
Bull. Korean Math. Soc. 59 (2022), No. 1, pp. 213–226

https://doi.org/10.4134/BKMS.b210242

pISSN: 1015-8634 / eISSN: 2234-3016

A HOMOLOGICAL CHARACTERIZATION OF PRÜFER

v-MULTIPLICATION RINGS

Xiaolei Zhang

Abstract. Let R be a ring and M an R-module. Then M is said to

be regular w-flat provided that the natural homomorphism I ⊗R M →
R ⊗R M is a w-monomorphism for any regular ideal I. We distinguish

regular w-flat modules from regular flat modules and w-flat modules by

idealization constructions. Then we give some characterizations of to-
tal quotient rings and Prüfer v-multiplication rings (PvMRs for short)

utilizing the homological properties of regular w-flat modules.

1. introduction

Recall from [6, Theorem 2.1] that an integral domain R is a Prüfer v-
multiplication domain (abbreviated PvMD) provided that any nonzero finitely
generated ideal is w-invertible. Obviously, PvMDs can be seen as w-versions
of Prüfer domains which are integral domains that any nonzero finitely gen-
erated ideal is invertible. In 2015, Wang and Qiao [16, Theorem 3.5] gave a
homological characterization of PvMDs which states that an integral domain
R is a PvMD if and only if the w-weak global dimension of R is at most 1.
Our original motivation for this work is to extend this result to commutative
rings with zero divisors. Early in 1980, Huckaba and Papick [8] and Matsuda
[11] extended the notion of PvMDs to that of PvMRs by declaring that a
commutative ring R is a PvMR provided that any finitely generated regular
ideal is w-invertible. Certainly PvMRs are viewed as a w-version of Prüfer
rings for which any finitely generated regular ideal is invertible. In 2005, Lucas
[10, Theorem 7.8; Theorem 7.12] determined a commutative ring R when the
polynomial ring R[x] and the Nagata ring R(x) are PvMRs respectively. In
2014, Yin [20] characterized PvMRs by largely localizing at prime ideals (see
[20, Theorem 2.1]). Recently, the author and Zhao [23] characterized φ-PvMRs
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using w-φ-flat modules. In this work, we will give some homological character-
izations of the total quotient rings and PvMRs utilizing regular w-flat modules
(see Theorem 4.8).

Throughout this paper, R denotes a commutative ring with identity and
T (R) is its total quotient ring. An R-submodule I of T (R) is said to be frac-
tional if there exists a regular element s ∈ R such that sI ⊆ R. If I is a
fractional ideal, we denote I−1 = {r ∈ T (R) | rI ⊆ R}.

Now we review some definitions and notations related to the w-operation.
A finitely generated ideal J of R is called a Glaz-Vasconcelos ideal (GV-ideal
for short) if the natural homomorphism R → HomR(J,R) is an isomorphism.
The set of GV-ideals is denoted by GV(R). Let M be an R-module. Define

torGV(M) := {x ∈M | Jx = 0 for some J ∈ GV(R)}.

An R-module M is said to be GV-torsion (resp., GV-torsion-free) if torGV(M)
= M (resp., torGV(M) = 0). A GV-torsion-free module M is called a w-module
if Ext1R(R/J,M) = 0 for any J ∈ GV(R), and the w-envelope of M is given by

Mw := {x ∈ E(M) | Jx ⊆M for some J ∈ GV(R)},

where E(M) is the injective envelope of M . A fractional ideal I is said to be
w-invertible if (II−1)w = R. A DW ring R is a ring over which every module
is a w-module, equivalently the only GV-ideal of R is R. A maximal w-ideal
is an ideal of R which is maximal among all w-submodules of R. The set of
all maximal w-ideals is denoted by w-Max(R). By [15, Theorem 6.2.14], any
maximal w-ideal is prime.

An R-homomorphism f : M → N is said to be a w-monomorphism (resp.,
w-epimorphism, w-isomorphism) if for any m ∈ w-Max(R), fm : Mm → Nm is a
monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w-
monomorphism (resp., w-epimorphism) if and only if Ker(f) (resp., Coker(f))
is GV-torsion. A sequence A→ B → C is said to be w-exact if for any m ∈ w-
Max(R), Am → Bm → Cm is exact. A class C of R-modules is said to be closed
under w-isomorphisms provided that for any w-isomorphism f : M → N , if
one of the modules M and N is in C, so is the other. Following from [14], an
R-module M is said to be w-flat if for any w-monomorphism f : A → B, the
induced sequence f ⊗R 1 : A ⊗R M → B ⊗R M is also a w-monomorphism.
The class of w-flat modules is closed under w-isomorphisms, see [15, Corollary
6.7.4].

