A HOMOLOGICAL CHARACTERIZATION OF PRÜFER v-MULTIPLICATION RINGS

Xiaolei Zhang

Abstract

Let R be a ring and M an R-module. Then M is said to be regular w-flat provided that the natural homomorphism $I \otimes_{R} M \rightarrow$ $R \otimes_{R} M$ is a w-monomorphism for any regular ideal I. We distinguish regular w-flat modules from regular flat modules and w-flat modules by idealization constructions. Then we give some characterizations of total quotient rings and Prüfer v-multiplication rings (PvMRs for short) utilizing the homological properties of regular w-flat modules.

1. introduction

Recall from [6, Theorem 2.1] that an integral domain R is a Prüfer v multiplication domain (abbreviated PvMD) provided that any nonzero finitely generated ideal is w-invertible. Obviously, PvMDs can be seen as w-versions of Prüfer domains which are integral domains that any nonzero finitely generated ideal is invertible. In 2015, Wang and Qiao [16, Theorem 3.5] gave a homological characterization of PvMDs which states that an integral domain R is a PvMD if and only if the w-weak global dimension of R is at most 1 . Our original motivation for this work is to extend this result to commutative rings with zero divisors. Early in 1980, Huckaba and Papick [8] and Matsuda [11] extended the notion of PvMDs to that of PvMRs by declaring that a commutative ring R is a PvMR provided that any finitely generated regular ideal is w-invertible. Certainly PvMRs are viewed as a w-version of Prüfer rings for which any finitely generated regular ideal is invertible. In 2005, Lucas [10, Theorem 7.8; Theorem 7.12] determined a commutative ring R when the polynomial ring $R[x]$ and the Nagata ring $R(x)$ are PvMRs respectively. In 2014, Yin [20] characterized PvMRs by largely localizing at prime ideals (see [20, Theorem 2.1]). Recently, the author and Zhao [23] characterized ϕ-PvMRs

[^0]using w - ϕ-flat modules. In this work, we will give some homological characterizations of the total quotient rings and PvMRs utilizing regular w-flat modules (see Theorem 4.8).

Throughout this paper, R denotes a commutative ring with identity and $T(R)$ is its total quotient ring. An R-submodule I of $T(R)$ is said to be fractional if there exists a regular element $s \in R$ such that $s I \subseteq R$. If I is a fractional ideal, we denote $I^{-1}=\{r \in T(R) \mid r I \subseteq R\}$.

Now we review some definitions and notations related to the w-operation. A finitely generated ideal J of R is called a Glaz-Vasconcelos ideal (GV-ideal for short) if the natural homomorphism $R \rightarrow \operatorname{Hom}_{R}(J, R)$ is an isomorphism. The set of GV-ideals is denoted by $\mathrm{GV}(R)$. Let M be an R-module. Define

$$
\operatorname{tor}_{\mathrm{GV}}(M):=\{x \in M \mid J x=0 \text { for some } J \in \mathrm{GV}(R)\}
$$

An R-module M is said to be GV-torsion (resp., GV-torsion-free) if $\operatorname{tor}_{\mathrm{GV}}(M)$ $=M$ (resp., $\left.\operatorname{tor}_{\mathrm{GV}}(M)=0\right)$. A GV-torsion-free module M is called a w-module if $\operatorname{Ext}_{R}^{1}(R / J, M)=0$ for any $J \in \operatorname{GV}(R)$, and the w-envelope of M is given by

$$
M_{w}:=\{x \in E(M) \mid J x \subseteq M \text { for some } J \in \operatorname{GV}(R)\}
$$

where $E(M)$ is the injective envelope of M. A fractional ideal I is said to be w-invertible if $\left(I I^{-1}\right)_{w}=R$. A DW ring R is a ring over which every module is a w-module, equivalently the only GV-ideal of R is R. A maximal w-ideal is an ideal of R which is maximal among all w-submodules of R. The set of all maximal w-ideals is denoted by $w-\operatorname{Max}(R)$. By [15, Theorem 6.2.14], any maximal w-ideal is prime.

An R-homomorphism $f: M \rightarrow N$ is said to be a w-monomorphism (resp., w-epimorphism, w-isomorphism) if for any $\mathfrak{m} \in w-\operatorname{Max}(R), f_{\mathfrak{m}}: M_{\mathfrak{m}} \rightarrow N_{\mathfrak{m}}$ is a monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w monomorphism (resp., w-epimorphism) if and only if $\operatorname{Ker}(f)$ (resp., $\operatorname{Coker}(f)$) is GV-torsion. A sequence $A \rightarrow B \rightarrow C$ is said to be w-exact if for any $\mathfrak{m} \in w$ $\operatorname{Max}(R), A_{\mathfrak{m}} \rightarrow B_{\mathfrak{m}} \rightarrow C_{\mathfrak{m}}$ is exact. A class \mathcal{C} of R-modules is said to be closed under w-isomorphisms provided that for any w-isomorphism $f: M \rightarrow N$, if one of the modules M and N is in \mathcal{C}, so is the other. Following from [14], an R-module M is said to be w-flat if for any w-monomorphism $f: A \rightarrow B$, the induced sequence $f \otimes_{R} 1: A \otimes_{R} M \rightarrow B \otimes_{R} M$ is also a w-monomorphism. The class of w-flat modules is closed under w-isomorphisms, see [15, Corollary 6.7.4].

