• Title/Summary/Keyword: rank preserver

Search Result 12, Processing Time 0.028 seconds

INJECTIVE LINEAR MAPS ON τ(F) THAT PRESERVE THE ADDITIVITY OF RANK

  • Slowik, Roksana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.277-287
    • /
    • 2017
  • We consider ${\tau}_{\infty}(F)$ - the space of upper triangular infinite matrices over a field F. We investigate injective linear maps on this space which preserve the additivity of rank, i.e., the maps ${\phi}$ such that rank(x + y) = rank(x) + rank(y) implies rank(${\phi}(x+y)$) = rank(${\phi}(x)$) + rank(${\phi}(y)$) for all $x,\;y{\in}{\tau}_{\infty}(F)$.

Rank-preserver of Matrices over Chain Semiring

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.89-96
    • /
    • 2006
  • For a rank-1 matrix A, there is a factorization as $A=ab^t$, the product of two vectors a and b. We characterize the linear operators that preserve rank and some equivalent condition of rank-1 matrices over a chain semiring. We also obtain a linear operator T preserves the rank of rank-1 matrices if and only if it is a form (P, Q, B)-operator with appropriate permutation matrices P and Q, and a matrix B with all nonzero entries.

  • PDF

RANK PRESERVER OF BOOLEAN MATRICES

  • SONG, SEOK-ZUN;KANG, KYUNG-TAE;JUN, YOUNG-BAE
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.501-507
    • /
    • 2005
  • A Boolean matrix with rank 1 is factored as a left factor and a right factor. The perimeter of a rank-1 Boolean matrix is defined as the number of nonzero entries in the left factor and the right factor of the given matrix. We obtain new characterizations of rank preservers, in terms of perimeter, of Boolean matrices.

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

Factor Rank and Its Preservers of Integer Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.581-589
    • /
    • 2006
  • We characterize the linear operators which preserve the factor rank of integer matrices. That is, if $\mathcal{M}$ is the set of all $m{\times}n$ matrices with entries in the integers and min($m,n$) > 1, then a linear operator T on $\mathcal{M}$ preserves the factor rank of all matrices in $\mathcal{M}$ if and only if T has the form either T(X) = UXV for all $X{\in}\mathcal{M}$, or $m=n$ and T(X)=$UX^tV$ for all $X{\in}\mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

  • PDF

RANK-PRESERVING OPERATORS OF NONNEGATIVE INTEGER MATRICES

  • SONG, SEOK-ZUN;KANG, KYUNG-TAE;JUN, YOUNG-BAE
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.671-683
    • /
    • 2005
  • The set of all $m\;{\times}\;n$ matrices with entries in $\mathbb{Z}_+$ is de­noted by $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. We say that a linear operator T on $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ is a (U, V)-operator if there exist invertible matrices $U\;{\in}\; \mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ and $V\;{\in}\;\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$ such that either T(X) = UXV for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$, or m = n and T(X) = $UX^{t}V$ for all X in $\mathbb{M}{m{\times}n}(\mathbb{Z}_+)$. In this paper we show that a linear operator T preserves the rank of matrices over the nonnegative integers if and only if T is a (U, V)­operator. We also obtain other characterizations of the linear operator that preserves rank of matrices over the nonnegative integers.

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.

SPANNING COLUMN RANKS OF NON-BINARY BOOLEAN MATRICES AND THEIR PRESERVERS

  • Kang, Kyung-Tae;Song, Seok-Zun
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.507-521
    • /
    • 2019
  • For any $m{\times}n$ nonbinary Boolean matrix A, its spanning column rank is the minimum number of the columns of A that spans its column space. We have a characterization of spanning column rank-1 nonbinary Boolean matrices. We investigate the linear operators that preserve the spanning column ranks of matrices over the nonbinary Boolean algebra. That is, for a linear operator T on $m{\times}n$ nonbinary Boolean matrices, it preserves all spanning column ranks if and only if there exist an invertible nonbinary Boolean matrix P of order m and a permutation matrix Q of order n such that T(A) = PAQ for all $m{\times}n$ nonbinary Boolean matrix A. We also obtain other characterizations of the (spanning) column rank preserver.