g−→ N → 0 be a u-S-exact sequence. Then M is
u-S-torsion if and only if L and N are u-S-torsion.

Proof. We only prove (4) since (1), (2) and (3) are the consequences of (4).
Suppose M is u-S-torsion with sM = 0. Since Ker(f) (resp., Coker(g)) is

u-S-torsion with s1Ker(f) = 0 (resp., s2Coker(g) = 0) for some s1 ∈ S (resp.,
s2 ∈ S), it follows that ss1L = 0 (resp., ss2N = 0). Consequently, L (resp.,
N) is u-S-torsion. Now suppose L and N are u-S-torsion with s1L = s2N = 0
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for some s1, s2 ∈ S. Since the u-S-exact sequence is exact at M , there exists
s ∈ S such that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g). Let m ∈ M . Then
s2g(m) = g(s2m) = 0. Thus there exists l ∈ L such that ss2m = f(l). So
s1ss2m = s1f(l) = f(s1l) = 0. So M is u-S-torsion. �

Let R be a ring and S a multiplicative subset of R. Recall from [1] that
an R-module M is called S-finite provided that there exists s ∈ S such that
sM ⊆ N ⊆ M , where N is a finitely generated R-module. Let M be an
R-module, {mi}i∈Λ ⊆ M and N = 〈mi〉i∈Λ. We say an R-module M is S-
generated by {mi}i∈Λ provided that sM ⊆ N for some s ∈ S. Thus an R-
module M is S-finite provided that M can be S-generated by finite elements.

Proposition 2.9. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then the following assertions hold.

(1) Let M be an S-finite R-module and f : M → N a u-S-epimorphism.
Then N is S-finite.

(2) Let 0 → L
f−→ M

g−→ N → 0 be a u-S-exact sequence. If L and N are
S-finite, so is M .

(3) Let f : M → N be a u-S-isomorphism. If one of M and N is S-finite,
so is the other.

Proof. (1) Consider the exact sequence M
f−→ N → T → 0 with sT = 0 for

some s ∈ S. Let F be a finitely generated submodule of M such that s′M ⊆ F
for some s′ ∈ S. Then f(F ) is a finitely generated submodule of N such that
ss′N ⊆ f(F ).

(2) Suppose 0 → L
f−→ M

g−→ N → 0 is a u-S-exact sequence. Let L1 and
N1 be finitely generated submodules of L and N such that sLL ⊆ L1 and
sNN ⊆ N1 for some sL, sN ∈ S, respectively. Let M1 be a finitely generated
submodule ofM generated by the finite images of generators of L1 and the finite
pre-images of finite generators of N1. Then for any m ∈ M , sNg(m) ∈ N1.
Thus there exists m1 ∈M1 such that sNg(m) = g(m1). We have sNm−m1 ∈
Ker(g). Since there exists s ∈ S such that sKer(g) ⊆ Im(f). So there exists
l ∈ L such that s(sNm − m1) = f(l). Then there exists l1 ∈ L1 such that
sLl = l1. Thus sLs(sNm − m1) = sLf(l) = f(sLl) = f(l1). Consequently,
sLssNm = sLsm1 + sf(l1) ∈ M1. So sLssNM ⊆ M1. Since M1 is finitely
generated, we have M is S-finite.

(3) It is a consequence of (2). �

3. u-S-flat modules and u-S-von Neumann regular rings

Recall from [11] that an R-module F is called flat provided that for any short
exact sequence 0 → A → B → C → 0, the induced sequence 0 → A ⊗R F →
B ⊗R F → C ⊗R F → 0 is exact. Now, we give an S-analogue of flat modules.
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Definition 3.1. Let R be a ring, S a multiplicative subset of R. An R-module
F is called u-S-flat (abbreviates uniformly S-flat) provided that for any u-S-
exact sequence 0 → A → B → C → 0, the induced sequence 0 → A ⊗R F →
B ⊗R F → C ⊗R F → 0 is u-S-exact.

Recall from [11] that an R-module F is flat if and only if TorR1 (M,F ) = 0

for any R-module M if and only if TorRn (M,F ) = 0 for any R-module M and
n ≥ 1. We give an S-analogue of this result.