An R-module M is said to be of finite type if there exist a finitely generated free module F and a w-epimorphism $g: F \rightarrow M$, and it is said to be of finitely presented type if there is a w-exact sequence $F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$, where F_{0} and F_{1} are finitely generated free modules. The classes of finite type and finitely presented type modules are all closed under w-isomorphisms, see [15, Corollary 6.4.4; Corollary 6.4.13]. Following [12], a ring R is said to be w coherent if every finitely generated ideal of R is of finitely presented type. The authors [22, Theorem 2.2] gave a w-version of Chase Theorem to characterize
w-coherent rings as follows: a ring R is w-coherent if and only if any direct product of flat modules is w-flat, if and only if any direct product of R is w-flat.

2. Regular \boldsymbol{w}-flat modules

Let R be a ring. An ideal I of R is said to be regular if I contains a regular element. An R-module M is said to be regular flat provided that the natural homomorphism $I \otimes_{R} M \rightarrow R \otimes_{R} M$ is a monomorphism for any regular ideal I, equivalently, $\operatorname{Tor}_{1}^{R}(R / I, M)=0$ for any regular ideal I (see [19]). In this section, we introduce and study regular w-flat modules which generalize both regular flat modules and w-flat modules.

Definition 2.1. Let R be a ring. An R-module M is said to be regular w flat provided that the natural homomorphism $I \otimes_{R} M \rightarrow R \otimes_{R} M$ is a w monomorphism for any regular ideal I.

Clearly, any w-flat module and regular flat module are regular w-flat. We can obtain some characterizations of regular w-flat modules which is similar to [13, Proposition 1.1].

Theorem 2.2. Let R be a ring. The following statements are equivalent for an R-module M :
(1) M is regular w-flat;
(2) $\operatorname{Tor}_{1}^{R}(R / I, M)$ is GV-torsion for all regular ideals I of R;
(3) $\operatorname{Tor}_{1}^{R}(R / I, M)$ is GV-torsion for all finitely generated regular ideals I of R;
(4) the natural homomorphism $I \otimes_{R} M \rightarrow R \otimes_{R} M$ is w-exact for all finitely generated regular ideals I of R;
(5) the natural homomorphism $i_{I}: I \otimes_{R} M \rightarrow I M$ is a w-isomorphism for all regular ideals I of R;
(6) the natural homomorphism $i_{I}: I \otimes_{R} M \rightarrow I M$ is a w-isomorphism for all finitely generated regular ideals I of R.

Proof. $(2) \Rightarrow(3),(1) \Rightarrow(4)$ and $(5) \Rightarrow(6)$: These implications are trivial.
$(1) \Leftrightarrow(2)$ (resp., $(3) \Leftrightarrow(4))$: Let I be a (resp., finitely generated) regular ideal of R. The equivalence follows from the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(R / I, M) \rightarrow I \otimes_{R} M \rightarrow R \otimes_{R} M \rightarrow R / I \otimes_{R} M \rightarrow 0 .
$$

$(1) \Leftrightarrow(5)$ and $(4) \Leftrightarrow(6)$: These follow noting that $\operatorname{Im}\left(f \otimes_{R} 1\right)=I M$.
(6) $\Rightarrow(5)$: Let I be a regular ideal of R and s a regular element in I. We just need to show $\operatorname{ker}\left(i_{I}\right)$ is GV-torsion. Suppose that $i_{I}\left(\sum_{i=1}^{n} a_{i} \otimes x_{i}\right)=$ $\sum_{i=1}^{n} a_{i} x_{i}=0$. Let $K=R a_{1}+\cdots+R a_{n}+R s$. Then the finitely generated
regular ideal K is contained in I. Consider the following commutative diagram

By (6), i_{K} is a w-isomorphism. So there is a GV-ideal J such that $J \sum_{i=1}^{n} a_{i} \otimes$ $x_{i}=0$ in $K \otimes_{R} M$. Since h is a monomorphism, g is a w-monomorphism. Thus there is a GV-ideal J^{\prime} such that $J^{\prime} J \sum_{i=1}^{n} a_{i} \otimes x_{i}=0$ in $I \otimes_{R} M$. Since $J^{\prime} J \in \operatorname{GV}(R)$, we have $\operatorname{ker}\left(i_{I}\right)$ is GV-torsion.

Corollary 2.3. Let R be a ring. The class of regular w-flat R-modules is closed under w-isomorphisms.

Proof. Let $f: M \rightarrow N$ be a w-isomorphism and I a regular ideal. There exist two exact sequences $0 \rightarrow T_{1} \rightarrow M \rightarrow L \rightarrow 0$ and $0 \rightarrow L \rightarrow N \rightarrow$ $T_{2} \rightarrow 0$ with T_{1} and T_{2} GV-torsion. Consider the induced two long exact sequences $\operatorname{Tor}_{1}^{R}\left(R / I, T_{1}\right) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, M) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, L) \rightarrow R / I \otimes T_{1}$ and $\operatorname{Tor}_{2}^{R}\left(R / I, T_{2}\right) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, L) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, N) \rightarrow \operatorname{Tor}_{1}^{R}\left(R / I, T_{2}\right)$. By [15, Theorem 6.7.2], M is regular w-flat if and only if N is regular w-flat.

Following [19, Definition 3.1], a ring R is said to be regular coherent if any finitely generated regular ideal is finitely presented. In order to distinguish regular w-flat modules from regular flat modules and w-flat modules, we generalize regular coherent rings in the sense of the w-operation.

Definition 2.4. A ring R is said to be regular w-coherent provided that any finitely generated regular ideal is of finitely presented type.

