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SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ

POLYNOMIALS OF REAL TORIC MANIFOLDS

Seunghyun Seo and Heesung Shin

Abstract. Choi and Park introduced an invariant of a finite simple
graph, called signed a-number, arising from computing certain topological
invariants of some specific kinds of real toric manifolds. They also found
the signed a-numbers of path graphs, cycle graphs, complete graphs, and
star graphs.

We introduce a signed a-polynomial which is a generalization of the
signed a-number and gives a-, b-, and c-numbers. The signed a-poly-
nomial of a graph G is related to the Poincaré polynomial PM(G)(z),

which is the generating function for the Betti numbers of the real toric
manifold M(G). We give the generating functions for the signed a-
polynomials of not only path graphs, cycle graphs, complete graphs, and
star graphs, but also complete bipartite graphs and complete multipartite
graphs. As a consequence, we find the Euler characteristic number and
the Betti numbers of the real toric manifold M(G) for complete multi-
partite graphs G.

1. Introduction

A signed a-number of a finite simple graph G is a graph invariant introduced
by Choi and Park [3], denote by sa(G), as follows:

• sa(∅) = 1.
• sa(G) is the product of signed a-numbers of connected components of
G.
• sa(G) = 0 if G is a connected graph on odd number of vertices.
• If G is connected with even number of vertices, then sa(G) is given by
the negative of the sum of signed a-numbers of all induced subgraphs
G′ of G except itself G.

Let the a-number a(G) be the absolute value of the signed a-number of G,
the b-number b(G) the sum of signed a-numbers induced subgraphs of G, and
the c-numbers ci(G) the sum of a-numbers of induced subgraphs of G with i

vertices.
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These numbers arise from computing certain topological invariants of some
specific kinds of real toric manifolds which are important objects in toric topol-
ogy. For a finite simple graph G, a building set B(G) is consisting of connected
induced subgraphs of G and a nestohedron PB(G) is defined as the Minkowski
sum of simplices

PB(G) =
∑

I∈B(G)

∆I ,

which is called a graph associahedron. Since every nestohedron is a Delzant

polytope [5, Proposition 7.10], the real toric manifold M(G) can be defined as
the set of real points in the toric manifold, which is associated to the normal fan
of the graph associahedron PB(G) as Delzant polytope. For further information,
see [2, 5, 6].

Recently, Choi and Park [3, Theorem 1.1] showed that the Euler character-
istic χ(M(G)) of M(G) is equal to b(G) and the i-th rational Betti number
βi(M(G)) of M(G) is equal to c2i(G). We remark that c2i(G) is the same with
ai(G) in [3]. They also computed these numbers of path graphs P2n, cycle
graphs C2n, complete graphs K2n, and star graphs K1,2n−1.

In this paper, we introduce a signed a-polynomial which is a generalization of
the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial
of a graph G is related to the Poincaré polynomial PM(G)(z), which is the
generating function for the Betti numbers of the real toric manifold M(G).
The relation will be shown in equation (7). We give the signed a-polynomials of
not only path graphs, cycle graphs, complete graphs, and star graphs, but also
complete bipartite graphs Kp,q and complete multipartite graphs Kp1,...,pm .
As a consequence, we find χ(M(G)) and βi(M(G)) for G = Kp,q and G =
Kp1,...,pm .

2. Preliminaries

From now on, we assume that a graph is finite, undirected, and simple. We
rewrite a formal definition of a signed a-number sa(G) of a graph G = (V,E)
in the previous section as

sa(G) =



































1 if G is the empty graph,

0 if G is connected and |V | is odd,

−
∑

V ′(V

sa(G|V ′) if G is connected and |V | is even ≥ 2,

∏

G′
∈comp(G)

sa(G′) if G is disconnected,

where G|V ′ is the induced subgraph of G by a vertex subset V ′ and comp(G) is
the set of connected components of G. From the above definition, it is easy to
check that sa(G) = 0 for every graph G with at least one connected component
on odd number of vertices; and

∑

V ′
⊆V sa(G|V ′) = 0 for every nonempty graph
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G on V with every connected component on even number of vertices. Thus,
we find a simpler equivalent definition of a signed a-number as follows.