Theorem 3.2. Let R be a ring, S a multiplicative subset of R and F an
R-module. The following statements are equivalent:

(1) F is u-S-flat;

(2) For any short exact sequence 0 → A
f−→ B

g−→ C → 0, the induced

sequence 0→ A⊗R F
f⊗RF−−−−→ B⊗R F

g⊗RF−−−−→ C⊗R F → 0 is u-S-exact;
(3) TorR1 (M,F ) is u-S-torsion for any R-module M ;

(4) TorRn (M,F ) is u-S-torsion for any R-module M and n ≥ 1.

Proof. (1)⇒ (2), (3)⇒ (2) and (4)⇒ (3): Trivial.
(2) ⇒ (3): Let 0 → L → P → M → 0 be a short exact sequence with P

projective. Then there exists a long exact sequence

0→ TorR1 (M,F )→ F ⊗ L→ P ⊗ F →M ⊗ F → 0.

Thus TorR1 (M,F ) is u-S-torsion by (2).
(3) ⇒ (4): Let M be an R-module. Denote the (n − 1)-th syzygy of M by

Ωn−1(M). Then TorRn (M,F ) ∼= TorR1 (Ωn−1(M), F ) is u-S-torsion by (3).

(2)⇒ (1): Let F be an R-module satisfies (2). Suppose 0→ A
f−→ B

g−→ C →
0 is a u-S-exact sequence. Then there is an exact sequence B

g−→ C → T → 0,
where T = Coker(g) is u-S-torsion. Tensoring F over R, we have an exact
sequence

B ⊗R F
g⊗RF−−−−→ C ⊗R F → T ⊗R F → 0.

Then T ⊗R F is u-S-torsion by Corollary 2.6. Thus 0 → A ⊗R F
f⊗RF−−−−→

B ⊗R F
g⊗RF−−−−→ C ⊗R F → 0 is u-S-exact at C ⊗R F .

There are naturally two short exact sequences: 0→ Ker(f)→ A→ Im(f)→
0, 0 → Im(f) → B → Coker(f) → 0, where Ker(f) is u-S-torsion. Consider
the induced exact sequences

→ Ker(f)⊗R F
iKer(f)⊗RF−−−−−−−→ A⊗R F → Im(f)⊗R F → 0,

→ Im(f)⊗R F
iIm(f)⊗RF−−−−−−−→ B ⊗R F → Coker(f)⊗R F → 0,

where Ker(iIm(f) ⊗R F ) and Ker(iKer(f) ⊗R F ) are u-S-torsion. We have the
following pull-back diagram:
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0

��

0

��
Im(iKer(f) ⊗R F )

��

Im(iKer(f) ⊗R F )

��
0 // Y //

��

A⊗R F

��

// Im(iIm(f) ⊗R F ) // 0

0 // Ker(iIm(f) ⊗R F )

��

// Im(f)⊗R F //

��

Im(iIm(f) ⊗R F ) // 0

0 0

Since Ker(f) is u-S-torsion, so is Ker(f) ⊗R F by Corollary 2.6. Hence
Im(iKer(f) ⊗R F ) is u-S-torsion, and thus Y is also u-S-torsion by Proposi-
tion 2.8. So the composition f ⊗R F : A⊗R F � Im(iIm(f)⊗R F ) � B⊗R F is

a u-S-monomorphism. Thus 0→ A⊗R F
f⊗RF−−−−→ B ⊗R F

g⊗RF−−−−→ C ⊗R F → 0
is u-S-exact at A⊗R F .

Since the sequence 0 → A
f−→ B

g−→ C → 0 is u-S-exact at B, there exists
s1 ∈ S such that s1Ker(g) ⊆ Im(f) and s1Im(f) ⊆ Ker(g). By (2), there are
two exact sequences 0 → T1 → s1Ker(g) ⊗R F → Im(f) ⊗R F with s2T1 = 0
for some s2 ∈ S, and 0 → T2 → s1Im(f) ⊗R F → Ker(g) ⊗R F with s3T2 = 0
for some s3 ∈ S. Consider the induced sequence 0 → T → Ker(g) ⊗R F →
B⊗RF → Coker(g)⊗RF → 0 with s4T = 0 for some s4 ∈ S. Set s = s1s2s3s4,
we will show sKer(g ⊗R F ) ⊆ Im(f ⊗R F ) and sIm(f ⊗R F ) ⊆ Ker(g ⊗R F ).
Consider the following exact sequence

0→ T → Ker(g)⊗R F
iKer(g)⊗RF−−−−−−−→ B ⊗R F

g⊗RF−−−−→ C ⊗R F.