Obviously, w-coherent rings and regular coherent rings are examples of regular w-coherent rings. Certainly, a DW-ring is regular w-coherent if and only if it is a regular coherent ring, and an integral domain is regular w-coherent if and only if it is a w-coherent domain. We can characterize regular w-coherent rings by regular w-flat modules.

Proposition 2.5. Let R be a ring. The following statements are equivalent:
(1) R is regular w-coherent;
(2) the direct product of flat modules is regular w-flat;
(3) the direct product of projective modules is regular w-flat;
(4) the direct product of R is regular w-flat.

Proof. (1) $\Rightarrow(2)$: Let $\left\{F_{i}\right\}_{i \in I}$ be a family of flat modules. By Theorem 2.2, we just need to show for any finitely generated regular ideal J, the natural homomorphism $i_{J}: J \otimes_{R} \prod_{i \in I} F_{i} \rightarrow J \prod_{i \in I} F_{i}$ is a w-isomorphism. Consider
the following commutative diagram:

Since R is regular w-coherent, J is of finitely presented type. By [22, Proposition 2.12], ϕ_{J} is a w-monomorphism. Since F_{i} is flat for any $i \in I$, we have γ is an isomorphism (See [15, Theorem 2.5.6]). Thus i_{J} is a w-monomorphism. Since i_{J} is an epimorphism, we have i_{J} is a w-isomorphism.
$(2) \Rightarrow(3) \Rightarrow(4)$: These implications are trivial.
$(4) \Rightarrow(1)$: We just need to show any finitely generated regular ideal J is of finitely presented type. Consider the following commutative diagram

Since $\prod_{i \in I} R$ is regular w-flat, α is a w-monomorphism. Thus i_{J} is a w monomorphism. By [22, Proposition 2.12], J is of finitely presented type.

Some non-integral domain examples are provided by the idealization construction $R(+) M$ where M is an R-module (see [7]). We recall this construction. Let $R(+) M=R \oplus M$ as a R-module, and define
(1) $(r, m)+(s, n)=(r+s, m+n)$.
(2) $(r, m)(s, n)=(r s, s m+r n)$.

Under this construction, $R(+) M$ becomes a commutative ring with identity $(1,0)$.

Proposition 2.6 ([4, Proposition 2.2]). Let D be an integral domain, K its quotient field and $R=D(+) K$. Then the following statements hold.
(1) $\operatorname{GV}(R)=\{J(+) K \mid J \in \mathrm{GV}(D)\}$.
(2) Let T be a D-module. Then T is GV-torsion if and only if $T \otimes_{D} R$ is GV-torsion over R.
(3) Let M be a D-module. Then M is a w-module if and only if $M \otimes_{D} R$ is a w-module over R.
(4) Let I be a nonzero ideal of D. Then I is finitely generated (resp., finitely presented) if and only if $I \otimes_{D} R(\cong I(+) K)$ is finitely generated (resp., finitely presented) over R.
(5) Let M be a D-module. Then M is of finite type if and only if $M \otimes_{D} R$ is of finite type over R.
(6) Let M be a D-module. Then M is of finitely presented type if and only if $M \otimes_{D} R$ is of finitely presented type over R.
(7) D is a coherent domain if and only if R is a regular coherent ring.
(8) D is a w-coherent domain if and only if R is a regular w-coherent ring.

Proof. (1) Since K is divisible over D, every ideal of R is of the form $I(+) K$ or $0(+) L$, where I is a nonzero ideal over D and L is a D-submodule of K (See [1, Corollary 3.4]). Since any ideal of the form $0(+) L$ is not semi-regular, any GV-ideal of R is of the form $I(+) K$, where I is a nonzero D-ideal. Suppose I is a nonzero ideal of D. Since an element (d, m) in R is regular if and only if $d \neq 0, I(+) K$ is a regular ideal. Thus $I(+) K$ is a GV-ideal over R if and only if $(I(+) K)^{-1}=R$ by $[21]$. By $[9$, Theorem $11(\mathrm{~d})],(I(+) K)^{-1}=I^{-1}(+) K$. Thus $I(+) K$ is a GV-ideal over R if and only if $I^{-1}=D$, if and only if $I \in \operatorname{GV}(D)$.
(2) Assume T is GV-torsion over D. For any $t=\sum_{i=1}^{n} t_{i} \otimes r_{i} \in T \otimes_{D} R$, there exists a GV-ideal J such that $J t_{i}=0$, for each $i=1, \ldots, n$. Then $J(+) K t=0$, and thus $T \otimes_{D} R$ is GV-torsion over R. Suppose $T \otimes_{D} R$ is GV-torsion over R. For any $t^{\prime} \in T$, by (1), there exists a GV-ideal $J(+) K$ such that $J(+) K\left(t^{\prime} \otimes 1\right)=0$. Then $J t^{\prime}=0$. Thus T is GV-torsion over D.
(3) Since K is flat and divisible over D, for each $i=0,1$ and any $J \in \operatorname{GV}(D)$, we have

$$
\begin{aligned}
\operatorname{Ext}_{R}^{i}\left(R / J(+) K, M \otimes_{D} R\right) & \cong \operatorname{Ext}_{R}^{i}\left(D / J, M \otimes_{D} R\right) \\
& \cong \operatorname{Ext}_{R}^{i}\left(D / J \otimes_{D} R, M \otimes_{D} R\right) \\
& \cong \operatorname{Ext}_{D}^{i}\left(D / J, M \otimes_{D} R\right) \\
& \cong \operatorname{Ext}_{D}^{i}(D / J, M) \oplus \operatorname{Ext}_{D}^{i}\left(D / J, M \otimes_{D} K\right) \\
& \cong \operatorname{Ext}_{D}^{i}(D / J, M)
\end{aligned}
$$

