MODULES THAT SUBMODULES LIE OVER A SUMMAND

Kang-Joo Min*

ABSTRACT. Let M be a nonzero module. M has the property that every submodule of M lies over a direct summand of M. We study some properties of such a module. The endomorphism ring of such a module is also studied. The relationships of such a module to the semi-regular modules, and to the semi-perfect modules are described.

Through out this paper, rings are associative rings with identity, all modules are unitary left R-modules, and module homomorphisms are on the right of their arguments. We freely use terminologies and nations of F. Kasch [2].

Let M be any module, a submodule K of M is said to be small in M if $K+N\neq M$ for every submodule $N\neq M$. The Jacobson radical of a ring R will be denoted by J(R) and it is easily verified that J(R)x is small in M for each $x\in M$.

The following submodules of M are equal:

- (1) the intersection of all the maximal submodules of M,
- (2) the sum of all the small submodules of M, and
- (3) $\{x \in M \mid Rx \text{ is small in } M\}.$

This submodule is called the radical of M and will be denoted by $rad\ M$. If $\alpha: M \longrightarrow N$ is an R-homomorphism, it is well known that $(rad\ M)\alpha \subseteq rad\ N$. A submodule N of a module M is said to $lie\ over$ a summand of M if there exists a direct decomposition $M=P\oplus Q$ with $P\subseteq N$ and $Q\cap N$ small in M. A projective cover of a module K is a R-epimorphism $P\longrightarrow K\longrightarrow O$ with small kernel where P is projective.

(S) Let M be a nonzero module. Every submodule of M lies over a summand of M.

Received November 9, 2007.

2000 Mathematics Subject Classification: Primary 16D25.

Key words and phrases: radical, lies over, semi-regular, self-projective.

If $E = End_R(M)$, we say that M is self-projective, if $M\gamma \subseteq M\alpha$, $\gamma, \alpha \in E$, implies that $\gamma \in E\alpha$. If M is a module, then M is quasi-projective in case for each epimorphism $g: M \longrightarrow N$ and each homomorphism $\alpha: M \longrightarrow N$, there is an R-homomorphism $\beta: M \longrightarrow M$ such that the diagram

commutes.

Let R be a ring and R be a right R-module.

- (a) M is called semi-perfect if M is projective and every epimorphic image of M has a projective cover [1,2].
- (b) M is called complemented if every submodule of M has an addition complement in M [2].

Theorem 0.1. A projective module M is semiperfect if and only if M satisfies (S).

Proof. Assume that M is a semi-perfect module. Let N be a submodule of M and $\nu: M \longrightarrow M/N$ a natural homomorphism. Let $P_0 \longrightarrow M/N$ be a projective cover of N. Then there exists a commutative diagram

Since ν is an epimorphism, we have $P_0 = Im\alpha + ker f$. Since ker f is small in P_0 , $P_0 = Im\alpha$, i.e., α is an epimorphism. Since P_0 is projective, α splits

$$M = P_1 \oplus ker \alpha$$
.

Then $\alpha_1 = \alpha \mid P_1 : P_1 \longrightarrow P_0$ is an isomorphism. $\ker \alpha_1 f = \ker \nu \cap P_1$ is small in P_1 . $N \cap P_1$ is small in M. $M = P_1 \oplus P_2$ where $P_2 = \ker \alpha$. $P_2 = \ker \alpha \subset \ker \sigma = N$. N lies over a summand of M.

Conversely assume that M satisfies (S). If N is a submodule of M, then N lies over a summand of M. There exists a direct decomposition $M = P \oplus Q$ with $P \subseteq N$ and $Q \cap N$ is small in M. Let $g: Q \longrightarrow M/N$ be the natural epimorphism. Then Q is a projective cover of M/N. Since every epimorphic image of M has a projective cover, M is semi-perfect.

PROPOSITION 0.1.1. Let M be a module which satisfies (S). Then M is complemented.

Proof. Let N be a submodule of M. There is a direct decomposition $M = A \oplus B$ with $A \subseteq N$ and $B \cap N$ is small in M. Thus M = N + B and $B \cap N$ is small in M. Therefore B is a complement of N in M. If M has the largest submodule , i.e. a proper submodule which contains all other proper submodules, then M is called a local module. Let M be a non-projective local module. M satisfies (S) but M is not semi-perfect. In this case $rad\ M$ is small in M. Let N be a submodule of M. Then $N \subset rad\ M$. or N = M. If $N \subset rad\ M$, then $M = 0 \oplus H$ and $M \cap N = N \subset rad\ M$. Since $rad\ M$ is small in M, N is small in M. □

A module M is called a *semi-regular* module if Rx lies over a projective summand of M, for each $x \in M$. Let $x \notin rad M$ and $x \in M$ where M is the module above. Then Rx = M. Since M is not projective, M is not semi-regular.

