Korean J. Math. 18 (2010), No. 3, pp. 271-275

EAKIN-NAGATA THEOREM FOR COMMUTATIVE
RINGS WHOSE REGULAR IDEALS ARE FINITELY
GENERATED

GYU WHAN CHANG

ABSTRACT. Let R be a commutative ring with identity, T'(R) be the
total quotient ring of R, and D be a ring such that R C D C T(R)
and D is a finite R-module. In this paper, we show that each regular
ideal of R is finitely generated if and only if each regular ideal of D
is finitely generated. This is a generalization of the Eakin-Nagata
theorem that R is Noetherian if and only if D is Noetherian.

1. Introduction

Let R be a commutative ring with identity, T'(R) be the total quotient
ring of R, and D be a ring between R and T'(R). A regular element is
an element which is not a zero divisor, while a regular ideal is an ideal
containing a regular element. We say that R is an r-Noetherian ring if
each regular ideal of R is finitely generated. Clearly, Noetherian rings
are r-Noetherian, but r-Noetherian rings need not be Noetherian (see

Example 1).

It is well known that if R is Noetherian, then R|xy,...,z,], where
x1,...,2, € T(R), is also Noetherian. Moreover, if R[zy,...,z,]| is
integral over R, then R[zy,...,x,] is a finite R-module [6, Theorem 17],

and thus R is Noetherian if and only if R[xy,...,z,] is Noetherian by
the Eakin-Nagata theorem ([4, Theorem 2] or [7]) that if D is a finite R-
module, then R is Noetherian if and only if D is Noetherian. However, if
R[zy,...,z,] is not integral over R, then R[xy,...,x,] being Noetherian
does not imply that R is Noetherian. For example, let Q (resp., C) be
the field of rational (resp., complex) numbers, X be an indeterminate
over C, C[X] be the power series ring over C, and R = Q + XC[X] be
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a subring of C[X]. Then R[] = T(R), and hence R[+] is a Noetherian
domain, but R is not a Noetherian domain [1, Theorem 2.1]. Let ¢
be an indeterminate over R and RI[t] be the polynomial ring over R.
Then t is a regular element of R[t] and R[t]/tR[t] = R. So if RJt] is
an r-Noetherian ring, then R is Noetherian. In [3, Lemma 4|, Chang
and Kang showed that if R is an r-Noetherian ring, then R[z] is also
r-Noetherian for each x € T'(R), and hence R[z1, ..., x,] is r-Noetherian
for any x1,...,z, € T(R) (see Proposition 2).

Let D be a finite R-module. In [2, Lemma 3], Chang proved that
if R is an r-Noetherian ring, then D is also an r-Noetherian ring. In
this paper, we show that if D is an r-Noetherian ring, then R is an
r-Noetherian ring, which is an r-Noetherian ring analog of the Eakin-
Nagata theorem ([4, Theorem 2] or [7]). The proofs of our results in
this paper heavily depend on those of the Eakin’s results in [4]. For any
undefined terminology and notation, see [6].

2. Main result

Throughout this paper, R denotes a commutative ring with identity,
T(R) is the total quotient ring of R, and D is a ring between R and
T(R). For any ideal A of R (resp., D), we mean by A® (resp., A°) the
ideal AD of D (resp., AN R of R). Also, A*“ = ADNR.

We begin this section with an example of r-Noetherian rings that are
not Noetherian.

ExampLE 1. Let X7, X, ..., X, be indeterminates over Q,
Q[Xy, Xy, ..., X,] be the polynomial ring over Q, and M be the max-
imal ideal of Q[X1, X, ..., X,] generated by X7, X5,..., X,,. Put A =
Q[Xl,XQ, ce 7Xn]M and R = A/X%A
(1) R, the integral closure of R, is not a Noetherian ring.
(2) If n = 2, then each overring of R is an r-Noetherian ring.
(3) If n = 3, then R is an r-Noetherian ring.

Proof. We first note that A = Q[X7, X5, ..., X, is a local Noether-
ian domain of dim(A) = n, where dim(A) is the Krull dimension of A.
Hence R is a local Noetherian ring of dim(R) =n — 1.

(1) Since X; := X; + X} A is a nonzero nilpotent element of R, R is
not a Noetherian ring [5, Lemma 11.1]. (2) If n = 2, then dim(R) = 1,
and thus each overring of R is an r-Noetherian ring [5, Theorem 12.6].
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(3) If n = 3, then dim(R) = 2. Thus R is an r-Noetherian ring [5,
Theorem 11.6]. O

The regular height of a regular prime ideal P of R, denoted by reg-
ht P, is defined to be the supremum of the length of chains consisting
of regular prime ideals contained in P plus 1. The regular dimension
of R, denoted by reg-dim(R), is sup{reg-ht P|P is a regular prime ideal
of R}. Clearly, if R is an integral domain, then reg-dim(R) is just the
Krull dimension of R.

For more examples of r-Notherian rings that are not Noetherian, recall
that a ring R is called a Marot ring if each regular ideal of R is generated
by a set of regular elements. Examples of Marot rings include Noetherian
rings and overrings of a Marot ring [5, Theorem 7.2 and Corollary 7.3].
It is known that if R is an r-Noetherian ring of reg-dim(R) < 1, then
each overring of R is an r-Noetherian ring [2, Theorem 2|. Also, if R is
a Marot r-Noetherian ring of reg-dim(R) = 2, then the integral closure
of R is an r-Noetherian ring [2, Theorem 7].