Definition 1. A signed a-number sa(G) of a graph G = (V,E) is defined by

sa(G) =



























1 if G is the empty graph,

0 if G has a connected component on odd number

of vertices,

−
∑

V ′(V

sa(G|V ′) otherwise.

(1)

Consequently, we define a-, b-, and c-numbers of a graph with the signed
a-numbers.

Definition 2. The a-, b-, and c-numbers of a graph G, denoted by a(G), b(G),
and ci(G), are defined by

a(G) = (−1)|V |/2 sa(G),(2)

b(G) =
∑

V ′
⊆V

sa(G|V ′),(3)

ci(G) =
∑

V ′
⊆V

|V ′
|=i

a(G|V ′) = (−1)i/2
∑

V ′
⊂V

|V ′
|=i

sa(G|V ′).(4)

By definition, for any graph G, it holds that ci(G) = 0 if i is odd, and
cn(G) = a(G) if n is the number of vertices of G. From a topological viewpoint
[3, Remark 2.2], it is obvious that a(G) and ci(G) are nonnegative integers.

3. On signed a-polynomials

Now, we introduce a generalization of a-, b-, and c-numbers of graphs.

Definition 3 (Signed a-polynomial). The signed a-polynomial sa(G; t) of a
graph G is defined by

sa(G; t) =
∑

V ′
⊆V (G)

sa(G|V ′) t|V \V ′|,(5)

where V (G) is the set of vertices of G.

From the equations (1)–(5), for |V (G)| = n, it holds that

sa(G) = sa(G; 0), a(G) = (−1)n/2 sa(G; 0),

b(G) = sa(G; 1), ci(G) = (−1)i/2[tn−i] sa(G; t).

Thus, sa(G; t) is represented as the sum of ci(G)’s by

sa(G; t) =

⌊n/2⌋
∑

j=0

(−1)jc2j(G)tn−2j .(6)
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For example, if G is a graph obtained by deleting one edge from the complete
graph K4, then

sa(G; t) = t4 − 5t2 + 4.

Thus, sa(G) = a(G) = 4, b(G) = 0, and {ci(G)}4i=0 = 1, 0, 5, 0, 4.

Remark. The Poincaré polynomial PM(G)(z) =
∑

i≥0 βi(M(G))zi is the gener-

ating function for the Betti numbers βi(M(G)) of the real toric manifold M(G).
Since βi(M(G)) = c2i(G) in [3, Theorem 1.1], it holds that

PM(G)(z) = (
√
−z)|V | sa

(

G;
1
√
−z

)

.(7)

In the rest of the section, we compute the generating functions for signed
a-polynomials of path graphs, cycle graphs, complete graphs, and star graphs.

Theorem 1. Let Pn be the path graph with n vertices, which is a tree with

exactly n − 2 vertices of degree 2. Then the generating function for signed

a-polynomials of Pn is given by

∑

n≥0

sa(Pn; t)x
n =
−1 + 2tx+

√
1 + 4x2

2tx− 2(t2 − 1)x2
.(8)

Proof. From Theorem 2.5 in [3], it is known that

c2i(Pn) =

(

n

i

)

−

(

n

i− 1

)

= Catn−i,i,

with Catalan triangle numbers Catn,k =
(

n+k
k

)

−
(

n+k
k−1

)

. Using formula (6), we
have

sa(Pn; t) =

⌊n/2⌋
∑

j=0

(−1)j Catn−j,j t
n−2j .

Thus, we obtain

(9)

∑

n≥0

sa(Pn; t)x
n =

∑

n≥0

⌊n/2⌋
∑

j=0

(−1)j Catn−j,j t
n−2jxn

=
∑

k≥0

∑

j≥0

Catk,j (−x/t)
j(tx)k.

Since the generating function for Catalan triangle numbers is

∑

n≥0

∑

i≥0

Catn,iw
izn =

Cat(wz)

1− zCat(wz)
,

where Cat(x) = 1−
√

1−4x
2x , therefore (9) becomes (8). �
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Table 1. Numbers for path graphs Pn, where Catalan tri-
angle numbers Catn,k =

(

n+k
k

)

−
(

n+k
k−1

)

and Catalan numbers

Catn = Catn,n = 1
n+1

(

2n
n

)

.