Then Im(iKer(g)⊗RF ) = Ker(g⊗RF ). Thus sKer(g⊗RF ) = s1s2s3s4Ker(g⊗R
F ) = s1s2s3s4Im(iKer(g) ⊗R F ) ⊆ s1s2s3Ker(g) ⊗R F ⊆ s3Im(f) ⊗R F =
s3Im(f ⊗R F ) ⊆ Im(f ⊗R F ), and sIm(f ⊗R F ) = s1s2s3s4Im(f) ⊗R F ⊆
s2s4Ker(g)⊗R F ⊆ s2Im(iKer(g)⊗R F ) = s2Ker(g⊗R F ) ⊆ Ker(g⊗R F ). Thus
0→ A⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact at B ⊗R F . �

By Corollary 2.6 and Theorem 3.2, flat modules and u-S-torsion modules
are u-S-flat. And u-S-flat modules are flat provided that any element in S is
a unit. Moreover, if any element in S is regular and all u-S-flat modules are
flat, then any element in S is a unit. Indeed, for any s ∈ S, we have R/〈s〉
is u-S-flat and thus flat. So 〈s〉 is a pure ideal of R. By [5, Theorem 1.2.15],
there exists r ∈ R such that s(1− rs) = 0. Since s is regular, s is a unit.

The following example shows that the condition “TorR1 (M,F ) is u-S-torsion

for any R-module M” in Theorem 3.2 can not be replaced by “TorR1 (R/I, F )
is u-S-torsion for any ideal I of R”.
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Example 3.3. Let Z be the ring of integers, p a prime in Z and S = {pn |n ≥
0} as in Example 2.2. Let M = Z(p)/Z. Then TorR1 (R/I,M) is u-S-torsion for
any ideal I of R. However, M is not u-S-flat.

Proof. Let 〈n〉 be an ideal of Z. It follows from [4, Chapter I, Lemma 6.2(a)]

that TorZ1 (Z/〈n〉,M) ∼= {m ∈ M |nm = 0} = { bpa + Z ∈ Z(p)/Z | a, b satisfies

pa | nb}. Write n = pkm where (p,m) = 1. If k = 0, then TorZ1 (Z/〈n〉,M) =

0. If k ≥ 1, then TorZ1 (Z/〈n〉,M) = { b
pk

+ Z ∈ Z(p)/Z | a, b ∈ Z}. Thus

pk · TorZ1 (Z/〈n〉,M) = 0. So TorZ1 (Z/〈n〉,M) is u-S-torsion for any ideal 〈n〉
of Z. However, TorZ1 (Q/Z,Z(p)/Z) ∼= t(Z(p)/Z) = Z(p)/Z by [4, Chapter I,
Lemma 6.2(b)]. Since Z(p)/Z is not u-S-torsion by Example 2.2, M = Z(p)/Z
is not u-S-flat. �

Proposition 3.4. Let R be a ring and S a multiplicative subset of R. Then
the following statements hold.

(1) Any pure quotient of u-S-flat modules is u-S-flat.
(2) Any finite direct sum of u-S-flat modules is u-S-flat.

(3) Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence. If A and C are
u-S-flat modules, so is B.

(4) Let A→ B be a u-S-isomorphism. If one of A and B is u-S-flat, so is
the other.

(5) Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence. If B and C are
u-S-flat, then A is u-S-flat.

Proof. (1) Let 0 → A → B → C → 0 be a pure exact sequence with B u-S-

flat. Let M be an R-module. Then there is an exact sequence TorR1 (M,B)→
TorR1 (M,C) → 0. Since TorR1 (M,B) is u-S-torsion, TorR1 (M,C) also is u-S-
torsion. Thus C is u-S-flat.

(2) Let F1, . . . , Fn be u-S-flat modules. Let M be an R-module. Then

there exists si ∈ S such that siTorR1 (M,Fi) = 0. Set s = s1 · · · sn. Then

sTorR1 (M,
n⊕
i=1

Fi) ∼=
n⊕
i=1

sTorR1 (M,Fi) = 0. Thus
n⊕
i=1

Fi is u-S-flat.

