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SOBOLEV ORTHOGONAL POLYNOMIALS
RELATIVE TO Ap(c)g(c) + {7, p (z)¢ (z))

I. H. Jung, K. H. KwoN, AND J. K. LEE

ABSTRACT. Consider a Sobolev inner product on the space of poly-
nomials such as

¢(p, q) = Ap(c)g(c) + (7, p'(z)q' (),

where 7 is a moment functional and ¢ and X are real constants. We
investigate properties of orthogonal polynomials relative to ¢(-, ) and
give necessary and sufficient conditions under which such Sobolev
orthogonal polynomials satisfy a spectral type differential equation
with polynomial coefficients.

1. Introduction

We consider a linear differential equation of order N > 1 of spectral
type

N
(1.1) Lnly)(z) = }:ei(w)y“’ (z) = Ay(z),

where each ¢;(x) = ijo ¢;;@7 is a polynomial of degree < i, indepen-
dent of n, £n(x) # 0, and ), is the eigenvalue parameter given by

/\n=€11n+€22n(n—1)+---+€NNn(n—1)---(n~N+1).
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Recently, many attempts have been made to find differential equations
of the form (1.1) satisfied by polynomial sequences which are orthogonal
relative to a symmetric bilinear form (so called a Sobolev inner product)

(1.2) ¢(p, q) = (o, p(x)q(2)) ~ (7, P (2)¢ (x)),

where o and 7 are moment functionals.

Koekoek and Meijer [7] introduced the generalized Sobolev-Laguerre
polynomials { L2-M-N ()} ,, which are orthogonal relative to the Sobo-
lev inner product

600 = s [ € @) de + Mp(0)a(0) + N (000 0),

where @ > —1, M > 0 and N > 0. Later, J. Koekoek, R. Koekoek, and
H. Bavinck [5] showed that when « is a non-negative integer, {LoM N
()} o satisfy a differential equation of order < 4o + 10 of the form
(1.1)( see also [6)).

Jung, Kwon, Lee, and Littlejohn [4] found necessary and sufficient
conditions for the differential equation {1.1) to have a sequence of poly-
nomials orthogonal relative to ¢(-,-) in (1.2) as solutions. When 7 = 0,
this result is reduced to the result obtained by H. L. Krall [9] (see also
[12]). In particular, Kwon and Littlejohn [11] classified all polynomial
sequences, which are orthogonal relative to ¢(-,-) in (1.2) and satisfy
second order differential equations.

Motivated by several non-standard examples of Sobolev orthogonal
polynomials found in [11], we will consider the following symmetric bi-
linear form

(1.3) P(p, q) = Ap(c)q(c) + (7, p'(z)¢ (z)),

where 7 is a moment functional and ¢ and A are real constants. In [11],
the case when 7 is a classical moment functional is handled. An inner
product similar to (1.3) was considered by Cohen [2].

We first give some properties of Sobolev orthogonal polynomials rela-
tive to ¢(-,-) in (1.3) and find necessary and sufficient conditions for the
differential equation (1.1) to have such Sobolev orthogonal polynomials
as solutions. Finally, we give an example of a spectral type differential
equation of order /V = 4, which has such Sobolev orthogonal polynomials
as solutions.



Sobolev orthogonal polynomials and differential equations 605

2. Sobolev orthogonal polynomials

In this work, all polynomials are assumed to be real polynomials in
one variable. The space of all such polynomials is denoted by P. We
call any linear functional on P a moment functional. By a polynomial
system(in short, PS){P,(z)}% ;, we mean a sequence of polynomials
{Pn(z)}2; with deg(P,) = n for n > 0.

For a moment functional o and a polynomial ¢(z), we define ¢’ and
¢o by

(0", ¥(z)) = ~(o.¥'(z)) (¥ € P)
and
(¢0,¥(z)) = {0, ¢(x)¥(x)) (¥ € P).
Then we have
(o) = ¢d'o + ¢o’.

We say that a moment functional ¢ is quasi-definite (respectively,
positive-definite) if there is a PS {P,(2)}°, such that

(0, Pn(z)Pn(x)) = Knbmn, m, n=20,1,2,-..,

where K, are nonzero (respectively, positive) constants. Then we call
{Pn(z)}2 o an orthogonal polynomial system (in short, OPS) relative
to o.

Similarly, we say that a symmetric bilinear form ¢(-,-) of the form
(1.2) is quasi-definite (respectively, positive-definite) if there is a PS
{Qn(2)}2 such that

H(Qm, Qn) = Kndinn, m, n=0,1,2,--,

where K, are nonzero (respectively, positive) constants. Then we call
{Qn(z)}52( a Sobolev orthogonal polynomial system (in short, SOPS)
relative to ¢(-, ).