An R-module M is said to be of finite type if there exist a finitely generated
free module F and a w-epimorphism g : F → M , and it is said to be of
finitely presented type if there is a w-exact sequence F1 → F0 → M → 0,
where F0 and F1 are finitely generated free modules. The classes of finite type
and finitely presented type modules are all closed under w-isomorphisms, see
[15, Corollary 6.4.4; Corollary 6.4.13]. Following [12], a ring R is said to be w-
coherent if every finitely generated ideal of R is of finitely presented type. The
authors [22, Theorem 2.2] gave a w-version of Chase Theorem to characterize
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w-coherent rings as follows: a ring R is w-coherent if and only if any direct
product of flat modules is w-flat, if and only if any direct product of R is w-flat.

2. Regular w-flat modules

Let R be a ring. An ideal I of R is said to be regular if I contains a regular
element. An R-module M is said to be regular flat provided that the natural
homomorphism I ⊗RM → R ⊗RM is a monomorphism for any regular ideal
I, equivalently, TorR1 (R/I,M) = 0 for any regular ideal I (see [19]). In this
section, we introduce and study regular w-flat modules which generalize both
regular flat modules and w-flat modules.

Definition 2.1. Let R be a ring. An R-module M is said to be regular w-
flat provided that the natural homomorphism I ⊗R M → R ⊗R M is a w-
monomorphism for any regular ideal I.

Clearly, any w-flat module and regular flat module are regular w-flat. We
can obtain some characterizations of regular w-flat modules which is similar to
[13, Proposition 1.1].

Theorem 2.2. Let R be a ring. The following statements are equivalent for
an R-module M :

(1) M is regular w-flat;

(2) TorR1 (R/I,M) is GV-torsion for all regular ideals I of R;

(3) TorR1 (R/I,M) is GV-torsion for all finitely generated regular ideals I
of R;

(4) the natural homomorphism I⊗RM → R⊗RM is w-exact for all finitely
generated regular ideals I of R;

(5) the natural homomorphism iI : I ⊗RM → IM is a w-isomorphism for
all regular ideals I of R;

(6) the natural homomorphism iI : I ⊗RM → IM is a w-isomorphism for
all finitely generated regular ideals I of R.

Proof. (2)⇒ (3), (1)⇒ (4) and (5)⇒ (6): These implications are trivial.
(1) ⇔ (2) (resp., (3) ⇔ (4)): Let I be a (resp., finitely generated) regular

ideal of R. The equivalence follows from the exact sequence

0→ TorR1 (R/I,M)→ I ⊗RM → R⊗RM → R/I ⊗RM → 0.

(1)⇔ (5) and (4)⇔ (6): These follow noting that Im(f ⊗R 1) = IM .
(6) ⇒ (5): Let I be a regular ideal of R and s a regular element in I.

We just need to show ker(iI) is GV-torsion. Suppose that iI(
∑n
i=1 ai ⊗ xi) =∑n

i=1 aixi = 0. Let K = Ra1 + · · · + Ran + Rs. Then the finitely generated
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regular ideal K is contained in I. Consider the following commutative diagram

K ⊗RM

g

��

iK // KM

h

��
I ⊗RM

iI // IM.

By (6), iK is a w-isomorphism. So there is a GV-ideal J such that J
∑n
i=1 ai⊗

xi = 0 in K ⊗R M . Since h is a monomorphism, g is a w-monomorphism.
Thus there is a GV-ideal J ′ such that J ′J

∑n
i=1 ai ⊗ xi = 0 in I ⊗RM . Since

J ′J ∈ GV(R), we have ker(iI) is GV-torsion. �

Corollary 2.3. Let R be a ring. The class of regular w-flat R-modules is
closed under w-isomorphisms.