Proposition 0.1.2. The following statements are equivalent:

- (1) If $N \leq M$ is a submodule, there exists $\gamma: M \longrightarrow N$ such that $\gamma^2 = \gamma$ and $N(1-\gamma)$ is small in M.
 - (2) N lies over a summand of M.

Proof. (1) \Rightarrow (2) $M = M\gamma + M(1 - \gamma)$. Let $x \in M\gamma \cap M(1 - \gamma)$. Then $x = m_1\gamma = m_2(1 - \gamma)$ $m_1\gamma = m_1\gamma^2 = m_2(1 - \gamma)\gamma = 0$. Thus x = 0. Therefore $M = M\gamma \oplus M(1 - \gamma)$ and $M\gamma \leq N$. This means that $N \cap M(1 - \gamma) = N(1 - \gamma)$ is small in M.

 $(2)\Rightarrow(1)$. Let $M=A\oplus B$, $A\leq N$ and $N\cap B$ be small in M. Then $\gamma:M\longrightarrow N$ is the natural projection onto A. Therefore $\gamma^2=\gamma$ $N(1-\gamma)=N\cap B$ is small in M.

PROPOSITION 0.1.3. Let M be a quaci-projective module. Suppose M=A+B where A and B are submodules and A is a direct semmand of M. There exists a submodule $Q\subseteq B$ such that $M=A\oplus Q$.

Proof. Let $\gamma^2=\gamma: M\longrightarrow M$ be any projection with $M\gamma=A$. If $\varphi: M\longrightarrow M/B$ is the natural map let $\alpha: M\longrightarrow M$ satisfy $\alpha\gamma\varphi=\varphi$. Define $\delta=\gamma+(1-\gamma)\alpha\gamma$. Then $\delta^2=\delta,\ M\delta=M\gamma=A$ and $\ker\delta=M(1-\delta)=M(1-\gamma)(1-\alpha\gamma)\leq \ker\varphi=B$. Let $Q=\ker\delta$. Then $M=A\oplus Q$ and $Q\leq B$.

The definition of $\sigma[M]$ projective module is in [4].

PROPOSITION 0.1.4. Let M be $\sigma[M]$ projective module. M satisfies (S) if and only if M is complemented.

Proof. The necessity of the condition is by proposition 2.

Conversely, let $A \subseteq M$ be a submodule of M and K be a complement of A in M. Then A+K=M. Since M is complemented, K has a complement in M. So the argument in [2, p. 277] goes through to show that K is a direct summand of M. K+A=M. There exits a summand $B \leq A$ such that $M=K \oplus B$, $A \cap K$ is small in M since K is a complement of A. Thus A lies over a direct summand of M. \square

The following is clear from definition.

PROPOSITION 0.1.5. If a module M satisfies (S), then every submodule of M satisfies (S).

THEOREM 0.2. Let M be a module and let $\varphi: M \longrightarrow M/radM$ be the natural homomorphism.

if M satisfies (S), then

- (1) M/radM is semi-simple.
- (2) If M is quaci-projective, and $M\varphi=A\oplus B$, then there exists a decomposition $M=P\oplus Q$ such that $P\varphi=A$ and $Q\varphi=B$.

If M is quasi-projective and radM is small in M, then the converse holds.

Proof. Let A be a submodule of M/radM. There exists a submodule P of M such that $P\varphi = A$. Since M satisfies (S), there are submodules C and D of M such that $M = C \oplus D$ where $C \leq P$ and $P \cap D$ is small

in M. Then $C\varphi = P\varphi = A$ and $M/radM = C\varphi \oplus D\varphi = A \oplus D\varphi$. A is a direct summand of M/radM. Thus M/radM is semi-simple. Now assume that $M\varphi = A \oplus B$. Choose N such that $N\varphi = A$. Then $M = N + B\varphi^{-1}$. Since M satisfies (S), there exist submodules C and D of M such that $M = C \oplus D$ where $C \leq N$ and $D \cap N$ is small in M. Since $D \cap N \leq radM$, $M = C + B\varphi^{-1}$. By proposition 4, there exists a submodule $Q \subseteq B\varphi^{-1}$ such that $M = C \oplus Q$. Clearly $C\varphi = N\varphi = A$ and $Q\varphi = B$.

