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EAKIN-NAGATA THEOREM FOR COMMUTATIVE

RINGS WHOSE REGULAR IDEALS ARE FINITELY

GENERATED

Gyu Whan Chang

Abstract. Let R be a commutative ring with identity, T (R) be the
total quotient ring of R, and D be a ring such that R ⊆ D ⊆ T (R)
and D is a finite R-module. In this paper, we show that each regular
ideal of R is finitely generated if and only if each regular ideal of D
is finitely generated. This is a generalization of the Eakin-Nagata
theorem that R is Noetherian if and only if D is Noetherian.

1. Introduction

Let R be a commutative ring with identity, T (R) be the total quotient
ring of R, and D be a ring between R and T (R). A regular element is
an element which is not a zero divisor, while a regular ideal is an ideal
containing a regular element. We say that R is an r-Noetherian ring if
each regular ideal of R is finitely generated. Clearly, Noetherian rings
are r-Noetherian, but r-Noetherian rings need not be Noetherian (see
Example 1).

It is well known that if R is Noetherian, then R[x1, . . . , xn], where
x1, . . . , xn ∈ T (R), is also Noetherian. Moreover, if R[x1, . . . , xn] is
integral over R, then R[x1, . . . , xn] is a finite R-module [6, Theorem 17],
and thus R is Noetherian if and only if R[x1, . . . , xn] is Noetherian by
the Eakin-Nagata theorem ([4, Theorem 2] or [7]) that if D is a finite R-
module, then R is Noetherian if and only if D is Noetherian. However, if
R[x1, . . . , xn] is not integral over R, then R[x1, . . . , xn] being Noetherian
does not imply that R is Noetherian. For example, let Q (resp., C) be
the field of rational (resp., complex) numbers, X be an indeterminate
over C, C[[X]] be the power series ring over C, and R = Q+ XC[[X]] be
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a subring of C[[X]]. Then R[ 1
X

] = T (R), and hence R[ 1
X

] is a Noetherian
domain, but R is not a Noetherian domain [1, Theorem 2.1]. Let t
be an indeterminate over R and R[t] be the polynomial ring over R.
Then t is a regular element of R[t] and R[t]/tR[t] ∼= R. So if R[t] is
an r-Noetherian ring, then R is Noetherian. In [3, Lemma 4], Chang
and Kang showed that if R is an r-Noetherian ring, then R[x] is also
r-Noetherian for each x ∈ T (R), and hence R[x1, . . . , xn] is r-Noetherian
for any x1, . . . , xn ∈ T (R) (see Proposition 2).

Let D be a finite R-module. In [2, Lemma 3], Chang proved that
if R is an r-Noetherian ring, then D is also an r-Noetherian ring. In
this paper, we show that if D is an r-Noetherian ring, then R is an
r-Noetherian ring, which is an r-Noetherian ring analog of the Eakin-
Nagata theorem ([4, Theorem 2] or [7]). The proofs of our results in
this paper heavily depend on those of the Eakin’s results in [4]. For any
undefined terminology and notation, see [6].

2. Main result

Throughout this paper, R denotes a commutative ring with identity,
T (R) is the total quotient ring of R, and D is a ring between R and
T (R). For any ideal A of R (resp., D), we mean by Ae (resp., Ac) the
ideal AD of D (resp., A ∩R of R). Also, Aec = AD ∩R.

We begin this section with an example of r-Noetherian rings that are
not Noetherian.

Example 1. Let X1, X2, . . . , Xn be indeterminates over Q,
Q[X1, X2, . . . , Xn] be the polynomial ring over Q, and M be the max-
imal ideal of Q[X1, X2, . . . , Xn] generated by X1, X2, . . . , Xn. Put A =
Q[X1, X2, . . . , Xn]M and R = A/X3

1A.

(1) R̄, the integral closure of R, is not a Noetherian ring.
(2) If n = 2, then each overring of R is an r-Noetherian ring.
(3) If n = 3, then R̄ is an r-Noetherian ring.

Proof. We first note that A = Q[X1, X2, . . . , Xn]M is a local Noether-
ian domain of dim(A) = n, where dim(A) is the Krull dimension of A.
Hence R is a local Noetherian ring of dim(R) = n− 1.

(1) Since X̄1 := X1 + X3
1A is a nonzero nilpotent element of R, R̄ is

not a Noetherian ring [5, Lemma 11.1]. (2) If n = 2, then dim(R) = 1,
and thus each overring of R is an r-Noetherian ring [5, Theorem 12.6].
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(3) If n = 3, then dim(R) = 2. Thus R̄ is an r-Noetherian ring [5,
Theorem 11.6].

The regular height of a regular prime ideal P of R, denoted by reg-
htP , is defined to be the supremum of the length of chains consisting
of regular prime ideals contained in P plus 1. The regular dimension
of R, denoted by reg-dim(R), is sup{reg-htP |P is a regular prime ideal
of R}. Clearly, if R is an integral domain, then reg-dim(R) is just the
Krull dimension of R.

For more examples of r-Notherian rings that are not Noetherian, recall
that a ring R is called a Marot ring if each regular ideal of R is generated
by a set of regular elements. Examples of Marot rings include Noetherian
rings and overrings of a Marot ring [5, Theorem 7.2 and Corollary 7.3].
It is known that if R is an r-Noetherian ring of reg-dim(R) ≤ 1, then
each overring of R is an r-Noetherian ring [2, Theorem 2]. Also, if R is
a Marot r-Noetherian ring of reg-dim(R) = 2, then the integral closure
of R is an r-Noetherian ring [2, Theorem 7].

The next result is an extension of the Chang’s result [2, Lemma 3]
that if D is a finite R-module and R is an r-Noetherian ring, then D is
an r-Noetherian ring.