THEOREM 2.1. Let ¢(-,-) be a symmetric bilinear form as in (1.3).
Then ¢(-,-) is quasi-definite (respectively, positive-definite) if and only
if A # 0 and 7 is quasi-definite (respectively, A > 0 and 7 is positive-
definite).
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Furthermore if ¢(-, ) is quasi-definite, then the monic SOPS {Q., (z)}%>,
relative to ¢(-,-) are given by

21) Q@ =1 Qu)=n /zpn_l(t)dt (n>1),

where { P, (2)}32 is the monic OPS relative to 7.
In particular, we have

(2.2) Qn(c) =0, n>1;
(2.3) Pal@) = —=Qhi(&)m >0
A ifn=0
(2~4) ¢(QnaQn) = {n2<7_’ Pf_l(:v)) ifn > 1.

PROOF. Assume that ¢(,-) is quasi-definite and let {Q,(z)}%., be
the monic SOPS relative to ¢(-,-). Then

P(Qm; @n) = AQm(c)Qn(c) + (7, Q1 (2)Q0(2)) = Kndmn  (m, n >0),

where K, are nonzero constants. If we take m = 0, then ¢(Qo,Q,) =
AQn(c) for all n > 0 and hence A # 0 and Q,(c) = 0,7 > 1. Thus we
obtain

¢(Qm; @n) = (7,Q0, ()@ (%)) = Kby, (Myn > 1),

Therefore, {Q;, ()}, is an OPS relative to 7 so that 7 is quasi-definite
and Q) () = nP,_1(z), n > 1. In particular, we obtain relations (2.3)
and (2.4).

Conversely, assume that 7 is quasi-definite and A £ 0. Let {P,(z)}%2,
be the monic OPS relative to 7. If we define {Q,(2)}3, by (2.1), then
it is easy to see that {Q.(x)}52 is the monic SOPS relative to ¢(,)
and so ¢(:, ) is quasi-definite.

Now if 7 is positive-definite and A > 0, then ¢(-,-) is quasi-definite
and ¢(Qn,Qn) > 0, n > 0 by (2.4). Hence, ¢(-,-) is positive-definite.
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Conversely, if ¢(-,-) is positive-definite, then ¢(Qo,Qo) = A > 0 and
¢(Qn,Qn) = n*(1,P:_(z)) > 0,n > 1 by (2.4). Hence 7 is also
positive-definite. ]

Classical Hahn-Sonine Theorem([3,14]) says that only OPS’s, whose
derivatives are also OPS’s, are classical OPS’s, that is, Jacobi, Bessel,
Laguerre, or Hermite polynomials. Theorem 2.1 provides examples of
Sobolev OPS’s whose derivatives are ordinary OPS’s. In the following,
we derive a kind of three term recurrence relation and Favard-type the-
orem.

From now on, we always assume that 7 in (1.3) is quasi-definite
and A # 0 so that ¢(:,) is also quasi-definite. Then, the monic OPS
{Pn(2)}32 g relative to 7 satisfies the three term recurrence relation (see

[1]):
(2.5)  Poii(x) = (@ —bn)Pu(@) — cnPao1(z), n >0 (P-1(z) =0),

where ¢p is arbitrary and ¢, # 0, n > 1 and the Christoffel-Darboux
formula (see [1]) :

n

Pe@)Pe(y) 1 Puni(@)Pa(y) — Pa1(y)Pua(x)
(2.6) Z mE@) - mEE Ty ’

THEOREM 2.2. The monic SOPS {Q,(2)}%., relative to ¢(-,-) sat-
isfies the recurrence relation

(2.7)
/ Qn+l (t) dt =

n+1

Qn+2(.’L')+(.'L b )Qn+1(m) CnQn(:E) n > 0,

where ¢ = 0 and ¢, = ”“cn(;é 0),n>1.

(Favard-type theorem) Conversely, if {Qn(z)}2., is a PS such
that Qo(z) = 1, Qi(z) = = — ¢, and Q,(x) for n > 2 are defined by
the recurrence relation (2.7) with é, # 0, n > 1, then for any A # 0,
{Qn(2)}52 o is the monic SOPS relative to ¢(,-).
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PROOF. By (2.3), we may rewrite (2.5) as

%QM@=%$~MWK@,”=0
;-_1+-_2 nre() = (@ — b")_l_"—Q:l“(w) B cn%Q;(l’), el

For n > 0, by integrating both sides of (2.8) from ¢ to z and using
Qn(c) =0 for n > 1, we obtain (2.7).