Proof. Let f : M → N be a w-isomorphism and I a regular ideal. There
exist two exact sequences 0 → T1 → M → L → 0 and 0 → L → N →
T2 → 0 with T1 and T2 GV-torsion. Consider the induced two long exact
sequences TorR1 (R/I, T1) → TorR1 (R/I,M) → TorR1 (R/I, L) → R/I ⊗ T1 and

TorR2 (R/I, T2) → TorR1 (R/I, L) → TorR1 (R/I,N) → TorR1 (R/I, T2). By [15,
Theorem 6.7.2], M is regular w-flat if and only if N is regular w-flat. �

Following [19, Definition 3.1], a ring R is said to be regular coherent if any
finitely generated regular ideal is finitely presented. In order to distinguish reg-
ular w-flat modules from regular flat modules and w-flat modules, we generalize
regular coherent rings in the sense of the w-operation.

Definition 2.4. A ring R is said to be regular w-coherent provided that any
finitely generated regular ideal is of finitely presented type.

Obviously, w-coherent rings and regular coherent rings are examples of reg-
ular w-coherent rings. Certainly, a DW-ring is regular w-coherent if and only
if it is a regular coherent ring, and an integral domain is regular w-coherent if
and only if it is a w-coherent domain. We can characterize regular w-coherent
rings by regular w-flat modules.

Proposition 2.5. Let R be a ring. The following statements are equivalent:

(1) R is regular w-coherent;
(2) the direct product of flat modules is regular w-flat;
(3) the direct product of projective modules is regular w-flat;
(4) the direct product of R is regular w-flat.

Proof. (1) ⇒ (2): Let {Fi}i∈I be a family of flat modules. By Theorem 2.2,
we just need to show for any finitely generated regular ideal J , the natural
homomorphism iJ : J ⊗R

∏
i∈I Fi → J

∏
i∈I Fi is a w-isomorphism. Consider
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the following commutative diagram:

J ⊗R
∏
i∈I Fi

iJ //

φJ

��

J
∏
i∈I Fi

��∏
i∈I(J ⊗R Fi)

γ // ∏
i∈I(JFi).

Since R is regular w-coherent, J is of finitely presented type. By [22, Proposi-
tion 2.12], φJ is a w-monomorphism. Since Fi is flat for any i ∈ I, we have γ
is an isomorphism (See [15, Theorem 2.5.6]). Thus iJ is a w-monomorphism.
Since iJ is an epimorphism, we have iJ is a w-isomorphism.

(2)⇒ (3)⇒ (4): These implications are trivial.
(4)⇒ (1): We just need to show any finitely generated regular ideal J is of

finitely presented type. Consider the following commutative diagram

J ⊗
∏
i∈I R

α //

iJ
��

R⊗
∏
i∈I R

=

��∏
i∈I(J)

β // ∏
i∈I(R).

Since
∏
i∈I R is regular w-flat, α is a w-monomorphism. Thus iJ is a w-

monomorphism. By [22, Proposition 2.12], J is of finitely presented type. �

Some non-integral domain examples are provided by the idealization con-
struction R(+)M where M is an R-module (see [7]). We recall this construc-
tion. Let R(+)M = R⊕M as a R-module, and define

(1) (r,m)+(s, n)=(r + s,m+ n).
(2) (r,m)(s, n)=(rs, sm+ rn).

Under this construction, R(+)M becomes a commutative ring with identity
(1, 0).

Proposition 2.6 ([4, Proposition 2.2]). Let D be an integral domain, K its
quotient field and R = D(+)K. Then the following statements hold.

(1) GV(R) = {J(+)K | J ∈ GV(D)}.
(2) Let T be a D-module. Then T is GV-torsion if and only if T ⊗D R is

GV-torsion over R.
(3) Let M be a D-module. Then M is a w-module if and only if M ⊗D R

is a w-module over R.
(4) Let I be a nonzero ideal of D. Then I is finitely generated (resp.,

finitely presented) if and only if I⊗DR (∼= I(+)K) is finitely generated
(resp., finitely presented) over R.

(5) Let M be a D-module. Then M is of finite type if and only if M ⊗D R
is of finite type over R.

(6) Let M be a D-module. Then M is of finitely presented type if and only
if M ⊗D R is of finitely presented type over R.
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(7) D is a coherent domain if and only if R is a regular coherent ring.
(8) D is a w-coherent domain if and only if R is a regular w-coherent ring.