Proposition 2. If R is an r-Noetherian ring, then R[x1, . . . , xn] is
also an r-Noetherian ring for any x1, . . . , xn ∈ T (R).

Proof. It is known that R[x1] is an r-Noetherian ring [3, Lemma 4].
Also, note that R[x1, . . . , xi] = R[x1, . . . , xi−1][xi] for i = 2, . . . , n. Thus,
by induction on n, R[x1, . . . , xn] is an r-Noetherian ring.

Lemma 3. (cf. [4, Lemma 2]) Let D be an r-Noetherian ring, and
assume that D is a finite R-module. If A is a proper regular ideal of R
with AD ∩ R = A, then there exist regular prime ideals P1, . . . , Pn, not
necessarily distinct, of R such that (P1 · · ·Pn)ec ⊆ A.

Proof. Note that Ae is a regular ideal of D; so D/Ae is Noetherian.
Hence there exist regular prime ideals Q1, . . . , Qn, not necessarily dis-
tinct, of D such that Q1 · · ·Qn ⊆ Ae. Let Pi = Qi ∩ R for i = 1, . . . , n.
Then each Pi is a regular prime ideal of R and (P1 · · ·Pn)e ⊆ Q1 · · ·Qn ⊆
Ae. Thus P1 · · ·Pn ⊆ (P1 · · ·Pn)ec = (P1 · · ·Pn)e ∩R ⊆ Aec = AD ∩R =
A.

Lemma 4. (cf. [4, Lemma 3]) Let D be an r-Noetherian ring, and
assume that D is a finite R-module. Then R/P is a Noetherian ring
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for each regular prime ideal P of R if and only if R/(P1 · · ·Pn)ec is
a Noetherian ring for regular prime ideals P1, . . . , Pn, not necessarily
distinct, of R.

Proof. (⇐) Clear.
(⇒) We prove the lemma by induction on n.
Step 1. n = 1. Note that D is integral over R [6, Theorem 17], so

there is a prime ideal Q of D such that Q∩R = P1, and hence P ec
1 = P1.

Thus R/P ec
1 is Noetherian by assumption.

Step 2. Suppose that the result holds for n−1 ≥ 1. Let P be a prime
ideal of R such that (P1 · · ·Pn)ec ⊆ P . By Cohen’s theorem [6, Theorem
8], we have only to show that P/(P1 · · ·Pn)ec is finitely generated. Note
that since P1 · · ·Pn ⊆ P , at least one of the Pi, say, Pn, is contained in P .
If Pn/(P1 · · ·Pn)ec is finitely generated, then, since R/Pn is Noetherian,
P/Pn is finitely generated, and thus P/(P1 · · ·Pn)ec is finitely generated.
So it suffices to show that Pn/(P1 · · ·Pn)ec is finitely generated.

Note that P ec
n = Pn, and so Pn/(P1 · · ·Pn)ec ⊆ P e

n/(P1 · · ·Pn)e. Since
D is r-Noetherian and (P1 · · ·Pn)e is regular, P e

n/(P1 · · ·Pn)e is a finitely
generated D-module, and hence P e

n/(P1 · · ·Pn)e is a finite D/(P1 · · ·Pn−1)
e-

module because (P1 · · ·Pn−1)
eP e

n = (P1 · · ·Pn)e. Clearly, D/(P1 · · ·Pn−1)
e

is a finite R/(P1 · · ·Pn−1)
ec-module, and thus P e

n/(P1 · · ·Pn)e is a fi-
nite R/(P1 · · ·Pn−1)

ec-module. Note that R/(P1 · · ·Pn−1)
ec is Noether-

ian by induction hypothesis, and Pn/(P1 · · ·Pn)ec is a R/(P1 · · ·Pn−1)
ec-

submodule of P e
n/(P1 · · ·Pn)e. Thus Pn/(P1 · · ·Pn)ec is finitely generated

over R/(P1 · · ·Pn−1)
ec [8, Theorem 18, p.158]. Thus Pn is a finitely gener-

ated R-module modulo (P1 · · ·Pn)ec, and it follows that Pn/(P1 · · ·Pn)ec

is a finitely generated ideal of R/(P1 · · ·Pn)ec.

We are now ready to prove the main result.

Theorem 5. If D is a finite R-module, then R is an r-Noetherian
ring if and only if D is an r-Noetherian ring.

Proof. (⇒) This follows form Proposition 2.
(⇐) Let P be a regular prime ideal of R. Note that D is integral over

R [6, Theorem 17]; so there is a prime ideal Q of D such that Q∩R = P .
Since P is regular, Q is also regular, and hence D/Q is Noetherian. Note
also that R/P ↪→ D/Q and D/Q is a finite R/P -module, and hence R/P
is Noetherian [4, Theorem 2].

Let I be a regular ideal of R. Choose a regular element a ∈ I, and put
A = aR. If R/A Noetherian, then I/A is finitely generated, and thus I is
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finitely generated. So it suffices to show that R/A is Noetherian. Since D
is a finite R-module, there is a regular element d ∈ R such that dD ⊆ R.
So AdD is a common ideal of R and D such that AdD ⊆ A and AdD is
regular. By Lemma 3, there are some regular prime ideals P1, . . . , Pn of R
such that (P1 · · ·Pn)ec ⊆ AdD ⊆ A. Since R/(P1 · · ·Pn)ec is Noetherian
by Lemma 4,

R/A = (R/(P1 · · ·Pn)ec)/(A/(P1 · · ·Pn)ec)

is Noetherian.

It is clear that an r-Noetherian integral domain is a Noetherian do-
main. Thus, by Theorem 5, we have

Corollary 6. If D is a finite R-module, then R is a Noetherian
domain if and only if D is a Noetherian domain.
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