Conversely, deﬁne {Qn(2)}320 by (2.7) and Qo () = 1, Q,(z) = z—c.
Then, by induction, {Q,(x)}52, is a monic PS and Q,(c) = 0, n > 1.
By differentiating both sides of (2.7) with respect to x, we have

1
3 %n@) = @)@l @)+ e g @), n .

By Favard’s theorem, there exists a quasi-definite moment functional 7
such that {1Q! ()}, is an OPS relative to 7. Now for any A # 0,
define a symmetric bilinear form ¢(-,-) by (1.3). Then

(2.8)

0, m#n
¢(Qm;Qn): A740, m=n=20
<T’ (Q',n)2> 71‘-0’ m=n2>1
Thus {Qn(2)}2., is an SOPS relative to ¢(-, -). O
THEOREM 2.3. We have
(i)
Qi 1(@)Q 1 ()
Z H(Qr+1, Qu+1)
_n+tl 1 . nr2 (@)@ 1 (y) — n+2(y)Qn+1($)
n+2 ¢(Qni1,Qns1) T -y

(ii)
~  (Qiii (@)
,; HQr+1,Qr+1)
_n+l1 . 1
T n+2 $(Qni1,Qni1)

[ +2($)Qn+1( ) — ;L+-2(33)QZ—‘1($):\-
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Proor. (i) : By (2.3), (2.4) and (2.6), it is obvious.
(ii) : Letting y — x in (i), we obtain (ii). O

3. Differential equations

In this section, we shall give necessary and sufficient conditions for
the differential equation (1.1) to have an SOPS of solutions, which are
orthogonal relative to the symmetric bilinear form (1.3).

For a differential operator Ly -] in (1.1) and a moment functional 7,
we let

N—-k

(3.1) Spy1(7) = ZO( 1)tk (J +k> ;o k7)) — 7, 0K AN
and

Rea@i= 3 (T D) e b
5.2 — 2(lp—17) — (t7)"

N-—k+1
S IRC ] (i[OO

=0
+£k_17"+(€k7',)/“—‘0, t<ELSN+2,

where ¢, (x) =0for k <Oor k> N +1 and (Z) =0 for k < 0. We also
let Syio(7) = Sy+3(T) = Ry (7) = 0.
We now recall the following theorem, which is proved in [4].

THEOREM 3.1. Assume that the symmetric bilinear form ¢(-,-) as in
(1.2) is quasi-definite and let {Q, ()}, be the monic SOPS relative
to ¢(-,-). Then, the followings are equivalent.

(i) {Qn(2)}2 satisfy the differential equation (1.1), that is,

LNQn]('T) = A Qn(z), n>0.
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(ii) o and T satisfy N + 3 functional equations
(3.3) Riey1(0,7) := Ries1(7) — Sk4+1(0) =0, 0<k<N+2.

(iif) o and T satisfy r + 1 functional equations

N+1
2

(3.4) Rokio(o,7) =0, 0<k<r:= [—— .

Moreover, in this case, N = 2r must be even.

From now on, we assume that ¢(-,-) in (1.3) is quasi-definite and
{@n(z)}0 is the monic SOPS relative to ¢(-,-). We also let { P, ()},
be the monic OPS relative to 7.

LEMMA 3.2. If {Qn(2)}32 satisfy the differential equation (1.1),
then £;(c) =0,1<i<N.

PROOF. We recall that Q,(c) = Ofor alln > 1. For n = 1, Ly[@1](z)
= Li(z)Q1(z) = \1Q1(z) and so ¢1(c) = 0. For n = 2, Ly[Q2)(z) =
£2(2)Q5(z) + £1(2)Q%(z) = A2Q2(z) and so £y(c) = 0. Continuing the
same process, we can easily see that ¢;(c) =0for 1 <i < N. 0O

THEOREM 3.3. For the differential operator Ly|-] in (1.1), the fol-
lowings are equivalent.