Proof. (1) Since K is divisible over D, every ideal of R is of the form I(+)K
or 0(+)L, where I is a nonzero ideal over D and L is a D-submodule of K (See
[1, Corollary 3.4]). Since any ideal of the form 0(+)L is not semi-regular, any
GV-ideal of R is of the form I(+)K, where I is a nonzero D-ideal. Suppose I
is a nonzero ideal of D. Since an element (d,m) in R is regular if and only if
d 6= 0, I(+)K is a regular ideal. Thus I(+)K is a GV-ideal over R if and only if
(I(+)K)−1 = R by [21]. By [9, Theorem 11(d)], (I(+)K)−1 = I−1(+)K. Thus
I(+)K is a GV-ideal over R if and only if I−1 = D, if and only if I ∈ GV(D).

(2) Assume T is GV-torsion over D. For any t =
∑n
i=1 ti ⊗ ri ∈ T ⊗D R,

there exists a GV-ideal J such that Jti = 0, for each i = 1, . . . , n. Then
J(+)Kt = 0, and thus T ⊗D R is GV-torsion over R. Suppose T ⊗D R is
GV-torsion over R. For any t′ ∈ T , by (1), there exists a GV-ideal J(+)K
such that J(+)K(t′ ⊗ 1) = 0. Then Jt′ = 0. Thus T is GV-torsion over D.

(3) Since K is flat and divisible over D, for each i = 0, 1 and any J ∈ GV(D),
we have

ExtiR(R/J(+)K,M ⊗D R) ∼= ExtiR(D/J,M ⊗D R)

∼= ExtiR(D/J ⊗D R,M ⊗D R)

∼= ExtiD(D/J,M ⊗D R)

∼= ExtiD(D/J,M)⊕ ExtiD(D/J,M ⊗D K)

∼= ExtiD(D/J,M).

Consequently, M ⊗DR is a w-module over R if and only M is a w-module over
D by (1).

(4) Since R is a faithful flat D-module, F1
g−→ F0

f−→ I → 0 is exact over D

if and only if F1 ⊗D R
g⊗DR−−−−→ F0 ⊗D R

f⊗DR−−−−→ I ⊗D R → 0 is exact over R.
Note that Fi is finitely generated free over D if and only if Fi ⊗D R is finitely
generated free over R. One can easily check that (4) holds.

(5) Let M be of finite type over D. Then there is a w-epimorphism F
f−→M

with F finitely generated free. Let {ei | i = 1, . . . , n} be the standard basis

of F and
∑k
j=1(mj ⊗ rj) ∈ M ⊗D R. Then for each j, there exists a GV-

ideal Jj ∈ GV(R) such that Jjmj ⊆ Imf . Let J = J1 · · · Jk. Then J ⊗D
R
∑k
j=1(mj⊗rj) ⊆ Imf⊗DR. Thus F⊗DR

f⊗DR−−−−→M⊗DR is a w-epimorphism

over R by [15, Proposition 6.4.2(3)].

Let L = 〈
∑j=ki
j=1 mi,j⊗ri,j | i = 1, . . . , n〉 be the finitely generated submodule

of M⊗DR such that Lw = (M⊗DR)w. For any m ∈M , there exists a GV-ideal
J⊗DR such that J⊗DR(m⊗1) ⊆ L. SetN := 〈mi,j | j = 1, . . . , ki; i = 1, . . . , n〉
be a finitely generated submodule of M . Then Jm ⊆ N . Thus M is of finite
type over D by [15, Proposition 6.4.2(3)].
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(6) Assume M is of finitely presented type over D. Then there is a w-exact

sequence F1
g−→ F0

f−→ M → 0 with F0, F1 finitely generated free. By applying

− ⊗D R, we obtain a w-exact sequence F1 ⊗D R
g⊗DR−−−−→ F0 ⊗D R

f⊗DR−−−−→
M ⊗D R → 0 over D as R is a flat D-module. Similarly to the proof of (5),
one can check that it is also a w-exact sequence over R.

Now assume that M ⊗D R is of finitely presented type over R. Then M is

of finite type over D by (5). Let F ′1
g′−→ F0

f−→ M → 0 be a w-exact sequence
with F0 finitely generated free and F ′1 free. By applying −⊗D R, we can also

obtain a w-exact sequence F ′1⊗D R
g′⊗DR−−−−→ F0⊗D R

f⊗DR−−−−→M ⊗D R→ 0 over
R. Since M ⊗D R is of finitely presented type, Im(g′ ⊗D R) = Im(g′)⊗D R is
of finite type by [15, Theorem 6.4.11]. By (5), Im(g′) is of finite type, and thus
M is of finitely presented type over D by [15, Theorem 6.4.11] again.