Consequently, $M \otimes_{D} R$ is a w-module over R if and only M is a w-module over D by (1).
(4) Since R is a faithful flat D-module, $F_{1} \xrightarrow{g} F_{0} \xrightarrow{f} I \rightarrow 0$ is exact over D if and only if $F_{1} \otimes_{D} R \xrightarrow{g \otimes_{D} R} F_{0} \otimes_{D} R \xrightarrow{f \otimes_{D} R} I \otimes_{D} R \rightarrow 0$ is exact over R. Note that F_{i} is finitely generated free over D if and only if $F_{i} \otimes_{D} R$ is finitely generated free over R. One can easily check that (4) holds.
(5) Let M be of finite type over D. Then there is a w-epimorphism $F \xrightarrow{f} M$ with F finitely generated free. Let $\left\{e_{i} \mid i=1, \ldots, n\right\}$ be the standard basis of F and $\sum_{j=1}^{k}\left(m_{j} \otimes r_{j}\right) \in M \otimes_{D} R$. Then for each j, there exists a GVideal $J_{j} \in \operatorname{GV}(R)$ such that $J_{j} m_{j} \subseteq \operatorname{Im} f$. Let $J=J_{1} \cdots J_{k}$. Then $J \otimes_{D}$ $R \sum_{j=1}^{k}\left(m_{j} \otimes r_{j}\right) \subseteq \operatorname{Im} f \otimes_{D} R$. Thus $F \otimes_{D} R \xrightarrow{f \otimes_{D} R} M \otimes_{D} R$ is a w-epimorphism over R by [15, Proposition 6.4.2(3)].

Let $L=\left\langle\sum_{j=1}^{j=k_{i}} m_{i, j} \otimes r_{i, j} \mid i=1, \ldots, n\right\rangle$ be the finitely generated submodule of $M \otimes_{D} R$ such that $L_{w}=\left(M \otimes_{D} R\right)_{w}$. For any $m \in M$, there exists a GV-ideal $J \otimes_{D} R$ such that $J \otimes_{D} R(m \otimes 1) \subseteq L$. Set $N:=\left\langle m_{i, j} \mid j=1, \ldots, k_{i} ; i=1, \ldots, n\right\rangle$ be a finitely generated submodule of M. Then $J m \subseteq N$. Thus M is of finite type over D by [15, Proposition 6.4.2(3)].
(6) Assume M is of finitely presented type over D. Then there is a w-exact sequence $F_{1} \xrightarrow{g} F_{0} \xrightarrow{f} M \rightarrow 0$ with F_{0}, F_{1} finitely generated free. By applying $-\otimes_{D} R$, we obtain a w-exact sequence $F_{1} \otimes_{D} R \xrightarrow{g \otimes_{D} R} F_{0} \otimes_{D} R \xrightarrow{f \otimes_{D} R}$ $M \otimes_{D} R \rightarrow 0$ over D as R is a flat D-module. Similarly to the proof of (5), one can check that it is also a w-exact sequence over R.

Now assume that $M \otimes_{D} R$ is of finitely presented type over R. Then M is of finite type over D by (5). Let $F_{1}^{\prime} \xrightarrow{g^{\prime}} F_{0} \xrightarrow{f} M \rightarrow 0$ be a w-exact sequence with F_{0} finitely generated free and F_{1}^{\prime} free. By applying $-\otimes_{D} R$, we can also obtain a w-exact sequence $F_{1}^{\prime} \otimes_{D} R \xrightarrow{g^{\prime} \otimes_{D} R} F_{0} \otimes_{D} R \xrightarrow{f \otimes_{D} R} M \otimes_{D} R \rightarrow 0$ over R. Since $M \otimes_{D} R$ is of finitely presented type, $\operatorname{Im}\left(g^{\prime} \otimes_{D} R\right)=\operatorname{Im}\left(g^{\prime}\right) \otimes_{D} R$ is of finite type by [15, Theorem 6.4.11]. By (5), $\operatorname{Im}\left(g^{\prime}\right)$ is of finite type, and thus M is of finitely presented type over D by [15, Theorem 6.4.11] again.
(7) As in the proof of (1), a regular ideal of R is of the form $I(+) K$, where I is a nonzero ideal of D. Thus (7) follows trivially from (4).
(8) This also follows trivially from (4) and (6).

Utilizing these results, we give a regular w-coherent ring which is neither w-coherent nor regular coherent.

Example 2.7. Let D be a non-coherent w-coherent domain (see [15, Example 9.1.18] for example), K its quotient field. Then $R=D(+) K$ is a regular w-coherent ring. However, it is neither w-coherent nor regular coherent.

Proof. Since D is a non-coherent w-coherent domain, R is a non-regular coherent regular w-coherent ring by Proposition 2.6. We will show R is not w-coherent as well. Note that $(0,1) R$ is a finitely generated ideal over R. Consider the natural $0 \rightarrow L \rightarrow R \rightarrow(0,1) R \rightarrow 0$. Then $L=\operatorname{Nil}(R)=0(+) K$. Since D is not a field, the w-module K is not a finitely generated module over D. Thus K is not of finite type over D. By [2, Lemma 2.2], the w-ideal $\operatorname{Nil}(R)$ is not of finite type over R. Thus $(0,1) R$ is not of finitely presented type over R.

Now we are ready to give an example of a regular w-flat module which is neither w-flat nor regular flat.