G P0 P2n P2n+1

sa(G) 1 (−1)nCatn 0
a(G) 1 Catn 0
b(G) 1 0 (−1)nCatn
c2i(G) δi,0 Cat2n−i,i Cat2n+1−i,i

g.f. for sa(G; t)
∑

n≥0

sa(Pn; t)x
n =

−1 + 2tx+
√
1 + 4x2

2tx− 2(t2 − 1)x2

Remark. For two given sequences σ = (s0, s1, s2, . . .) and τ = (t1, t2, t3, . . .),
define the generalized Catalan number Bn by the sum of weighted Motzkin
paths from (0, 0) to (n, 0) with up steps (1, 1), horizontal steps (1, 0), and
down steps (1,−1) where we associate weight 1 to each up step, weight sk
to each horizontal step on the line y = k, and weight tk to each down step
between two lines y = k − 1 and y = k. For example, if σ ≡ 0 and τ ≡ 1, then
B2n = Catn. In Section 7.4 in [1], the generating function B(z) =

∑

n≥0 Bnz
n

of the generalized Catalan number Bn with σ = (a, s, s, . . .) and τ = (b, u, u, . . .)
is equal to

(10) B(z) =
(2u− b) + (bs− 2au)z − b

√

1− 2sx+ (s2 − 4u)z2

2(u− b) + 2(bs− 2au+ ab)z + 2(a2u− abs+ b2)z2
.

For (a, s, b, u, z) = (t, 0,−1,−1, x), the formula (10) gives a combinatorial
interpretation of the following formula

∑

n≥0

sa(Pn; t)x
n =

−1 + 2tx+
√
1 + 4x2

2tx− 2(t2 − 1)x2

and for (a, s, b, u, z) = (0, 0,−1, t2−1, x), the formula (10) gives a combinatorial
interpretation of the following formula

∑

n≥0

sa(P2n; t)x
2n =

−(t2 + 1)− (t2 − 1)
√
1 + 4x2

−2t2 + 2(t2 − 1)2x2
.

Theorem 2. Let Cn be the cycle graph with n vertices, which is a connected

graph with all vertices of degree 2. Then the generating function for signed

a-polynomials of Cn is given by

∑

n≥0

sa(Cn; t)x
n =

1

2
+

1

2
√
1 + 4x2

·
(t2 + 1)x+ t

√
1 + 4x2

t− (t2 − 1)x
.(11)
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Table 2. Numbers for cycle graphs Cn.

G C0 C2n C2n+1

sa(G) 1
(−1)n

2

(

2n

n

)

0

a(G) 1
1

2

(

2n

n

)

0

b(G) 1 0 (−1)n
(

2n

n

)

c2i(G) δi,0

{

1
2

(

2n
n

)

, if i = n
(

2n
i

)

, if i < n

(

2n+ 1

i

)

g.f. for sa(G; t)
∑

n≥0

sa(Cn; t)x
n =

1

2
+

1

2
√
1 + 4x2

·
(t2 + 1)x+ t

√
1 + 4x2

t− (t2 − 1)x

Proof. From Theorem 2.6 in [3], it is known that

c2i(Cn) =











1 if i = n = 0,
1
2

(

n
n/2

)

if 2i = n > 0,
(

n
i

)

if 2i < n.

Using formula (6), we obtain

∑

n≥0

sa(Cn; t)x
n =

∑

n≥0

⌊n/2⌋
∑

j=0

(−1)j c2j(Cn) t
n−2jxn

=
∑

k≥0

∑

j≥0

(−1)j c2j(C2j+k) t
kx2j+k

=
1

2
−

1

2

∑

j≥0

(

2j

j

)

(−x2)j +
∑

k≥0

∑

j≥0

(

2j + k

j

)

(tx)k(−x2)j .(12)

From
∑

n≥0

(

2n+k
n

)

zn = 1
1−

√

1−4z

(

1−
√

1−4z
2z

)k

, we have two generating func-

tions:

∑

n≥0

(

2n

n

)

zn =
1

1−
√
1− 4z

,

∑

n≥0

∑

k≥0

(

2n+ k

n

)

wkzn =
1

1−
√
1− 4z

·
1

1− w
(

1−
√

1−4z
2z

) .

Using the above two generating functions, (12) becomes (11). �
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Table 3. Numbers for complete graphs Kn, where
∑

n≥0 An
zn

n! = sec z + tan z.

