SOBOLEV ORTHOGONAL POLYNOMIALS RELATIVE TO ${\lambda}$p(c)q(c) + <${\tau}$,p'(x)q'(x)>

  • Jung, I.H. (Department of Mathematics, KAIS) ;
  • Kwon, K.H. (Department of Mathematics, KAIST) ;
  • Lee, J.K. (Department of Mathematics, Sunmoon University)
  • Published : 1997.07.01

Abstract

Consider a Sobolev inner product on the space of polynomials such as $$ \phi(p,q) = \lambda p(c)q(c) + <\tau,p'(x)q'(x)> $$ where $\tau$ is a moment functional and c and $\lambda$ are real constants. We investigate properties of orthogonal polynomials relative to $\phi(\cdot,\cdot)$ and give necessary and sufficient conditions under which such Sobolev orthogonal polynomials satisfy a spectral type differential equation with polynomial coefficients.

Keywords

References

  1. An Introduction to Orthogonal Polynomials T. S. Chihara
  2. SIAM J. Math. Anal. v.2 Theoretical properties of best polynomial approximation in $W^{1,2}$[-1,1] E. A. Cohen
  3. Math. Z. v.39 Uber die Jacobischen Polynome und zwei verwandte Polynomklassen W. Hahn
  4. Trans. Amer. Math. Soc. v.347 Sobolev orthogonal polynomials and spectral differential equations I. H. Jung;K. H. Kwon;D. W. Lee;L. L. Littlejohn
  5. Delft Univ. of Tech. Report No. On differential equations for Sobolevtype Laguerre polynomials J. Koekoek;R. Koekoek;H. Bavinck
  6. J. Comp. Appl. Math. v.49 The search for differential equation for certain sets of orthogonal polynomials R. Koekoek
  7. SIAM J. Math. Anal. v.24 A generalization of Laguerre polynomials R. Koekoek;H. G. Meijer
  8. Proc. Roy. Soc. Edinburgh Sect. v.A 87 Orthogonal polynomials satisfying fourth order differential equation A. M. Krall
  9. Duke Math. J. v.4 Certain differential equations for Tchebycheff polynomials H. L. Krall
  10. The Penn. State College Studies No. 6 On orthogonal polynomials satisfying a certain fourth order differential equation H. L. Krall
  11. Rocky Mt. J. Math. Sobolev orthogonal polynomials and second order differential equations K. H. Kwon;L. L. Littlejohn
  12. SIAM J. Math. Anal. v.25 Characterizations of orthogonal polynomials satisfying differential equations K. H. Kwon;L. L. Littlejohn;B. H. Yoo
  13. Proc. London Math. Soc. v.3 Symmetric and symmetrizable ordinary differential expressions L. L. Littlejohn;D. Race
  14. Warsaw Univ. Izv. v.18 Uber die angenaherte Berechnung der bestimmten Integrale und uber die dabei vorkommenden ganzen Functionen N. J. Sonine