Example 2.8. Let R be a regular w-coherent which is neither w-coherent nor regular coherent (See Example 2.7). By comparing [22, Theorem 2.2] and [19, Theorem 3.2], we can find a regular w-flat module $F=\prod_{i \in I} F_{i}$ with each F_{i} flat neither w-flat nor regular flat.

3. On the homological dimension of regular w-flat modules

Let R be a ring and M an R-module. Following [16], the w-flat dimension w - $\mathrm{fd}_{R}(M)$ of an R-module M is defined as the length of the shortest w-flat w-resolution of M and the w-weak global dimension w-w.gl.dim (R) of R is the
supremum of the w-flat dimensions of all R-modules. We now introduce the notion of the regular w-flat dimension of an R-module M as follows.
Definition 3.1. Let R be a ring and M an R-module. We write reg-w$\mathrm{fd}_{R}(M) \leq n$ (reg-w-fd abbreviates regular w-flat dimension) if there is a w exact sequence of R-modules

$$
0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

with each $F_{i} w$-flat $(i=0, \ldots, n-1)$ and F_{n} regular w-flat. The w-exact sequence (\diamond) is said to be a regular w-flat w-resolution of length n of M. The regular w-flat dimension reg-w- $\mathrm{fd}_{R}(M)$ is defined to be the length of the shortest regular w-flat w-resolution of M. If such finite w-resolution (\diamond) does not exist, then we say $r e g-w-\mathrm{fd}_{R}(M)=\infty$.

It is obvious that an R-module M is regular w-flat if and only if reg-w$\mathrm{fd}_{R}(M)=0$ and $r e g-w-\mathrm{fd}_{R}(N) \leq w-\mathrm{fd}_{R}(N)$ for any R-module N.

Lemma 3.2 ([16, Lemma 2.2]). Let N be an R-module and $0 \rightarrow A \rightarrow F \rightarrow$ $C \rightarrow 0$ a w-exact sequence of R-modules with F w-flat. Then for any $n>0$, the induced map $\operatorname{Tor}_{n+1}^{R}(C, N) \rightarrow \operatorname{Tor}_{n}^{R}(A, N)$ is a w-isomorphism. Hence, $\operatorname{Tor}_{n+1}^{R}(C, N)$ is GV-torsion if and only if so is $\operatorname{Tor}_{n}^{R}(A, N)$.
Proposition 3.3. Let R be a ring. The following statements are equivalent for an R-module M :
(1) $r e g-w-f d_{R}(M) \leq n$;
(2) $\operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion for all regular ideals I;
(3) $\operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion for all finitely generated regular ideals I;
(4) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules, then F_{n} is regular w-flat;
(5) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an w-exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are w-flat R-modules, then F_{n} is regular w-flat;
(6) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are w-flat R-modules, then F_{n} is regular w-flat;
(7) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an w-exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules, then F_{n} is regular w-flat.
Proof. (1) $\Rightarrow(2)$: We prove (2) by induction on n. For the case $n=0,(2)$ holds by Theorem 2.2 as M is a regular w-flat module. If $n>0$, then there is a w-exact sequence $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ with each F_{i} w-flat $(i=0, \ldots, n-1)$ and F_{n} is regular w-flat. Let $K_{0}=\operatorname{ker}\left(F_{0} \rightarrow M\right)$. We have two w-exact sequences $0 \rightarrow K_{0} \rightarrow F_{0} \rightarrow M \rightarrow 0$ and $0 \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow$ $\cdots \rightarrow F_{1} \rightarrow K_{0} \rightarrow 0$. Note that reg-w-fd ${ }_{R}\left(K_{0}\right) \leq n-1$. By induction, $\operatorname{Tor}_{n}^{R}\left(K_{0}, R / I\right)$ is GV-torsion for all regular ideals I. It follows from Lemma 3.2 that $\operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion.
$(2) \Rightarrow(3)$: This is trivial.
(3) \Rightarrow (4): Let $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be an exact sequence. Set $K_{0}=\operatorname{ker}\left(F_{0} \rightarrow M\right)$ and $K_{i}=\operatorname{ker}\left(F_{i} \rightarrow F_{i-1}\right)$, where $i=1, \ldots, n-1$. Since all $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat, $\operatorname{Tor}_{1}^{R}\left(F_{n}, R / I\right) \cong \operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion for all finitely generated regular ideals I. Hence F_{n} is a regular w-flat module by Theorem 2.2.
$(3) \Rightarrow(5):$ Let $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be a w-exact sequence. Set $L_{n}=F_{n}$ and $L_{i}=\operatorname{Im}\left(F_{i} \rightarrow F_{i-1}\right)$, where $i=1, \ldots, n-1$. Then both $0 \rightarrow L_{i+1} \rightarrow F_{i} \rightarrow L_{i} \rightarrow 0$ and $0 \rightarrow L_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ are w-exact sequences. By using Lemma 3.2 repeatedly, we can obtain that $\operatorname{Tor}_{1}^{R}\left(F_{n}, R / I\right)$ is GVtorsion for all finitely generated regular ideals I. Thus F_{n} is regular w-flat by Theorem 2.2.
$(4) \Rightarrow(1),(5) \Rightarrow(6) \Rightarrow(4)$ and $(5) \Rightarrow(7) \Rightarrow(4)$: These implications are trivial.

Definition 3.4. The reg-w-weak global dimension of a ring R is defined by $r e g-w$-w.gl. $\operatorname{dim}(R)=\sup \left\{r e g-w-\operatorname{fd}_{R}(M) \mid M\right.$ is an R-module $\}$.
Obviously, by definition, reg-w-w.gl.dim $(R) \leq w$-w.gl.dim (R) for any ring R. Following from Proposition 3.3, we have the following result.