(i) Ln[@n](x) = AnQn(z), n > 0.
(ii) £;(c) =0,1 < i < N and 7 satisfies N + 2 functional equations
Rip1(7) =0, 1<k<N+2

(iii) £;(c) =0,1 <% < N and 7 satisfies r + 1 functional equations

N 41
Roki2(7) =0, 0<k<r:= [——-}

1
[FAY

2

Moreover, in this case, N = 2r must be even.
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PROOF. If ¢;(c) = 0,1 <4 < N, then for 0 = M(z — ¢),
bi(z)o = M;(x)d(z — ) = Mi(c)d(x —¢c) =0, 1<i< N

so that Sx11(0) = 0,0 < k < N. Therefore, Theorem 3.3 comes imme-
diately from Theorem 3.1, where 0 = A§(x — ¢). O

PROPOSITION 3.4. If {Qn(2)}2 satisfy the differential equation
(1.1), then {P, ()}, satisfy the differential equation

(3.5) yl(z) = Zm,(w)y(’)(x) bny(2),
where ji, = Api1 —~ £4(2) = Anyy — €1y and

in, i=N
(3.6) mi(e) = {e (2) + 61(@), 1SS N - 1.

Moreover, T satisfies

N~k .
) Sis1(r) == ]2::0 (—1)i+* (J : k> (my k)9 — g

=0, 0 <k < N (mo(z) =0)
or equivalently
N .
fi—k—1 ‘
Wis1(7) := z (——1)'(1 L )(miT)(’_%_l)

i=2k+1
=0, 0<k<r—1,

(3.8)

where 1 := [2H1],
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PROOF. Assume that {Q,(x)}32, satisfy the differential equation
(1.1), ie.,

(3.9) Ln[@n)(@) = MQn(z), n > 0.

Differentiating both sides of (3.9) and then using Q/, (z) = nP,_(z), we
obtain

A1 Pa(e) = Zml(m)P")(x +Ze<x>P<z>(z) n>0.
i=1

Thus (3.5) holds. It is then well known that 7 satisfies (3.7) or equiva-
lently (3.8) (see, for example, {12, Thecrem 2.4] and [13, Theorem 5.3)).
O

Now we shall obtain the relation between Ry 1(7) and Sk (7).
PROPOSITION 3.5. We have

(3.10)  Ris1(7) = Sec1 (1) + Sy(1), 1<k < N +1 (So(r) = 0).

PROOF. For1 <k < N +1,

Ry 1(7)
N—k+42

Z 07 (R B kD — = 2ty = (67

N—-k+1 G+ k- ‘
- X e (M (I S AR TR0

N—-k+2 N—-k+1

=3 A M TS > - S M IO

N—k-+1

j+ k- ;
D DI e (O [ e PR B Y (A
Jj=0
N—k+2 N—-k+2
gk (It k=2 (@) gk (I k=2 )
?90 k(P )(uk 21 4 Z R (N ) tyam)

N—-k+2

+ Z (- 1)J+k(( k ) ) (]+k1 ))(f,+k 17_)(3)

= (2 + G )T = ((Lk—1 + &)Y
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N—k+2 it k-2
= > V(T ) ke 4 G )D = (tea )
7=0
N—k+2
j+k—2
+ Z J+k( )((Zﬁ-k 2+ )Y = ((Eher + £)7)
—k+
+k—-2 .
Z J+k( k— 2 )(mj+k—-2"")(3)_mk—27
j=
N—k+1 !
+k-1
Z 1)itk= 1(Jk . )(mj+k 179D — 7
JiO h
=Sp-1(1) +

O

COROLLARY 3.6. We have R;11(7) =0,k =1,..- , N1 if and only
ifSk+1(T) :0, k:O,l,'-- ,N.

PROOF. By (3.10), it is clear that the conditions Sy,1(7) = 0, 0 <
k< N imply Rii1(7) = 0,1 < k& < N + 1. Conversely, assume
Ri41(7) = 0,1 <k < N+ 1. For k = 1in (3.10), we get Ro(T) =
Si(r) = 0 and so S,(7) = 0.

Assume that gk('r) = 0 up to k = m for some m > 1. Then for k =
m + 1 in (3.10), we have Ry, (1) = Spu(7) + 8§/, () = m+1(7‘) = 0.
Hence §m+1 (1) =0. O

Now we can obtain :

THEOREM 3.7. The followings are equivalent.

(i) {@n(z)}2 satisfy the differential equation (1.1).
(ii) £:(c) =0,1<i< N and 7 satisfies N + 2 functional equations

Rec1(7) =0, 1<k<N=+2
(iii) £;(c) =0,1 <14 < N and 7 satisfies r + 1 functional equations

N +1
Ropsa(r) =0, 0<k <ri=[—o—].
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(iv) {Pn(z)}32, satisfy the differential equation (3.5) and Z ( 1)
m,(c’sz(c) =0,1<k<N.
(v) Ej:o (—l)jm,(cj;zj(c) =0, 1 <k < N and 7 satisfies §k+1(’r) =
0,0<k<N.
(vi) Z;-V:_Ok(—l)jm,(c’jj(c) =0, 1 <k <N and 7 satisfies Wy (1) =
0,0<k<r—1(r:= [ﬂg'—l])
Moreover, in this case, N = 2r must be even.