(3) Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence. Then there are
three short exact sequences: 0 → Ker(f) → A → Im(f) → 0, 0 → Ker(g) →
B → Im(g) → 0 and 0 → Im(g) → C → Coker(g) → 0. Then Ker(f) and
Coker(g) are all u-S-torsion and sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g) for
some s ∈ S. Let M be an R-module. Suppose A and C are u-S-flat. Then

TorR1 (M,A)→ TorR1 (M, Im(f))→M ⊗R Ker(f)

is exact. Since Ker(f) is u-S-torsion and A is u-S-flat, it follows that

TorR1 (M, Im(f)) is u-S-torsion. Note

TorR2 (M,Coker(g))→ TorR1 (M, Im(g))→ TorR1 (M,C)
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is exact. Since Coker(g) is u-S-torsion, TorR2 (M,Coker(g)) is u-S-torsion by

Corollary 2.6. Thus TorR1 (M, Im(g)) is u-S-torsion as TorR1 (M,C) is u-S-
torsion. We also note that

TorR1 (M,Ker(g))→ TorR1 (M,B)→ TorR1 (M, Im(g))

is exact. Thus to verify TorR1 (M,B) is u-S-torsion, we just need to show

TorR1 (M,Ker(g)) is u-S-torsion. Set N = Ker(g) + Im(f). Consider the follow-
ing two exact sequences

0→ Ker(g)→ N → N/Ker(g)→ 0 and 0→ Im(f)→ N → N/Im(f)→ 0.

Then it is easy to verify N/Ker(g) and N/Im(f) are all u-S-torsion. Consider
the following induced two exact sequences

TorR2 (M,N/Im(f))→ TorR1 (M,Ker(g))→ TorR1 (M,N)→ TorR1 (M,N/Im(f)),

TorR2 (M,N/Ker(g))→ TorR1 (M, Im(f))→ TorR1 (M,N)→ TorR1 (M,N/Ker(g)).

Thus TorR1 (M,Ker(g)) is u-S-torsion if and only if TorR1 (M, Im(f)) is u-S-

torsion. Consequently, B is u-S-flat since TorR1 (M, Im(f)) is proved to be
u-S-torsion as above.

(4) It can be certainly deduced from (3).

(5) Let 0→ A
f−→ B

g−→ C → 0 be a u-S-exact sequence. Then, as in the proof
of (3), there are three short exact sequences: 0 → Ker(f) → A → Im(f) → 0,
0 → Ker(g) → B → Im(g) → 0 and 0 → Im(g) → C → Coker(g) → 0. Then
Ker(f) and Coker(g) are all u-S-torsion and sKer(g) ⊆ Im(f) and sIm(f) ⊆
Ker(g) for some s ∈ S. Let M be an R-module. Note that

TorR1 (M,Ker(f))→ TorR1 (M,A)→ TorR1 (M, Im(f))→M ⊗R Ker(f)

is exact. Since Ker(f) is u-S-torsion, TorR1 (M,Ker(f)) and M⊗RKer(f) are u-

S-torsion by Corollary 2.6. It just need to verify TorR1 (M, Im(f)) is u-S-torsion.

By the proof of (3), we just need to show TorR1 (M,Ker(g)) is u-S-torsion. Since

TorR2 (M, Im(g))→ TorR1 (M,Ker(g))→ TorR1 (M,B)

is exact and TorR1 (M,B) is u-S-torsion, we just need to show TorR2 (M, Im(g))
is u-S-torsion. Note that

TorR3 (M,Coker(g))→ TorR2 (M, Im(g))→ TorR2 (M,C)

is exact. Since Coker(g) is u-S-torsion and C is u-S-flat, we have

TorR3 (M,Coker(g)) and TorR2 (M,C)

are u-S-torsion. So TorR2 (M, Im(g)) is u-S-torsion. �

Remark 3.5. It is well known that any direct limit of flat modules is flat.
However, every direct limit of u-S-flat modules is not u-S-flat. Let Z be the
ring of integers, p a prime in Z and S = {pn |n ≥ 0} as in Example 3.3. Let
Fn = Z/〈pn〉 be a Z-module. Then Fn is u-S-torsion, and thus u-S-flat. Note
that each Fn is isomorphic to Mn = { apn + Z ∈ Z(p)/Z | a ∈ Z}. It is easy to
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verify Z(p)/Z =
∞⋃
i=1

Mn
∼= lim
−→

Fn. However, Z(p)/Z is not u-S-flat (see Example

3.3).
It is also worth noting infinite direct sums of u-S-flat modules need not be

u-S-flat. Let Mn = { apn + Z ∈ Z(p)/Z | a ∈ Z} as above. Then Mn is u-S-flat.