Proposition 3.5. The following statements are equivalent for a ring R.
(1) reg-w-w.gl. $\operatorname{dim}(R) \leq n$;
(2) reg-w-fd $d_{R}(M) \leq n$ for all R-modules M;
(3) $\operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion for all R-modules M and all regular ideals I of R;
(4) $\operatorname{Tor}_{n+1}^{R}(M, R / I)$ is GV-torsion for all R-modules M and all finitely generated regular ideals I of R.

4. Rings with regular \boldsymbol{w}-weak global dimension at most one

Recall from [5, Definition 2.1.1] that a ring R is said to be a total quotient ring provided that any regular element is a unit, i.e., $T(R)=R$. Recently, Xiao [19, Theorem 2.13] shows that a ring R is a total quotient ring if and only if any R-module is regular flat.
Theorem 4.1. Let R be a ring. The following statements are equivalent:
(1) R is a total quotient ring;
(2) every R-module is regular flat;
(3) every R-module is regular w-flat;
(4) reg-w-w.gl.dim $(R)=0$;
(5) $a \in\left(a^{2}\right)_{w}$ for any regular element $a \in R$.

Proof. (1) $\Leftrightarrow(2)$: See [19, Theorem 2.13].
$(2) \Rightarrow(3)$: This is obvious.
$(3) \Leftrightarrow(4)$: This follows from Definition 3.4.
$(4) \Rightarrow(5)$: Let a be a regular element in R. Then $R a$ is a regular ideal of
R. It follows that $\operatorname{Tor}_{1}^{R}(R / R a, R / R a)$ is GV-torsion since $R / R a$ is torsion and
regular w-flat. That is, $R a / R a^{2}$ is GV-torsion, and thus $a \in R a \subseteq(R a)_{w}=$ $\left(R a^{2}\right)_{w}$.
$(5) \Rightarrow(1)$: Let a be a regular element in R. There exists a GV-ideal J such that $J a \subseteq\left(a^{2}\right)$. Suppose J is generated by j_{1}, \ldots, j_{n}. There exist r_{1}, \ldots, r_{n} such that $j_{i} a=a^{2} r_{i}$ for each $i=1, \ldots, n$. Since a is regular, $j_{i}=a r_{i}$. Let I be generated by r_{1}, \ldots, r_{n}. Then $J=a I \subseteq(a)$. Since J is a GV-ideal, $R=J_{w} \subseteq(a)_{w} \subseteq R$ by [15, Exercise 6.10]. Thus $(a)_{w}=R$, and then a is a unit by [15, Exercise 6.11]. So R is a total quotient ring.

Recall that an integral domain R is called a Prüfer v-multiplication domain (PvMD for short) if any nonzero finitely generated ideal is w-invertible (see [6, Theorem 2.1]). In 1980, Huckaba and Papick [8] and Matsuda [11] extended this notion to commutative rings with zero divisors.

Definition 4.2 ([5, Definition 2.5.9]). A ring R is said to be a Prüfer v-multiplication ring (PvMR for short) provided that any finitely generated regular ideal is w-invertible.

Proposition 4.3. Let D be an integral domain, K its quotient field and $R=$ $D(+) K$. The following assertions hold.
(1) R is a total quotient ring if and only if D is a field;
(2) $I(+) K$ is w-invertible over R if and only if I is w-invertible over R;
(3) R is a PvMR if and only if D is a Prüfer v-multiplication domain.

Proof. (1) Just note that an element (d, m) in R is regular (resp., a unit) if and only if d is nonzero (resp., a unit) by [1, Theorem 3.5] (resp., [1, Theorem 3.7]).
(2) Let I be a nonzero ideal over $D, I^{\prime}=I(+) K$ and $I^{\prime \prime}=I^{-1}(+) K$. By [9, Theorem 11], $I^{\prime \prime}=I^{\prime-1}$ and thus I^{\prime} is w-invertible if and only if $\left(I^{\prime} I^{\prime \prime}\right)_{w}=R$. That is, there is a GV-ideal $J^{\prime}=J(+) K$ such that $J^{\prime} \subseteq I^{\prime} I^{\prime \prime}$. This is equivalent to say $J \subseteq I I^{-1}$, i.e., I is w-invertible over D.
(3) This follows immediately from (2).

Recall from [14] that an R-module M is said to be a w-projective module if $\operatorname{Ext}_{R}^{1}\left(\left(M / \operatorname{Tor}_{G V}(M)\right)_{w}, N\right)$ is a GV-torsion module for any torsion-free w module N. The following proposition is an extension of [17, Theorem 2.7] to commutative rings with zero divisors. Its proof which is very similar to that of [17, Theorem 2.7] is given for completeness.

Proposition 4.4. Let R be a ring and I a regular fractional ideal of R. Then I is w-invertible if and only if I is w-projective.