The next result is an extension of the Chang’s result [2, Lemma 3]
that if D is a finite R-module and R is an r-Noetherian ring, then D is
an r-Noetherian ring.

PROPOSITION 2. If R is an r-Noetherian ring, then Rlxy, ..., x,] is
also an r-Noetherian ring for any x1,...,x, € T(R).

Proof. 1t is known that R[z,] is an r-Noetherian ring [3, Lemma 4].
Also, note that R[xq,...,2;] = R[x1,...,2x;1][x;] for i = 2,... ,n. Thus,
by induction on n, R[zy,...,x,] is an r-Noetherian ring. ]

LEMMA 3. (cf. [4, Lemma 2]) Let D be an r-Noetherian ring, and
assume that D is a finite R-module. If A is a proper regular ideal of R
with AD N R = A, then there exist regular prime ideals Py, ..., P,, not
necessarily distinct, of R such that (P --- P,)* C A.

Proof. Note that A° is a regular ideal of D; so D/A® is Noetherian.
Hence there exist regular prime ideals @4, ..., Q,, not necessarily dis-
tinct, of D such that Q1---Q, C A°. Let P, =Q;NRfori=1,... n.
Then each P, is a regular prime ideal of R and (P, --- P,)* C Q-+ Q, C
A¢. Thus P ---P, C (P ---P)*=(P---P)*NRCA“=ADNR =
A. O

LEMMA 4. (cf. [4, Lemma 3]) Let D be an r-Noetherian ring, and
assume that D is a finite R-module. Then R/P is a Noetherian ring
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for each regular prime ideal P of R if and only if R/(Py--- P,)* is
a Noetherian ring for regular prime ideals Pi,..., P,, not necessarily
distinct, of R.

Proof. (<) Clear.

(=) We prove the lemma by induction on n.

Step 1. n = 1. Note that D is integral over R [6, Theorem 17], so
there is a prime ideal @) of D such that QN R = Py, and hence P = P;.
Thus R/Pf¢ is Noetherian by assumption.

Step 2. Suppose that the result holds for n —1 > 1. Let P be a prime
ideal of R such that (P --- BP,)* C P. By Cohen’s theorem [6, Theorem
8], we have only to show that P/(P;--- P,)® is finitely generated. Note
that since P; - - - P, C P, at least one of the P;, say, P,, is contained in P.
If P,/(Py--- P,) is finitely generated, then, since R/P, is Noetherian,
P/ P, is finitely generated, and thus P/(P; - - - P,) is finitely generated.
So it suffices to show that P,/(P;--- P,)% is finitely generated.

Note that P = P,, and so P,/(P,---P,)* C PS/(Py--- P,)°. Since
D is r-Noetherian and (P, - - - P,) is regular, PS/(P; --- P,)¢ is a finitely
generated D-module, and hence PS/(P; --- P,)¢ is afinite D/(Py - - - P,—1)°-
module because (P - -+ P,,_1)*P¢ = (P, --- P,)¢. Clearly, D/(Py--- P,—1)°
is a finite R/(P;--- P,_1)*“-module, and thus P¢/(P;---F,)¢ is a fi-
nite R/(P; -+ P,—1)*-module. Note that R/(P;--- P,_1) is Noether-
ian by induction hypothesis, and P, /(P --- P,)*“isa R/(Py--- P,_1)%-
submodule of P¢/(Py --- P,)¢. Thus P, /(P - -- P,)* is finitely generated
over R/(P; -+ P,_1) [8, Theorem 18, p.158]. Thus P, is a finitely gener-
ated R-module modulo (P; --- P,), and it follows that P, /(P - - P,)*
is a finitely generated ideal of R/(P; -+ P,). O

We are now ready to prove the main result.

THEOREM 5. If D is a finite R-module, then R is an r-Noetherian
ring if and only if D is an r-Noetherian ring.

Proof. (=) This follows form Proposition 2.

(<) Let P be a regular prime ideal of R. Note that D is integral over
R [6, Theorem 17]; so there is a prime ideal @ of D such that QN R = P.
Since P is regular, @ is also regular, and hence D /@ is Noetherian. Note
also that R/P — D/@Q and D/Q is a finite R/ P-module, and hence R/P
is Noetherian [4, Theorem 2.

Let I be a regular ideal of R. Choose a regular element a € I, and put
A =aR. If R/A Noetherian, then /A is finitely generated, and thus [ is



Eakin-Nagata theorem 275

finitely generated. So it suffices to show that R/A is Noetherian. Since D
is a finite R-module, there is a regular element d € R such that dD C R.
So AdD is a common ideal of R and D such that AdD C A and AdD is
regular. By Lemma 3, there are some regular prime ideals P, ..., P, of R
such that (P, --- P,)* C AdD C A. Since R/(P; --- P,)* is Noetherian
by Lemma 4,

RIA= (R/(Py-- F,)“)/(A/(P1+-- P,)%)
is Noetherian. O

It is clear that an r-Noetherian integral domain is a Noetherian do-
main. Thus, by Theorem 5, we have

COROLLARY 6. If D is a finite R-module, then R is a Noetherian
domain if and only if D is a Noetherian domain.
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