(7) As in the proof of (1), a regular ideal of R is of the form I(+)K, where
I is a nonzero ideal of D. Thus (7) follows trivially from (4).

(8) This also follows trivially from (4) and (6). �

Utilizing these results, we give a regular w-coherent ring which is neither
w-coherent nor regular coherent.

Example 2.7. Let D be a non-coherent w-coherent domain (see [15, Example
9.1.18] for example), K its quotient field. Then R = D(+)K is a regular
w-coherent ring. However, it is neither w-coherent nor regular coherent.

Proof. Since D is a non-coherent w-coherent domain, R is a non-regular co-
herent regular w-coherent ring by Proposition 2.6. We will show R is not
w-coherent as well. Note that (0, 1)R is a finitely generated ideal over R. Con-
sider the natural 0 → L → R → (0, 1)R → 0. Then L = Nil(R) = 0(+)K.
Since D is not a field, the w-module K is not a finitely generated module over
D. Thus K is not of finite type over D. By [2, Lemma 2.2], the w-ideal Nil(R)
is not of finite type over R. Thus (0, 1)R is not of finitely presented type over
R. �

Now we are ready to give an example of a regular w-flat module which is
neither w-flat nor regular flat.

Example 2.8. Let R be a regular w-coherent which is neither w-coherent
nor regular coherent (See Example 2.7). By comparing [22, Theorem 2.2] and
[19, Theorem 3.2], we can find a regular w-flat module F =

∏
i∈I Fi with each

Fi flat neither w-flat nor regular flat.

3. On the homological dimension of regular w-flat modules

Let R be a ring and M an R-module. Following [16], the w-flat dimension
w-fdR(M) of an R-module M is defined as the length of the shortest w-flat
w-resolution of M and the w-weak global dimension w-w.gl.dim(R) of R is the
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supremum of the w-flat dimensions of all R-modules. We now introduce the
notion of the regular w-flat dimension of an R-module M as follows.

Definition 3.1. Let R be a ring and M an R-module. We write reg-w-
fdR(M) ≤ n (reg-w-fd abbreviates regular w-flat dimension) if there is a w-
exact sequence of R-modules

(♦) 0→ Fn → · · · → F1 → F0 →M → 0

with each Fi w-flat (i = 0, . . . , n − 1) and Fn regular w-flat. The w-exact
sequence (♦) is said to be a regular w-flat w-resolution of length n of M .
The regular w-flat dimension reg-w-fdR(M) is defined to be the length of the
shortest regular w-flat w-resolution of M . If such finite w-resolution (♦) does
not exist, then we say reg-w-fdR(M) =∞.

It is obvious that an R-module M is regular w-flat if and only if reg-w-
fdR(M) = 0 and reg-w-fdR(N) ≤ w-fdR(N) for any R-module N .

Lemma 3.2 ([16, Lemma 2.2]). Let N be an R-module and 0 → A → F →
C → 0 a w-exact sequence of R-modules with F w-flat. Then for any n > 0,
the induced map TorRn+1(C,N) → TorRn (A,N) is a w-isomorphism. Hence,

TorRn+1(C,N) is GV-torsion if and only if so is TorRn (A,N).

Proposition 3.3. Let R be a ring. The following statements are equivalent
for an R-module M :

(1) reg-w-fdR(M) ≤ n;

(2) TorRn+1(M,R/I) is GV-torsion for all regular ideals I;

(3) TorRn+1(M,R/I) is GV-torsion for all finitely generated regular ideals
I;

(4) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where
F0, F1, . . . , Fn−1 are flat R-modules, then Fn is regular w-flat;

(5) if 0 → Fn → · · · → F1 → F0 → M → 0 is an w-exact sequence, where
F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is regular w-flat;

(6) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where
F0, F1, . . . , Fn−1 are w-flat R-modules, then Fn is regular w-flat;

(7) if 0 → Fn → · · · → F1 → F0 → M → 0 is an w-exact sequence, where
F0, F1, . . . , Fn−1 are flat R-modules, then Fn is regular w-flat.