G K0 K2n K2n+1

sa(G) 1 (−1)nA2n 0
a(G) 1 A2n 0
b(G) 1 0 (−1)nA2n+1

c2i(G) δi,0

(

2n

2i

)

A2i

(

2n+ 1

2i

)

A2i

e.g.f. for sa(G; t)
∑

n≥0

sa(Kn; t)
xn

n!
= etx sech(x)

Let An be the n-th Euler zigzag number for which the exponential generating
function is

∑

n≥0

An
zn

n!
= sec z + tan z.(13)

Theorem 3. Let Kn be the complete graph with n vertices. Then the expo-

nential generating function for signed a-polynomials of Kn is given by

∑

n≥0

sa(Kn; t)
xn

n!
= etx sechx.(14)

Proof. From Theorem 2.8 in [3], it is known that

sa(K2n) = (−1)nA2n.

Using formula (5), we obtain

∑

n≥0

sa(Kn; t)
xn

n!
=

∑

n≥0

⌊n/2⌋
∑

j=0

(

n

2j

)

sa(K2j) t
n−2j x

n

n!

=
∑

k≥0

∑

j≥0

(

k + 2j

2j

)

(−1)jA2j tk
xk+2j

(k + 2j)!

=





∑

k≥0

(tx)k

k!









∑

j≥0

A2j
(ıx)2j

(2j)!



 .(15)

By (13), formula (15) becomes formula (14). �

Remark. The Euler polynomials En(t) is defined by the exponential generating

function
∑

n≥0 En (t)
xn

n! =
(

2
ex+1

)

ext. See [4, p. 48]. Then it follows

sa(Kn; t) = En

(

t+ 1

2

)

2n
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Table 4. Numbers for star graphs K1,n−1, where
∑

n≥0 An
zn

n! = sec z + tan z.

G K1,2n−1 K1,2n

sa(G) (−1)nA2n−1 0
a(G) A2n−1 0
b(G) 0 (−1)nA2n

c2i(G)

{

(

2n−1
2i−1

)

A2i−1, if i > 0

1, if i = 0

{

(

2n
2i−1

)

A2i−1, if i > 0

1, if i = 0

e.g.f. for sa(G; t)
∑

n≥0

sa(K1,n; t)
xn

n!
= etx(t− tanhx)

from
∑

n≥0 sa(Kn; t)
xn

n! = etx sechx=
(

2
e2x+1

)

e2x(
t+1

2 )=
∑

n≥0 En

(

t+1
2

) (2x)n

n! .

Theorem 4. Let K1,n be the star graph with n + 1 vertices, which is a tree

with at least one vertex of degree n. Then the exponential generating function

for signed a-polynomials of K1,n is given by

∑

n≥0

sa(K1,n; t)
xn

n!
= etx(t− tanhx).(16)

Proof. From Theorem 2.9 in [3], it is known that

sa(K1,2n+1) = (−1)n+1A2n+1.

Using formula (5), we obtain

∑

n≥0

sa(K1,n; t)
xn

n!

=
∑

n≥0



sa(∅)tn+1 +

⌊n/2⌋
∑

j=0

(

n

2j + 1

)

sa(K1,2j+1) t
n−(2j+1)





xn

n!

=
∑

n≥0

tn+1x
n

n!
+

∑

k≥0

∑

j≥0

(

k + 2j + 1

2j + 1

)

(−1)j+1A2j+1 tk
xk+2j+1

(k + 2j + 1)!

= t





∑

n≥0

(tx)n

n!



+





∑

k≥0

(tx)k

k!







ı
∑

j≥0

A2j+1
(ıx)2j+1

(2j + 1)!



 ,(17)

where ı :=
√
−1. By (13), it follows

∑

j≥0

A2j+1
(ıx)2j+1

(2j + 1)!
= tan(ıx) = ı tanhx

and (17) becomes (16). �
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Since sa(G) = sa(G; 0), putting t = 0 in the generating functions (8), (11),
(14), and (16) yields the generating functions for signed a-numbers of path
graphs, cycle graphs, complete graphs, and star graphs as follows:

∑

n≥0

sa(Pn)x
n =

−1 +
√
1 + 4x2

2x2
=

∑

m≥0

(−1)m Catm x2m,

∑

n≥0

sa(Cn)x
n =

1

2
+

1

2
√
1 + 4x2

= 1 +
∑

m≥1

(−1)m

2

(

2m

m

)

x2m,

∑

n≥0

sa(Kn)
xn

n!
= sechx =

∑

m≥0

(−1)mA2m
x2m

(2m)!
,

∑

n≥0

sa(K1,n)
xn

n!
= − tanhx =

∑

m≥1

(−1)mA2m−1
x2m−1

(2m− 1)!
.