Proof. Assume that I is a w-projective fractional w-ideal, $s=a / b$ is a regular element in I with b regular in R. There exist a GV-ideal $J=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in$ $\mathrm{GV}(R)$ and elements $\left\{x_{i}\right\}_{i \in I}$ such that for each $k \in\{1,2, \ldots, n\}$, there exist R-homomorphisms $\left\{f_{k i} \in I^{*} \mid i \in \Gamma\right\}$ such that almost all $f_{k i}(x)=0$ and
$d_{k} x=\sum_{i} f_{k i}(x) x_{i}$ for any $x \in I$. For any $t=c / d \in I$, we have

$$
b d f_{k i}\left(\frac{a c}{b d}\right)=d f_{i k}\left(\frac{a c}{d}\right)=a d f_{i k}\left(\frac{c}{d}\right)=a d f_{i k}(t)
$$

Thus $f_{k i}\left(\frac{a c}{b d}\right)=\frac{a}{b} f_{i k}(t)$, i.e., $f_{k i}(s t)=s f(t)$. Similarly, $f_{k i}(s t)=t f(s)$. Thus $s f(t)=t f(s)$. Let $x_{k i}=\frac{f_{k i}(s)}{s}$ for any $k=1,2, \ldots, n$. Then we have $I x_{k i} \subseteq R$, and thus $x_{k i} \in I^{-1}$. Note that $s d_{k}=\sum_{i=1}^{m_{k}} f_{k i}(s) x_{i}=s \sum_{i=1}^{m_{k}} x_{k i} x_{i}$. Since s is regular, $d_{k}=\sum_{i=1}^{m_{k}} x_{k i} x_{i} \in I I^{-1}$. So $J \subseteq I I^{-1}$. Therefore $\left(I I^{-1}\right)_{w}=R$ by [15, Exercise 6.10(2)].

Conversely, assume that $\left(I I^{-1}\right)_{w}=R$. Without loss of generality, we can also assume that I is a fractional w-ideal of R. Then there exists $J=$ $\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{GV}(R)$ such that b_{k} can be expressed as $b_{k}=\sum_{i=1}^{m_{k}} a_{k i} x_{k i}$ for any $k=1, \ldots, n$, where $a_{k i} \in I, x_{k i} \in I^{-1}$. Define $\phi: I^{-1} \rightarrow \operatorname{Hom}_{R}(I, R)=I^{*}$ by $\phi(x)(y)=y x$, where $x \in I^{-1}, y \in I$. By [15, Corollary 6.6.9(1)], ϕ is an isomorphism. Set $f_{k i}=\phi\left(x_{k i}\right)$. Then $f_{k i} \in I^{*}$ and $f_{k i}(a)=\phi\left(x_{k i}\right)(a)=a x_{k i}$ for any $a \in I$. So $b_{k} s=\sum_{i=1}^{m_{k}} a s_{k i} x_{k i}=\sum_{i=1}^{m_{k}} f_{k i}(s) x_{k i}$. By [17, Theorem 2.2], I is w-projective.

In 2015, Wang and Kim [14] introduced the w-Nagata ring, $R\{x\}$, of R. It is a localization of $R[X]$ at the multiplicative closed set

$$
S_{w}=\{f \in R[x] \mid c(f) \in \operatorname{GV}(R)\}
$$

where $c(f)$ is the ideal of R generated by the coefficients of f. Similarly, the w-Nagata module $M\{x\}$ of an R-module M is defined as $M\{x\}=M[x]_{S_{w}} \cong$ $M \bigotimes_{R} R\{x\}$.
Lemma 4.5. Every Prüfer v-multiplication ring is regular w-coherent.
Proof. Let I be a finitely generated regular ideal of R. Then I is w-invertible, and thus w-projective by Proposition 4.4. Thus $I\{x\}$ is finitely generated projective $R\{x\}$-module by [15, Theorem 6.7.18]. So I is of finitely presented type by [14, Theorem 3.9] and R is regular w-coherent.

It is well known that Prüfer v-multiplication domains are w-coherent domains. However, every Prüfer v-multiplication ring is not w-coherent.

Example 4.6. Let F be a field and V an infinite dimensional vector space over F. Denote $R=F(+) V$. By [1, Theorem 3.5; Theorem 3.7], R is a total quotient ring, and thus a PvMR. One can show R is not w-coherent by the similar proof of Example 2.7.

Proposition 4.7. Let R be a ring and I a regular fractional ideal of finite type over R. If I is w-flat, then I is w-invertible.

Proof. Let \mathfrak{m} be a maximal w-ideal of R. Since I is w-flat of finite type over R, $I_{\mathfrak{m}}$ is a finitely generated flat $R_{\mathfrak{m}}$-module. Thus $I_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$-module with finite rank. Since I is a fractional ideal over R, it follows that $I_{\mathfrak{m}}$ is a fractional ideal over $R_{\mathfrak{m}}$ as $\mathrm{T}\left(R_{\mathfrak{m}}\right) \subseteq \mathrm{T}(R)_{\mathfrak{m}}$. Consequently, $I_{\mathfrak{m}}$ has rank ≤ 1 over $R_{\mathfrak{m}}$.

Since I is regular and $I_{\mathfrak{m}}$ is free, $I_{\mathfrak{m}}$ is generated by a regular element. Thus $I_{\mathfrak{m}} \cong R_{\mathfrak{m}}$. Consequently, $I_{\mathfrak{m}}$ has rank 1 over $R_{\mathfrak{m}}$. Since I is of finite type, I is w-invertible by [14, Theorem 4.13].

Theorem 4.8. The following statements are equivalent for a ring R :
(1) R is a PvMR ;
(2) every finitely generated regular ideal is w-projective;
(3) every finite type regular ideal is w-projective;
(4) any submodule of a regular w-flat module is regular w-flat;
(5) any submodule of a flat module is regular w-flat;
(6) any ideal of R is regular w-flat;
(7) any regular ideal of R is w-flat;
(8) reg-w-w.gl.dim $(R) \leq 1$.