PROOF. By Theorem 3.3 and Corollary 3.6, it suffices to show that
the statements (i) and (iv) are equivalent.
(i) = (iv) : Let {Qn(2)}, satisfy the differential equation (1.1). Then,
by Proposition 3.4, { P, (x)}32, satisfy the differential equation (3.5). If
we solve the equations (3.6) for ¢;(x), then we obtain

N—z
(3.11) t(@) =Y _(-1mZ;(2), 1<i <N

By Lemma 3.2, we then have ZN_k l)jmg](c) =0, 1<k <N.
(iv) :> (i) : Let {Pn(2)}3, satlsfy the differential equation (3.5) and
E (l)Jmkﬂ(c)-—O 1 <k < N. Define ¢;(z),1 < i < N, by
(311) Then 4;(c) = 0,1 <i < N, and (3.6) holds.

Since Q7 () = nP,_1(z) (cf.(2.3)),

nA Q) = i Paa@) < 1 3 (@), () = Z(é (2) + £ @)YV (a),

1=1
that is,

N

pn-1Qn (@) = Y _(6i(@) + £ @)QE (@), n>1 (bner(2) =0).

i=1

Integrating both sides of the above equation from ¢ to z, we obtain

N
Hn-1Qn(2) = S 6@QV (@) - 4(@)Qn(@), n>1
2=1
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since Qn(c) = 0,n > 1. That is

N
S 6@)QY (@) = (-1 + £1)Qn(2) = An@n(@),n > 1.
=1

Therefore, {Qy(z)}72.¢ satisfy the differential equation (1.1). O

In particular, if {@,, (x)}3  satisfy a second order differential equa-
tion
Lafyl(z) = la(2)y" (z) + b1 ()¢ () = Any(a),
then {P,(z)}72 ¢ must be a classical OPS satisfying

b(2)y" (@) + [1(2) + @)Y (€) = Ant1 — £ (2))y(2).

4. EXAMPLE. For N = 2, Kwon and Littlejohn [11] found all SOPS’s
which are orthogonal relative to the Sobolev inner product (1.2) and
satisfy second order differential equations of the form (1.1). They include
all classical orthogonal polynomials as well as three more SOPS’s, which
are orthogonal relative to ¢(-,-) in (1.3).

We now consider a fourth order differential equation :

4
(4.1) Malyl(z) = Zmi @)y (@) = pny(z).

H. L. Krall [10] classified, up to a linear change of variable, all OPS’s
that satisfy the differential equation (4.1). They are four classical OPS’s
and three more classical-type OPS’s (see also [8]):

Legendre-type polynomials {P,(La)(a:)}ff’:o satisfying

(1 - 2?)?y D (2)+82(2? — 1)y (2) + (4 + 12)(? — 1)y (z)

+ 8azxy' () = puny(z) (o # ——n(izn——ll,n =0,1,---)

Laguerre-type polynomials {R,,(2)}% , satisfying

wzy(4)(x)+2w(2 - a:)y(s) (z) + [z — (2R + 6)z)y" (x)
2R +2)z = 2Rly (2) = pn(z) (R # —1,~2,-)
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Jacobi-type polynomials {S>M (1)}, satisfying

(2% — )%y (z) + 22(x - D(a + )z — 25y () + z[(a” + 9o + 14 + 2M)z
—2Ba + 6+ M)jy"(z) + 2[(a + 2) (e + 1 + M)z — M]y'(z) = Any(z)
(M>0,a# —1,-2,---).

Among these three differential equations, only the last one satisfies the
condition (iv) in Theorem 3.7 with ¢ = 1 when « == 0.
Let

Qo(z) =1 and @y (z) = n/ SOM (1)t n > 1.
1

Then by Theorem 3.1 and Theorem 3.7, {Q.,(2)}., is the monic SOPS
relative to the Sobolev inner product

1
2Wa(l) + 377 OO+ [ P () dz (3 £0,M > 0)

Moreover, {Q, (x)}, satisfy

(22 — )2y (2) + 22(x — 1)(2z — Dy® () + 2[(1 + M)z? - Mz — 1y" (z) = Any(x).
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