Similarly, since b(G) = sa(G; 1), putting t = 1 in the generating functions
(8), (11), (14), and (16) yields the generating functions for b-numbers of path
graphs, cycle graphs, complete graphs, and star graphs as follows:

∑

n≥0

b(Pn)x
n = 1 +

−1 +
√
1 + 4x2

2x
= 1 +

∑

m≥0

(−1)m Catm x2m+1,

∑

n≥0

b(Cn)x
n = 1 +

x
√
1 + 4x2

= 1 +
∑

m≥0

(−1)m
(

2m

m

)

x2m+1,

∑

n≥0

b(Kn)
xn

n!
= 1 + tanhx = 1 +

∑

m≥0

(−1)mA2m+1
x2m+1

(2m+ 1)!
,

∑

n≥0

b(K1,n)
xn

n!
= sechx =

∑

m≥0

(−1)mA2m
x2m

(2m)!
.

According to (7), putting t ← 1
√

−z
and x ← x

√
−z in the generating func-

tions (8), (11), (14), and (16) yields the next result.

Corollary 5. Let PM(G)(z) denote the Poincaré polynomials of the real toric

manifolds M(G) associated to the graph G. Then the generating functions for

Poincaré polynomials of the real toric manifolds associated to path graphs Pn,

cycle graphs Cn, complete graphs Kn, and star graphs K1,n are as follows:

∑

n≥0

PM(Pn)(z)x
n =
−1 + 2x+

√
1− 4zx2

2x− 2(1 + z)x2
,

∑

n≥0

PM(Cn)(z)x
n =

1

2
+

1

2
√
1− 4zx2

·
(1− z)x+

√
1− 4zx2

1− (1 + z)x
,

∑

n≥0

PM(Kn)(z)
xn

n!
= ex sec(x

√
z),
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∑

n≥0

PM(K1,n)(z)
xn

n!
= ex

(

1 +
√
z tan(x

√
z)
)

.

4. Signed a-number of complete multipartite graphs

First, we consider the exponential generating function for signed a-numbers
of complete bipartite graphs. Denote by Kp,q the complete bipartite graph with
p-set and q-set.

Theorem 6. The exponential generating function for signed a-numbers of com-

plete bipartite graphs is

∑

p≥0

∑

q≥0

sa(Kp,q)
xp

p!

yq

q!
=

coshx+ cosh y − 1

cosh(x+ y)
.(18)

Proof. For two nonnegative integers p and q whose sum is even, there is the
recurrence

∑

i,j≥0

(

p

i

)(

q

j

)

sa(Ki,j) =

{

0 if p and q are positive,

1 if p or q is zero.
(19)

The exponential generating function for the right-hand side of (19) is

∑

p,q≥0

p+q=even

(RHS)
xp

p!

yq

q!
= 1 + (coshx− 1) + (cosh y − 1).(20)

The exponential generating function for the left-hand side of (19) is

∑

p,q≥0

p+q=even

(LHS)
xp

p!

yq

q!
=

∑

p,q≥0

p+q=even

∑

0≤i≤p
0≤j≤q

i+j=even

(

sa(Ki,j)
xi

i!

yj

j!

)(

xp−i

(p− i)!

yq−j

(q − j)!

)

=







∑

i,j≥0

i+j=even

sa(Ki,j)
xi

i!

yj

j!













∑

i,j≥0

i+j=even

xi

i!

yj

j!