Set N =
∞⊕
n=1

Mn. Then N is a torsion module. Thus TorZ1 (Q/Z, N) = N by

[4, Chapter I, Lemma 6.2(b)]. It can similarly be deduced from the proof of
Example 2.2 that N is not u-S-torsion. Thus N is not u-S-flat.

Corollary 3.6. Let R be a ring and S a multiplicative subset of R. If F is
u-S-flat over a ring R, then FS is flat over RS.

Proof. Let IS be a finitely generated ideal of RS , where I is a finitely generated
ideal of R. Then there exists s ∈ S such that sTorR1 (R/I, F ) = 0. Thus

0 = TorR1 (R/I, F )S ∼= TorRS
1 (RS/IS , FS). So FS is flat over RS . �

Remark 3.7. Note that the converse of Corollary 3.6 does not hold. Consider
Z-module M = Z(p)/Z in Example 2.2. Let S = {pn |n ≥ 0}. Then MS = 0
and thus is flat over ZS . However, M is not u-S-flat over Z (see Example 3.3).

Proposition 3.8. Let R be a ring and F an R-module. Let S be a multiplica-
tive subset of R consisting of finite elements. Then F is u-S-flat over a ring
R if and only if FS is flat over RS.

Proof. We just need to show that if FS is flat over RS , then F is u-S-flat over

a ring R. Let 0 → A
f−→ B → C → 0 be a short exact sequence over R. By

tensoring F , we have an exact sequence 0 → T → A ⊗R F
f⊗RF−−−−→ B ⊗R F →

C ⊗R F → 0, where T is the kernel of f ⊗R F . By tensoring RS , we have an
exact sequence 0 → TS → AS ⊗RS

FS → BS ⊗RS
FS → CS ⊗RS

FS → 0 over
RS . Since FS is flat over RS , TS = 0. Thus T is S-torsion. By Proposition
2.3, T is u-S-torsion. So F is u-S-flat over a ring R. �

Let p be a prime ideal of R. We say an R-module F is u-p-flat shortly
provided that F is u-(R \ p)-flat.

Proposition 3.9. Let R be a ring and F an R-module. Then the following
statements are equivalent:

(1) F is flat;
(2) F is u-p-flat for any p ∈ Spec(R);
(3) F is u-m-flat for any m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3) : Trivial.

(3) ⇒ (1) : Let M be an R-module. Then TorR1 (M,F ) is (R \ m)-torsion.

Thus for any m ∈ Max(R), there exists sm ∈ S such that smTorR1 (M,F ) = 0.

Since the ideal generated by all sm is R, TorR1 (M,F ) = 0. So F is flat. �
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Recall that a ring R is called von Neumann regular provided that for any
a ∈ R, there exists r ∈ R such that a = ra2. One of the main topics is the
S-analogue of von Neumann regular rings. In order to study further, we will
characterize when a ring RS is von Neumann regular in the next result.

Proposition 3.10. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent:

(1) RS is a von Neumann regular ring;
(2) Any principal ideal of R is S-generated by an idempotent;
(3) Any S-finite ideal of R is S-generated by an idempotent;
(4) For any a ∈ R, there exist s ∈ S and r ∈ R such that sa = ra2;
(5) Fny RS-module is flat over RS.

Proof. (1)⇔ (5) : It is well known. (3)⇒ (2) : Trivial.

(1)⇒ (4) : Let a ∈ R. Then there exists r1
s1
∈ RS such that a

1 = r1
s1
a2

1 . Thus

there exists s2 ∈ S such that s1s2a = s2r1a
2. Set s = s1s2 and r = s2r1, (4)

holds naturally.
(4) ⇒ (1) : Let a

s be an element in RS . Then there are s′ ∈ S and x ∈ R
such that s′a = xa2. Thus a

s = sx
s′ (as )2. So RS is a von Neumann regular ring.