Proof. (1) ⇒ (2): We prove (2) by induction on n. For the case n = 0, (2)
holds by Theorem 2.2 as M is a regular w-flat module. If n > 0, then there
is a w-exact sequence 0 → Fn → · · · → F1 → F0 → M → 0 with each Fi
w-flat (i = 0, . . . , n− 1) and Fn is regular w-flat. Let K0 = ker(F0 →M). We
have two w-exact sequences 0 → K0 → F0 → M → 0 and 0 → Fn → Fn−1 →
· · · → F1 → K0 → 0. Note that reg-w-fdR(K0) ≤ n − 1. By induction,

TorRn (K0, R/I) is GV-torsion for all regular ideals I. It follows from Lemma

3.2 that TorRn+1(M,R/I) is GV-torsion.
(2)⇒ (3): This is trivial.
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(3) ⇒ (4): Let 0 → Fn → · · · → F1 → F0 → M → 0 be an exact sequence.
Set K0 = ker(F0 →M) and Ki = ker(Fi → Fi−1), where i = 1, . . . , n−1. Since

all F0, F1, . . . , Fn−1 are flat, TorR1 (Fn, R/I) ∼= TorRn+1(M,R/I) is GV-torsion
for all finitely generated regular ideals I. Hence Fn is a regular w-flat module
by Theorem 2.2.

(3)⇒ (5): Let 0→ Fn → · · · → F1 → F0 →M → 0 be a w-exact sequence.
Set Ln = Fn and Li = Im(Fi → Fi−1), where i = 1, . . . , n − 1. Then both
0→ Li+1 → Fi → Li → 0 and 0→ L1 → F0 →M → 0 are w-exact sequences.
By using Lemma 3.2 repeatedly, we can obtain that TorR1 (Fn, R/I) is GV-
torsion for all finitely generated regular ideals I. Thus Fn is regular w-flat by
Theorem 2.2.

(4) ⇒ (1), (5) ⇒ (6) ⇒ (4) and (5) ⇒ (7) ⇒ (4): These implications are
trivial. �

Definition 3.4. The reg-w-weak global dimension of a ring R is defined by

reg-w-w.gl.dim(R) = sup{reg-w-fdR(M) |M is an R-module}.
Obviously, by definition, reg-w-w.gl.dim(R) ≤ w-w.gl.dim(R) for any ring

R. Following from Proposition 3.3, we have the following result.

Proposition 3.5. The following statements are equivalent for a ring R.

(1) reg-w-w.gl.dim(R) ≤ n;
(2) reg-w-fdR(M) ≤ n for all R-modules M ;

(3) TorRn+1(M,R/I) is GV-torsion for all R-modules M and all regular
ideals I of R;

(4) TorRn+1(M,R/I) is GV-torsion for all R-modules M and all finitely
generated regular ideals I of R.

4. Rings with regular w-weak global dimension at most one

Recall from [5, Definition 2.1.1] that a ring R is said to be a total quotient
ring provided that any regular element is a unit, i.e., T (R) = R. Recently,
Xiao [19, Theorem 2.13] shows that a ring R is a total quotient ring if and only
if any R-module is regular flat.

Theorem 4.1. Let R be a ring. The following statements are equivalent:

(1) R is a total quotient ring;
(2) every R-module is regular flat;
(3) every R-module is regular w-flat;
(4) reg-w-w.gl.dim(R) = 0;
(5) a ∈ (a2)w for any regular element a ∈ R.

Proof. (1)⇔ (2): See [19, Theorem 2.13].
(2)⇒ (3): This is obvious.
(3)⇔ (4): This follows from Definition 3.4.
(4) ⇒ (5): Let a be a regular element in R. Then Ra is a regular ideal of

R. It follows that TorR1 (R/Ra,R/Ra) is GV-torsion since R/Ra is torsion and
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regular w-flat. That is, Ra/Ra2 is GV-torsion, and thus a ∈ Ra ⊆ (Ra)w =
(Ra2)w.

(5)⇒ (1): Let a be a regular element in R. There exists a GV-ideal J such
that Ja ⊆ (a2). Suppose J is generated by j1, . . . , jn. There exist r1, . . . , rn
such that jia = a2ri for each i = 1, . . . , n. Since a is regular, ji = ari. Let
I be generated by r1, . . . , rn. Then J = aI ⊆ (a). Since J is a GV-ideal,
R = Jw ⊆ (a)w ⊆ R by [15, Exercise 6.10]. Thus (a)w = R, and then a is a
unit by [15, Exercise 6.11]. So R is a total quotient ring. �

Recall that an integral domain R is called a Prüfer v-multiplication domain
(PvMD for short) if any nonzero finitely generated ideal is w-invertible (see
[6, Theorem 2.1]). In 1980, Huckaba and Papick [8] and Matsuda [11] extended
this notion to commutative rings with zero divisors.