=





∑

p,q≥0

sa(Kp,q)
xp

p!

yq

q!



 cosh(x+ y).(21)

Thus, by (20) and (21), we are done. �

The generating function SAq(x) is defined by SAq(x) =
∑

p≥0 sa(Kp,q)
xp

p! ,

which is the coefficient of yq/q! in cosh x+cosh y−1
cosh(x+y) . Given a fixed nonnegative q,

we can induce the detailed formula SAq(x) by

SAq(x) =
∂q

∂yq

(

coshx+ cosh y − 1

cosh(x+ y)

)∣

∣

∣

∣

y=0

.
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For example, the initial generating functions Aq(x) are listed as follows:

SA0(x) = 1,

SA1(x) = − tanhx,

SA2(x) = −2 sech
2 x+ sechx+ 1,

SA3(x) = (6 sech2 x− 3 sechx− 1) tanhx,

SA4(x) = 24 sech4 x− 12 sech3 x− 20 sech2 x+ 7 sechx+ 1.

Next, we generalize the generating function (18) for complete multipartite
graphs. Denote by Kp1,...,pm the complete m-partite graph with p1-set, . . . ,
pm-set.

Theorem 7. The exponential generating function for signed a-numbers of com-

plete m-partite graphs is

∑

p1,...,pm≥0

sa(Kp1,...,pm)
x
p1

1

p1!
· · ·

xpm
m

pm!
=

(1−m) + coshx1 + · · ·+ coshxm

cosh(x1 + · · ·+ xm)
.

(22)

Proof. For m nonnegative integers p1, . . . , pm whose sum is even, there is the
recurrence

(23)

∑

i1,...,im≥0

(

p1

i1

)

. . .

(

pm

im

)

sa(Ki1,...,im)

=

{

0 if at least two pi’s are positive,

1 if all pi’s are zeros, but at most one.

Using both sides of (23), we have the generalized formulas of (20) and (21)
as follows:

∑

pi≥0

p1+···+pm=even

(RHS)
x
p1

1

p1!
. . .

xpm
m

pm!
= 1 + (coshx1 − 1) + · · ·+ (coshxm − 1)

and
∑

pi≥0

p1+···+pm=even

(LHS)
x
p1

1

p1!
. . .

xpm
m

pm!

=





∑

p1,...,pm≥0

sa(Kp1,...,pm)
x
p1

1

p1!
· · ·

xpm
m

pm!



 cosh(x1 + · · ·+ xm),

which completes the proof. �

Remark. Since a(Kp1,...,pm) = (−1)
p1+···+pm

2 sa(Kp1,...,pm) and cosh(ız) = cos z,
the exponential generating functions for a-numbers of complete bipartite graphs
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and complete m-partite graphs are equal to
∑

p≥0

∑

q≥0

a(Kp,q)
xp

p!

yq

q!
=

cosx+ cos y − 1

cos(x+ y)
,

∑

p1,...,pm≥0

a(Kp1,...,pm)
x
p1

1

p1!
· · ·

xpm
m

pm!
=

(1−m) + cosx1 + · · ·+ cosxm

cos(x1 + · · ·+ xm)
.

5. Signed a-polynomial of complete multipartite graphs

First, we consider the exponential generating function for signed a-poly-
nomials of complete bipartite graphs.

Theorem 8. Let Kp,q be the complete bipartite graph with p-set and q-set.

Then the exponential generating function for signed a-polynomials of Kp,q is

given by

∑

p≥0

∑

q≥0

sa(Kp,q; t)
xp

p!

yq

q!
= et(x+y)

(

coshx+ cosh y − 1

cosh(x + y)

)

.(24)

Proof. By definition, we have

∑

p≥0

q≥0

sa(Kp,q; t)
xp

p!

yq

q!
=

∑

p≥0

q≥0







∑

0≤p′≤p

0≤q′≤q

(

p

p′

)(

q

q′

)

sa(Kp′,q′)t
p−p′+q−q′







xp

p!

yq

q!
.

(25)

Substituting p′′ = p− p′ and q′′ = q − q′, the right-hand side of (25) becomes

∑

p′′≥0

q′′≥0







∑

p′≥0

q′≥0

(

p′ + p′′

p′

)(

q′ + q′′

q′

)

sa(Kp′,q′)t
p′′+q′′







xp′+p′′

(p′ + p′′)!

yq
′+q′′

(q′ + q′′)!

=





∑

p′
≥0

∑

q′≥0

sa(Kp′,q′)
xp′

p′!

yq
′

q′!









∑

p′′
≥0

(tx)p
′′

p′′!









∑

q′′≥0

(ty)q
′′

q′′!



 .

