• Title/Summary/Keyword: real polynomials

Search Result 79, Processing Time 0.027 seconds

ORTHOGONAL POLYNOMIALS RELATIVE TO LINEAR PERTURBATIONS OF QUASI-DEFINITE MOMENT FUNCTIONALS

  • Kwon, K.H.;Lee, D.W.;Lee, J.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.543-564
    • /
    • 1999
  • Consider a symmetric bilinear form defined on $\prod\times\prod$ by $_{\lambda\mu}$ = $<\sigma,fg>\;+\;\lambdaL[f](a)L[g](a)\;+\;\muM[f](b)m[g](b)$ ,where $\sigma$ is a quasi-definite moment functional, L and M are linear operators on $\prod$, the space of all real polynomials and a,b,$\lambda$ , and $\mu$ are real constants. We find a necessary and sufficient condition for the above bilinear form to be quasi-definite and study various properties of corresponding orthogonal polynomials. This unifies many previous works which treated cases when both L and M are differential or difference operators. finally, infinite order operator equations having such orthogonal polynomials as eigenfunctions are given when $\mu$=0.

  • PDF

SOBOLEV ORTHOGONAL POLYNOMIALS RELATIVE TO ${\lambda}$p(c)q(c) + <${\tau}$,p'(x)q'(x)>

  • Jung, I.H.;Kwon, K.H.;Lee, J.K.
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.603-617
    • /
    • 1997
  • Consider a Sobolev inner product on the space of polynomials such as $$ \phi(p,q) = \lambda p(c)q(c) + <\tau,p'(x)q'(x)> $$ where $\tau$ is a moment functional and c and $\lambda$ are real constants. We investigate properties of orthogonal polynomials relative to $\phi(\cdot,\cdot)$ and give necessary and sufficient conditions under which such Sobolev orthogonal polynomials satisfy a spectral type differential equation with polynomial coefficients.

  • PDF

ESTIMATES OF CHRISTOFFEL RUNCTIONS FOR GENERALIZED POLYNOMIALS WITH EXPONENTIAL WEIGHTS

  • Joung, Hae-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.121-134
    • /
    • 1999
  • Generalized nonnegative polynomials are defined as the products of nonnegative polynomials raised to positive real powers. The generalized degree can be defined in a natural way. We extend some results on Infinite-Finite range inequalities, Christoffel functions, and Nikolski type inequalities corresponding to weights W\ulcorner(x)=exp(-|x|\ulcorner), $\alpha$>0, to those for generalized nonnegative polynomials.

  • PDF

A NOTE ON THE ZEROS OF JENSEN POLYNOMIALS

  • Kim, Young-One;Lee, Jungseob
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.775-787
    • /
    • 2022
  • Sufficient conditions for the Jensen polynomials of the derivatives of a real entire function to be hyperbolic are obtained. The conditions are given in terms of the growth rate and zero distribution of the function. As a consequence some recent results on Jensen polynomials, relevant to the Riemann hypothesis, are extended and improved.

A Note on Schur Stability of Real Weighted Diamond Polynomials

  • Otsuka, Naohisa;Ichige, Koichi;Ishii, Rokuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.421-424
    • /
    • 2004
  • This paper presents a sufficient condition for the real weighted diamond polynomials to be Schur stable using bilinear transformation and Kharitonov's theorem.

  • PDF

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

ON THE ZEROS OF SELF-RECIPROCAL POLYNOMIALS SATISFYING CERTAIN COEFFICIENT CONDITIONS

  • Kim, Seon-Hong;Lee, Jung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1189-1194
    • /
    • 2010
  • Kim and Park investigated the distribution of zeros around the unit circle of real self-reciprocal polynomials of even degrees with five terms, where the absolute value of middle coefficient equals the sum of all other coefficients. In this paper, we extend some of their results to the same kinds of polynomials with arbitrary many nonzero terms.

Sobolev orthogonal polynomials and second order differential equation II

  • Kwon, K.H.;Lee, D.W.;Littlejohn, L.L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.135-170
    • /
    • 1996
  • Recently many people have studied the Sobolev orthogonal polynomials, that is, polynomials which are orthogonal relative to a symmetric bilinear form $\phi(\cdot,\cdot)$ defined by $$ (1.1) $\phi(p,q) := (p,q)_N = \sum_{k=0}^{N} \int_{R}p^(k) (x)q^(k) (x) d\mu_k, $$ where each $d\mu_k$ is a signed Borel measure on the real line $R$ with finite moments of all orders. For the brief history on this subject, we refer to the survey article Ronveaux [13] and Marcellan and et al [10].

  • PDF

A non-standard class of sobolev orthogonal polynomials

  • Han, S.S.;Jung, I.H.;Kwon, K.H.;Lee, J.K..
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.935-950
    • /
    • 1997
  • When $\tau$ is a quasi-definite moment functional on P, the vector space of all real polynomials, we consider a symmetric bilinear form $\phi(\cdot,\cdot)$ on $P \times P$ defined by $$ \phi(p,q) = \lambad p(a)q(a) + \mu p(b)q(b) + <\tau,p'q'>, $$ where $\lambda,\mu,a$, and b are real numbers. We first find a necessary and sufficient condition for $\phi(\cdot,\cdot)$ and show that such orthogonal polynomials satisfy a fifth order differential equation with polynomial coefficients.

  • PDF