Conversely assume that (1) and (2) hold and radM is small. Let N be a submodule of M. Then there exists a direct summand Q of M such that $M\varphi = N\varphi \oplus Q\varphi$. Since radM is small, this means $N \cap Q$ is small and M = N + Q. By proposition 4, $M = P \oplus Q$ where $P \subseteq N$.

PROPOSITION 0.2.1. Let M be quasi-projective and $M=M_1\oplus M_2$ a direct sum of modules M_1 , M_2 . If M_1 and M_2 satisfies (S), then so is M.

Proof. Let $N \leq M$. We show that there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is small in M.

Case(1). If $M_1 \cap (N + M_2) = 0$, then $N \leq M_2$. Since M_2 satisfies (S), there exists $B_1 \leq N$ such that $M_2 = B_1 \oplus B_2$ and $N \cap B_2$ is small in M_2 . Hence $M = M_1 \oplus B_1 \oplus B_2$ and $N \cap B_2$ is small in M_2 . So $N \cap B_2$ is small in M_2 .

Case(2). If $M_1\cap (N+M_2)\neq 0$, then M_1 has a decomposition $M_1=A_1\oplus A_2$ such that $A_1\leq M_1\cap (N+M_2)$ and $M_1\cap (N+M_2)\cap A_2=A_2\cap (N+M_2)$ is small in M. Then $M=A_1\oplus A_2\oplus M_2=N+(M_2\oplus A_2)$. Assume $M_2\cap (N+A_2)=0$. Since $N\cap A_2\leq A_2$ and A_2 satisfies (S) by proposition 6, A_2 has a decomposition $A_2=C_1\oplus C_2$ such that $C_1\leq N\cap A_2$ and $N\cap A_2\cap C_2=N\cap C_2$ is small in M_1 . Then $M=(A_1\oplus C_1)\oplus (C_2\oplus M_2)=N+(C_2+M_2)$. Since M is quasi-projective, there exists $N'\leq N$ such that $M=N'\oplus C_2\oplus M_2$. Since $M_2\cap (N+A_2)=0$, we have $N\cap (C_2\oplus M_2)=N\cap C_2$ is small in M_1 .

Assume $M_2 \cap (N + A_2) \neq 0$. Then M_2 has a decomposition $M_2 = B_1 \oplus B_2$, such that $B_1 \leq M_2 \cap (N + A_2)$ and $B_2 \cap (N + A_2)$ is small in M_2 . Then $M = N + A_2 + B_2 = (A_1 \oplus B_1) \oplus (A_2 \oplus B_2)$. Since M is quasi-projective, there exists $N' \leq N$ such that $M = N' \oplus A_2 \oplus B_2$. Since $B_2 \cap (N + A_2)$ is small in M, $N \cap (A_2 \oplus B_2)$ is small in M.

PROPOSITION 0.2.2. Let M be a module such that $M \neq radM$.

- (a) M satisfies (S) and M is indecomposable if and only if M is local.
- (b) moreover if M is self-projective and satisfies (a), then End(M) is local.

Proof. (a) assume that M is a local module. M has the unique maximal submodule radM. Since radM is small in M, M satisfies (S) and M is indecomposable. Conversely M satisfies (S) and M is indecomposable. Let N be a proper submodule of M. Then $M = A \oplus B$, $A \leq N$ and $B \cap N$ is small in M. Since $A \neq M$, B = M. $N = B \cap N \subset radM$. radM is the unique maximal submodule of M. M is local.

(b) By (a), if $x \notin radM$, then Rx = M.

Let $A = \{ \alpha \in EndM \mid M\alpha \subseteq radM \}$. A is an ideal of EndM. Let $\beta \in EndM$ and $\beta \notin A$, $M\beta = M$.

Since M is self-projective, $\gamma\beta=1_M$. β has a left inverse. Thus EndM is a local ring. \Box

THEOREM 0.3. [3] Let M be a module. Write E = EndM and put $\{\alpha \in E \mid M\alpha \text{ is small in } M\}$.

If M is direct-projective, then $A \subseteq J(E)$, moreover E is semi-regular and A = J(E) if and only if $M\alpha$ lies over a summand of M for all $\alpha \in E$.

COROLLARY 0.4. Let M be a direct projective module. If M satisfies (S), then E = EndM is semi-regular and A = J(E).

References

- [1] F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, Graduate texts in Mathematics, **13**, springer-verlag, Berlin-Heidelberg-New York, 1992.
- [2] F. Kasch, Modules and rings, New york, Academic press, 1982.
- [3] W. K. Nicholson, Semiregular modules and rings, Canad. Math. J. 28 (1976), no. 5, 1105-1120.
- [4] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach Science Publisher (1991).

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: kjmin@math.cnu.ac.kr