Proof. $(1) \Rightarrow(3)$ and $(2) \Rightarrow(1)$: These follow from Proposition 4.4.
$(3) \Rightarrow(2)$: This is trivial.
$(2) \Rightarrow(4)$: Let I be a finitely generated regular ideal of R. Then I is w invertible, and thus w-projective by Proposition 4.4. Let $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow$ 0 be an exact sequence with M regular w-flat. Consider the following exact sequence

$$
\cdots \rightarrow \operatorname{Tor}_{2}^{R}(R / I, L) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, N) \rightarrow \operatorname{Tor}_{1}^{R}(R / I, M) \rightarrow \cdots
$$

Since I is w-projective, I is w-flat by [15, Theorem 6.7.11]. Thus $\operatorname{Tor}_{2}^{R}(R / I, L)$ $\cong \operatorname{Tor}_{1}^{R}(I, L)$ is GV-torsion. Because $\operatorname{Tor}_{1}^{R}(R / I, M)$ is GV-torsion, we have $\operatorname{Tor}_{1}^{R}(R / I, N)$ is GV-torsion. Thus N is regular w-flat.
$(4) \Rightarrow(5) \Rightarrow(6)$: These are trivial.
(6) $\Rightarrow(7)$: Let J be a regular ideal of R. For any ideal I of R, we have $\operatorname{Tor}_{1}^{R}(R / J, I) \cong \operatorname{Tor}_{2}^{R}(R / J, R / I) \cong \operatorname{Tor}_{1}^{R}(R / I, J)$ is GV-torsion. Thus J is a w-flat ideal.
$(7) \Rightarrow(2)$: Let I be a finitely generated regular ideal. Then I is w-flat, and thus w-invertible by Proposition 4.7.
$(5) \Leftrightarrow(8)$: This follows from Proposition 3.5.

Remark 4.9. By Theorem 4.8, a commutative ring with w-w.gl.dim $(R) \leq$ 1 is a PvMR, and an integral domain R is a PvMD if and only if reg-ww.gl. $\operatorname{dim}(R) \leq 1$, if and only if w-w.gl. $\operatorname{dim}(R) \leq 1$. However, PvMRs need not have w-w.gl.dim (R) at most 1 . Let R be a local Gaussian ring with nilpotent maximal ideal. Then R is a Prüfer ring, and thus a PvMR. By [3, Proposition 5.3] and [18, Theorem 3.2], every Gaussian ring is a DW-ring. Thus w-w.gl.dim $(R)=\mathrm{w} \cdot \mathrm{gl} \cdot \operatorname{dim}(R)=\infty$ by [3, Proposition 6.3].

Acknowledgement. The author was supported by the National Natural Science Foundation of China (No. 12061001).

References

[1] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
[2] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
[3] S. Bazzoni and S. Glaz, Gaussian properties of total rings of quotients, J. Algebra 310 (2007), no. 1, 180-193. https://doi.org/10.1016/j.jalgebra.2007.01.004
[4] G. W. Chang and H. Kim, The w-FF property in trivial extensions, Bull. Iranian Math. Soc. 43 (2017), no. 7, 2259-2267.
[5] J. Elliott, Rings, modules, and closure operations, Springer Monographs in Mathematics, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-24401-9
[6] W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
[7] J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
[8] J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math. 31 (1980), no. 1-3, 167-196. https://doi.org/10.1007/BF01303273
[9] T. G. Lucas, Strong Prüfer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. https://doi.org/10.1016/0022-4049(93)90162-M
[10] T. G. Lucas, Krull rings, Prüfer v-multiplication rings and the ring of finite fractions, Rocky Mountain J. Math. 35 (2005), no. 4, 1251-1325. https://doi.org/10.1216/rmjm/ 1181069687
[11] R. Matsuda, Notes of Prüfer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15. https://doi.org/10.5036/bfsiu1968.12.9
[12] F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.
[13] F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
[14] F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa. 2014.07.025
[15] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
[16] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4. 1327
[17] F. G. Wang and D. C. Zhou, A homological characterization of Krull domains, Bull. Korean Math. Soc. 55 (2018), no. 2, 649-657. https://doi.org/10.4134/BKMS.b170203
[18] F. G. Wang, D. C. Zhou, H. Kim, T. Xiong, and X. W. Sun, Every Prüfer ring does not have small finitistic dimension at most one, Comm. Algebra 48 (2020), no. 12, 5311-5320. https://doi.org/10.1080/00927872.2020.1787422
[19] X. L. Xiao, F. G. Wang, and S. Y. Lin, The coherent study determined by regular ideals, J. Sichuan Normal Univ., Accepted.
[20] H. Yin, Some characterizations of Prüfer v-multiplication rings, J. Math. Res. Appl. 34 (2014), no. 3, 295-300.
[21] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
[22] X. Zhang, F. Wang, and W. Qi, On characterizations of w-coherent rings, Comm. Algebra 48 (2020), no. 11, 4681-4697. https://doi.org/10.1080/00927872.2020.1769121
[23] X. Zhang and W. Zhao, On ϕ-w-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58 (2021), no. 4, 1039-1052. https://doi.org/10.4134/BKMS. b200816

Xiaolei Zhang

School of Mathematics and Statistics
Shandong University of Technology
Zibo 255000, P. R. China
Email address: zxlrghj@163.com

[^0]: Received March 27, 2021; Revised September 21, 2021; Accepted October 14, 2021.
 2010 Mathematics Subject Classification. 13D05, 13A15.
 Key words and phrases. Regular w-flat module, regular w-weak global dimension, the total quotient ring, Prüfer v-multiplication ring.