Definition 4.2 ([5, Definition 2.5.9]). A ring R is said to be a Prüfer v-multi-
plication ring (PvMR for short) provided that any finitely generated regular
ideal is w-invertible.

Proposition 4.3. Let D be an integral domain, K its quotient field and R =
D(+)K. The following assertions hold.

(1) R is a total quotient ring if and only if D is a field;
(2) I(+)K is w-invertible over R if and only if I is w-invertible over R;
(3) R is a PvMR if and only if D is a Prüfer v-multiplication domain.

Proof. (1) Just note that an element (d,m) in R is regular (resp., a unit) if
and only if d is nonzero (resp., a unit) by [1, Theorem 3.5] (resp., [1, Theorem
3.7]).

(2) Let I be a nonzero ideal over D, I ′ = I(+)K and I ′′ = I−1(+)K. By
[9, Theorem 11], I ′′ = I ′−1 and thus I ′ is w-invertible if and only if (I ′I ′′)w = R.
That is, there is a GV-ideal J ′ = J(+)K such that J ′ ⊆ I ′I ′′. This is equivalent
to say J ⊆ II−1, i.e., I is w-invertible over D.

(3) This follows immediately from (2). �

Recall from [14] that an R-module M is said to be a w-projective module
if Ext1R((M/TorGV(M))w, N) is a GV-torsion module for any torsion-free w-
module N . The following proposition is an extension of [17, Theorem 2.7] to
commutative rings with zero divisors. Its proof which is very similar to that of
[17, Theorem 2.7] is given for completeness.

Proposition 4.4. Let R be a ring and I a regular fractional ideal of R. Then
I is w-invertible if and only if I is w-projective.

Proof. Assume that I is a w-projective fractional w-ideal, s = a/b is a regular
element in I with b regular in R. There exist a GV-ideal J = (d1, d2, . . . , dn) ∈
GV(R) and elements {xi}i∈I such that for each k ∈ {1, 2, . . . , n}, there exist
R-homomorphisms {fki ∈ I∗ | i ∈ Γ} such that almost all fki(x) = 0 and
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dkx =
∑
i fki(x)xi for any x ∈ I. For any t = c/d ∈ I, we have

bdfki(
ac

bd
) = dfik(

ac

d
) = adfik(

c

d
) = adfik(t).

Thus fki(
ac
bd ) = a

b fik(t), i.e., fki(st) = sf(t). Similarly, fki(st) = tf(s). Thus

sf(t) = tf(s). Let xki = fki(s)
s for any k = 1, 2, . . . , n. Then we have Ixki ⊆ R,

and thus xki ∈ I−1. Note that sdk =
∑mk

i=1 fki(s)xi = s
∑mk

i=1 xkixi. Since s
is regular, dk =

∑mk

i=1 xkixi ∈ II−1. So J ⊆ II−1. Therefore (II−1)w = R by
[15, Exercise 6.10(2)].

Conversely, assume that (II−1)w = R. Without loss of generality, we
can also assume that I is a fractional w-ideal of R. Then there exists J =
(b1, . . . , bn) ∈ GV(R) such that bk can be expressed as bk =

∑mk

i=1 akixki for
any k = 1, . . . , n, where aki ∈ I, xki ∈ I−1. Define φ : I−1 → HomR(I,R) = I∗

by φ(x)(y) = yx, where x ∈ I−1, y ∈ I. By [15, Corollary 6.6.9(1)], φ is an
isomorphism. Set fki = φ(xki). Then fki ∈ I∗ and fki(a) = φ(xki)(a) = axki
for any a ∈ I. So bks =

∑mk

i=1 askixki =
∑mk

i=1 fki(s)xki. By [17, Theorem 2.2],
I is w-projective. �

In 2015, Wang and Kim [14] introduced the w-Nagata ring, R{x}, of R. It
is a localization of R[X] at the multiplicative closed set

Sw = {f ∈ R[x] | c(f) ∈ GV(R)},
where c(f) is the ideal of R generated by the coefficients of f . Similarly, the
w-Nagata module M{x} of an R-module M is defined as M{x} = M [x]Sw

∼=
M

⊗
RR{x}.