(4) ⇒ (2) : Let 〈a〉 be a principal ideal of R. Then there exists s ∈ S such
that sa = ra2 for some r ∈ R. Set e = ra. Then se = e2 and e ∈ 〈a〉. Since
sa = ea ∈ 〈e〉, we have s〈a〉 ⊆ 〈e〉 ⊆ 〈a〉.

(2) ⇒ (3) : Let K be an S-finite ideal and I = Ra1 + · · · + Ran be a
finitely generated sub-ideal of I such that s′K ⊆ I for some s′ ∈ S. By
(2), for each i there is an idempotent ei ∈ Rai such that si〈ai〉 ⊆ 〈ei〉 for
some si ∈ S (i = 1, . . . , n). Set s = s′s1 · · · sn. Then s〈ai〉 ⊆ 〈ei〉. Set
J = Re1 + · · · + Ren. Then J is a sub-ideal of I (thus of K) such that
sK ⊆ s1 · · · snI ⊆ J . Claim that J is generated by an idempotent. Indeed,
for any x ∈ J , we have x = r1e1 + · · · + rnen = r1e

2
1 + · · · + rne

2
n ∈ J2. Thus

J2 = J . Since J is finitely generated, J = 〈e〉 for some idempotent e ∈ I by
[11, Theorem 1.8.22].

(2)⇒ (4) : Let a ∈ R. Then there is an idempotent e such that s〈a〉 ⊆ 〈e〉 ⊆
〈a〉. If e = ba for some b ∈ R, then e = e2 = b2a2. Thus sa = ce = cb2a2 for
some cb2 ∈ R. So (4) holds. �

Recall from [3] that a ring R is called c-S-coherent if any S-finite ideal I is
c-S-finitely presented, that is, there exists a finitely presented sub-ideal J of I
such that sI ⊆ J ⊆ I. By Proposition 3.10, the following result holds since any
ideal generated by an idempotent is projective, and thus is finitely presented.

Corollary 3.11. Let R be a ring and S a multiplicative subset of R. If RS is
a von Neumann regular ring, then R is c-S-coherent.

It is certain that for a ring R such that RS is von Neumann regular, the
element s ∈ S such that sa = ra2 for some r ∈ R depends on a ∈ R by
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Proposition 3.10. Now we give the definition of u-S-von Neumann regular ring
for which the element s ∈ S is uniform on any element a ∈ R.

Definition 3.12. Let R be a ring and S a multiplicative subset of R. R is
called a u-S-von Neumann regular ring (abbreviates uniformly S-von Neumann
regular ring) provided there exists an element s ∈ S satisfying that for any
a ∈ R there exists r ∈ R such that sa = ra2.

Let {Mj}j∈Γ be a family of R-modules. Let {mi,j}i∈Λj ⊆ Mj for each
j ∈ Γ and Nj = 〈mi,j〉i∈Λj . We say a family of R-modules {Mj}j∈Γ is u-
S-generated by {{mi,j}i∈Λj

}j∈Γ provided that there exists an element s ∈ S
such that sMj ⊆ Nj for each j ∈ Γ. It is well known that a ring R is a
von Neumann regular ring if and only if every R-module is flat if and only
if any principal (finitely generated) ideal is generated by an idempotent (see
[11, Theorem 3.6.3]). Now we give an S-analogue of this result.

Theorem 3.13. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent:

(1) R is a u-S-von Neumann regular ring;

(2) For any R-module M and N , there exists s ∈ S such that sTorR1 (M,N)
= 0;

(3) There exists s ∈ S such that sTorR1 (R/I,R/J) = 0 for any ideals I and
J of R;

(4) There exists s ∈ S such that sTorR1 (R/I,R/J) = 0 for any S-finite
ideals I and J of R;

(5) There exists s ∈ S such that sTorR1 (R/〈a〉, R/〈a〉) = 0 for any element
a ∈ R;

(6) Any R-module is u-S-flat;
(7) The class of all principal ideals of R is u-S-generated by idempotents;
(8) The class of all finitely generated ideals of R is u-S-generated by idem-

potents.