The formula (18) completes the proof. �

Remark. Since the coefficient of yq

q! in formula (24) is equal to

∑

n≥0

sa(Kq,n; t)
xn

n!
,

it holds that
∑

n≥0

sa(Kq,n; t)
xn

n!
=

∂q

∂yq
et(x+y)

(

coshx+ cosh y − 1

cosh(x+ y)

)∣

∣

∣

∣

y=0

.

In case of q = 1, we have the exponential generating function (16) for signed
a-polynomials of star graphs again.
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Similarly, we can deduce the next theorem by the same above method.

Theorem 9. Let Kp1,...,pm be the complete m-partite graph with p1-set, . . . ,

pm-set. Then the exponential generating function for signed a-polynomials of

Kp1,...,pm is given by

(26)

∑

p1...,pm≥0

sa(Kp1,...,pm ; t)
x
p1

1

p1!
. . .

xpm
m

pm!

= et(x1+···+xm)

(

(1−m) + coshx1 + · · ·+ coshxm

cosh(x1 + · · ·+ xm)

)

.

Since sa(G) = sa(G; 0), putting t = 0 in the generating functions (24) and
(26) gives the two formulas (18) and (22), respectively. Also, since b(G) =
sa(G; 1), putting t = 1 in the generating functions (24) and (26) yields the
generating functions for b-numbers of complete bipartite graphs and complete
multipartite graphs as follows:

∑

p≥0

∑

q≥0

b(Kp,q)
xp

p!

yq

q!
= ex+y

(

coshx+ cosh y − 1

cosh(x + y)

)

,

∑

p1...,pm≥0

b(Kp1,...,pm)
x
p1

1

p1!
. . .

xpm
m

pm!

= ex1+···+xm

(

(1−m) + coshx1 + · · ·+ coshxm

cosh(x1 + · · ·+ xm)

)

.

The next result follows from two generating functions (24) and (26) by plug-
ging in (7).

Corollary 10. Let PM(Kp,q)(z) and PM(Kp1,...,pm )(z) denote the Poincaré poly-

nomials of the real toric manifolds associated to the complete bipartite graph

Kp,q and the complete m-partite graph Kp1,...,pm . Then the generating functions

for Poincaré polynomials PM(Kp,q)(z) and PM(Kp1,...,pm )(z) are equal to

∑

n≥0

PM(Kp,q)(z)
xp

p!

yq

q!
= ex+y

(

cos(x
√
z) + cos(y

√
z)− 1

cos(x
√
z + y

√
z)

)

,

∑

n≥0

PM(Kp1,...,pm )(z)
x
p1

1

p1!
. . .

xpm
m

pm!

= ex1+···+xm

(

(1−m) + cos(x1
√
z) + · · ·+ cos(xm

√
z)

cos(x1
√
z + · · ·+ xm

√
z)

)

.

Table 5 shows the Poincaré polynomials PM(Kp,q)(z) for p ≤ 6 and q ≤ 3.
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Table 5. Table for PM(Kp,q)(z)

p\q 0 1 2 3
0 1 1 1 1
1 1 1 + z 1 + 2z 1 + 3z + 2z2

2 1 1 + 2z 1 + 4z + 3z2 1 + 6z + 13z2

3 1 1 + 3z + 2z2 1 + 6z + 13z2 1 + 9z + 39z2 + 31z3

4 1 1 + 4z + 8z2 1 + 8z + 34z2 + 27z3 1 + 12z + 86z2 + 205z3

5 1 1 + 5z + 20z2 + 16z3 1 + 10z + 70z2 + 167z3 1 + 15z + 160z2 + 763z3 + 617z4

6 1 1 + 6z + 40z2 + 96z3 1 + 12z + 125z2 + 597z3 + 483z4 1 + 18z + 267z2 + 2123z3 + 5151z4

6. Remarks

We have found the signed a-polynomial of complete multipartite graph. For
a general graph G, it is not easy to characterize sa(G; t). Even the case of
the tree, it is hard to find the close formula of its signed a-numbers. For
example, letting Tp,q,r be the tree induced by connecting one vertex and each
end-vertices of Pp, Pq, and Pr by three edges, we are not able to find a closed
form of sa(Tp,q,r; t) with p, q, and r. In order to find the general formulas for
the signed a-polynomial of any graph, we need a method to calculate the signed
a-numbers of a specific graph without a recursive definition.
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