Lemma 4.5. Every Prüfer v-multiplication ring is regular w-coherent.

Proof. Let I be a finitely generated regular ideal of R. Then I is w-invertible,
and thus w-projective by Proposition 4.4. Thus I{x} is finitely generated
projective R{x}-module by [15, Theorem 6.7.18]. So I is of finitely presented
type by [14, Theorem 3.9] and R is regular w-coherent. �

It is well known that Prüfer v-multiplication domains are w-coherent do-
mains. However, every Prüfer v-multiplication ring is not w-coherent.

Example 4.6. Let F be a field and V an infinite dimensional vector space
over F . Denote R = F (+)V . By [1, Theorem 3.5; Theorem 3.7], R is a total
quotient ring, and thus a PvMR. One can show R is not w-coherent by the
similar proof of Example 2.7.

Proposition 4.7. Let R be a ring and I a regular fractional ideal of finite type
over R. If I is w-flat, then I is w-invertible.

Proof. Let m be a maximal w-ideal of R. Since I is w-flat of finite type over R,
Im is a finitely generated flat Rm-module. Thus Im is a free Rm-module with
finite rank. Since I is a fractional ideal over R, it follows that Im is a fractional
ideal over Rm as T(Rm) ⊆ T(R)m. Consequently, Im has rank ≤ 1 over Rm.
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Since I is regular and Im is free, Im is generated by a regular element. Thus
Im ∼= Rm. Consequently, Im has rank 1 over Rm. Since I is of finite type, I is
w-invertible by [14, Theorem 4.13]. �

Theorem 4.8. The following statements are equivalent for a ring R:

(1) R is a PvMR;
(2) every finitely generated regular ideal is w-projective;
(3) every finite type regular ideal is w-projective;
(4) any submodule of a regular w-flat module is regular w-flat;
(5) any submodule of a flat module is regular w-flat;
(6) any ideal of R is regular w-flat;
(7) any regular ideal of R is w-flat;
(8) reg-w-w.gl.dim(R) ≤ 1.

Proof. (1)⇒ (3) and (2)⇒ (1): These follow from Proposition 4.4.
(3)⇒ (2): This is trivial.
(2) ⇒ (4): Let I be a finitely generated regular ideal of R. Then I is w-

invertible, and thus w-projective by Proposition 4.4. Let 0→ N →M → L→
0 be an exact sequence with M regular w-flat. Consider the following exact
sequence

· · · → TorR2 (R/I, L)→ TorR1 (R/I,N)→ TorR1 (R/I,M)→ · · · .

Since I is w-projective, I is w-flat by [15, Theorem 6.7.11]. Thus TorR2 (R/I, L)
∼= TorR1 (I, L) is GV-torsion. Because TorR1 (R/I,M) is GV-torsion, we have

TorR1 (R/I,N) is GV-torsion. Thus N is regular w-flat.
(4)⇒ (5)⇒ (6): These are trivial.
(6) ⇒ (7): Let J be a regular ideal of R. For any ideal I of R, we have

TorR1 (R/J, I) ∼= TorR2 (R/J,R/I) ∼= TorR1 (R/I, J) is GV-torsion. Thus J is a
w-flat ideal.

(7)⇒ (2): Let I be a finitely generated regular ideal. Then I is w-flat, and
thus w-invertible by Proposition 4.7.

(5)⇔ (8): This follows from Proposition 3.5. �

Remark 4.9. By Theorem 4.8, a commutative ring with w-w.gl.dim(R) ≤
1 is a PvMR, and an integral domain R is a PvMD if and only if reg-w-
w.gl.dim(R) ≤ 1, if and only if w-w.gl.dim(R) ≤ 1. However, PvMRs need not
have w-w.gl.dim(R) at most 1. Let R be a local Gaussian ring with nilpotent
maximal ideal. Then R is a Prüfer ring, and thus a PvMR. By [3, Propo-
sition 5.3] and [18, Theorem 3.2], every Gaussian ring is a DW-ring. Thus
w-w.gl.dim(R)=w.gl.dim(R) =∞ by [3, Proposition 6.3].
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