Proof. (1) ⇔ (5) : It follows from the equivalences: sTorR1 (R/〈a〉, R/〈a〉) = 0

if and only if s〈a〉
〈a2〉 = 0, if and only if there exists r ∈ R such that sa = ra2.

(2)⇔ (6), (8)⇒ (7) and (3)⇒ (4)⇒ (5) : Trivial.
(2)⇒ (3): Set M = N =

⊕
I�R

R/I. Then (3) holds naturally.

(3) ⇒ (2) : Suppose M is generated by {mi | i ∈ Γ} and N is generated
by {ni | i ∈ Λ}. Let Γ and Λ be well-ordered sets. Set M0 = 0 and Mα =
〈mi | i < α〉 for each α ≤ Γ. Then M have a continuous filtration {Mα |α ≤ Γ}
with Mα+1/Mα

∼= R/Iα+1 and Iα = AnnR(mα + Mα ∩ Rmα). Similarly N
has a continuous filtration {Nβ |β ≤ Λ} with Nβ+1/Nβ ∼= R/Jβ+1 and Jβ =

AnnR(nβ + Nβ ∩ Rnβ). Since sTorR1 (R/Iα, R/Jβ) = 0 for each α ≤ Γ and

β ≤ Λ, it is easy to verify sTorR1 (M,N) = 0 by transfinite induction on both
positions of M and N .
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(5) ⇒ (3) : By [11, Exercise 3.20], we have sTorR1 (R/I,R/J) = s(I∩J)
IJ for

any ideals I and J of R. So we just need to show s(I ∩J) ⊆ IJ . Let a ∈ I ∩J .

Since sTorR1 (R/〈a〉, R/〈a〉) = s〈a〉
〈a2〉 = 0, it follows that sa ∈ s〈a〉 ⊆ 〈a2〉 ⊆ IJ .

Thus sTorR1 (R/I,R/J) = 0.
(1)⇒ (7) : Let s be an element in S such that sa = ra2 for some r ∈ R and

any a ∈ R. Set e = ra. Then se = e2 and e ∈ 〈a〉. Since sa = ea ∈ 〈e〉, we
have s〈a〉 ⊆ 〈e〉 ⊆ 〈a〉 for any a ∈ R.

(7) ⇒ (8) : Let {Ij = Ra1,j + · · · + Ranj ,j | j ∈ Γ} be the family of all
finitely generated ideals of R. By (3), there exists an element s ∈ S such that
for each j ∈ Γ and i = 1, . . . , nj there is an idempotent ei,j ∈ Rai,j such that
s〈ai,j〉 ⊆ 〈ei,j〉. Set Jj = Re1,j + · · ·+Renj ,j . Then Jj is a sub-ideal of Ij such
that sJj ⊆ Ij ⊆ Jj . Claim that Jj is generated by an idempotent. Indeed, for
any x ∈ Jj , we have x = r1e1 + · · · + rnen = r1e

2
1 + · · · + rne

2
n ∈ J2

j . Thus

J2
j = Jj . Since Jj is finitely generated, Jj = 〈ej〉 for some idempotent ej ∈ Ij

by [11, Theorem 1.8.22]. So {Ij | j ∈ Γ} is u-S-generated by {{ej} | j ∈ Γ}.
(7)⇒ (1) : There are an element s ∈ S and a family of idempotents {ea | a ∈

R} such that s〈a〉 ⊆ 〈ea〉 ⊆ 〈a〉 for any a ∈ R. Write ea = ba for some b ∈ R.
Then ea = e2

a = b2a2. Thus sa = cea = cb2a2 for some cb2 ∈ R. So R is
u-S-von Neumann regular. �

Corollary 3.14. Let R be a ring and S a multiplicative subset of R. If R
is a u-S-von Neumann regular ring, then RS is a von Neumann regular ring.
Consequently, any u-S-von Neumann regular ring is c-S-coherent.

Proof. It follows from Proposition 3.10, Corollary 3.11 and Theorem 3.13. �

Note that a ring R such that RS is von Neumann regular is not necessary
u-S-von Neumann regular.

Example 3.15. Let Z be the ring of all integers, S = Z \ {0}. Then ZS = Q
is a von Neumann regular ring. Let p be a prime in Z and M = Z(p)/Z. Then

TorZ1 (Q/Z,Z(p)/Z) ∼= Z(p)/Z by [4, Chapter I, Lemma 6.2(b)]. It is easy to
verify that nZ(p)/Z 6= 0 for any n ∈ S. Thus M is not u-S-torsion, and so Z is
not a u-S-von Neumann regular ring.

Corollary 3.16. Let R be a ring. Let S be a multiplicative subset of R con-
sisting of finite elements. Then R is a u-S-von Neumann regular ring if and
only if RS is a von Neumann regular ring.

Proof. We just need to show that if RS is a von Neumann regular ring, then
R is a u-S-von Neumann regular ring. Let S = {s1, . . . , sn}. Set s = s1 · · · sn.
By Proposition 3.10, for any a ∈ R, there exist si ∈ S and ra ∈ R such that
sia = raa

2. Thus sa = ra2 for any a ∈ R and some r ∈ R. �

Since every flat module is u-S-flat, von Neumann regular rings are u-S-von
Neumann regular. The following result shows u-S-von Neumann regular rings
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are always von Neumann regular provided S is a regular multiplicative set, i.e.,
the multiplicative set S is composed of non-zero-divisors.

Proposition 3.17. Let R be a ring and S a regular multiplicative subset of R.
Then R is u-S-von Neumann regular if and only if R is von Neumann regular.

Proof. We just need to show if R is u-S-von Neumann regular, then R is von
Neumann regular. Suppose R is a u-S-von Neumann regular ring. Then there
exists s ∈ S such that for any a ∈ R there exists r ∈ R satisfying sa = ra2.
Taking a = s2, we have s3 = rs4. Since s is a non-zero-divisor of R, we have
1 = sr. Thus s is a unit. So for any a ∈ R there exists r ∈ R such that
a = (s−1r)a2. It follows that R is a von Neumann regular ring. �

However, the condition that “any element in S is a non-zero-divisor” in
Proposition 3.17 cannot be removed. Let R be any ring and S a multiplicative
subset of R containing a nilpotent element. Then R is a u-S-von Neumann
regular ring. Indeed, let s be a nilpotent element in R with nilpotent index n.
Then 0 = sn ∈ S. Thus for any a ∈ R, we have 0a = 0a2 = 0. So R is u-S-von
Neumann regular. If the multiplicative subset S of R does not contain 0, the
condition that “any element in S is a non-zero-divisor” in Corollary 3.17 also
cannot be removed.

Example 3.18. Let T = Z2 × Z2 be a semi-simple ring and s = (1, 0) ∈ T .
Then any element a ∈ T satisfies a2 = a and 2a = 0. Let R = T [x]/〈sx, x2〉
with x the indeterminate and S = {1, s} be a multiplicative subset of R. Then
R is a u-S-von Neumann regular ring, but R is not von Neumann regular.
Indeed, let r = a+ bx be any element in R, where x is the residual element of
x in R and a, b ∈ T . Then sr = s(a+ bx) = sa = sa2 = s(a2 + 2abx+ b2x2) =
s(a+bx)2 = sr2. Thus R is u-S-von Neumann regular. However, since R is not
reduced, R is not von Neumann regular by [11, Theorem 3.6.16(2), Exercise
3.48].

Let p be a prime ideal of R. We say a ring R is a u-p-von Neumann regular
ring shortly provided R is a u-(R \ p)-von Neumann regular ring. The final
result gives a new local characterization of von Neumann regular rings.

Proposition 3.19. Let R be a ring. Then the following statements are equi-
valent:

(1) R is a von Neumann regular ring;
(2) R is a u-p-von Neumann regular ring for any p ∈ Spec(R);
(3) R is a u-m-von Neumann regular ring for any m ∈ Max(R).

Proof. (1) ⇒ (2) : Let F be an R-module and m ∈ Max(R). Then F is flat,
and thus u-m-flat. So R is a u-m-von Neumann regular ring.

(2)⇒ (3) : Trivial.
(3)⇒ (1) : Let M be an R-module. Then M is m-flat for any m ∈ Max(R).

Thus M is flat by Proposition 3.9. So R is a von Neumann regular ring. �
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