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LINEAR MAPS PRESERVING IDEMPOTENT OPERATORS

Ali Taghavi and Roja Hosseinzadeh

Abstract. Let A and B be some standard operator algebras on complex
Banach spaces X and Y , respectively. We give the concrete forms of linear
idempotence preserving maps Φ : A −→ B on finite-rank operators.

1. Introduction

The study of linear maps on operator algebras preserving certain properties
or subsets is a topic which attracts much attention of many authors. Let B(X)
and B(Y ) be the algebras of all bounded linear operators on complex Banach
spaces X and Y , respectively. In [5], the additive idempotence preserving
surjections Φ : B(X) −→ B(Y ) which have another several properties, are
considered. Also in [3] and [7] the concrete forms of surjective maps on B(X)
which preserves the nonzero idempotency of products of operators have been
given.

Recall that a standard operator algebra on X is a norm closed subalgebra
of B(X) which contains the identity and all finite-rank operators. In this
paper, we consider linear surjections between standard operator algebras such
that preserve idempotent operators. Let P (X) = {P ∈ B(X) : P 2 = P}
be the set of all idempotent operators and N(X) = {N ∈ B(X) : Nk =
0 for some positive integerk} be the set of all nilpotent operators. We denote
by P1(X) and N1(X) the set of all rank-1 idempotent operators and the set of
all rank-1 nilpotent operators in B(X), respectively. If X has dimension n with
2 ≤ n < ∞, B(X) is identified with the algebra Mn of n×n complex matrices.
Let X ′ denote the dual space of X and dim X denote the dimension of X.
For an operator T ∈ B(X), R(T ) and rankT denote the range and rank of T ,
respectively. Let F (X) and F1(X) denote the set of all finite-rank operators
and the set of all rank-1 operators in B(X), respectively. For every nonzero
x ∈ X and f ∈ X ′, the symbol x⊗f stands for the rank-1 linear operator on X
defined by (x⊗f)y = f(y)x for any y ∈ X. Note that every rank-1 operator in
B(X) can be written in this way. The rank-1 operator x⊗ f is an idempotent
if and only if f(x) = 1 and x⊗ f is an nilpotent if and only if f(x) = 0. Given
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P, Q ∈ P (X), we say P < Q if PQ = QP = P and P 6= Q. In addition, we say
that P and Q are orthogonal if PQ = QP = 0.

The aim of this paper is to prove the following theorems.

Theorem 1.1. Let A and B be some standard algebras on complex infinite-
dimensional Banach spaces X and Y , respectively. Also let Φ : A −→ B be
a linear surjective map. If Φ preserves idempotent operators in both direction,
then one of the following forms hold.

(1) There exists a bijective bounded linear or conjugate linear operator A :
X −→ Y such that

Φ(T ) = ATA−1

for all T ∈ F (X), or
(2) there exists a bijective bounded linear or conjugate linear operator A :

X ′ −→ Y such that
Φ(T ) = AT ′A−1

for all T ∈ F (X), where T ′ denote the dual operator of T .

Note that the following theorem was proved in [5]. But in this note we show
it is a consequence of above the theorem.

Theorem 1.2. Let Φ be a linear map on Mn. Then Φ preserves idempotent
operators in both direction if and only if there exists an invertible A ∈ Mn such
that one of the following forms hold.

(1) Φ(T ) = ATA−1 for all T ∈ Mn;
(2) n = 2 and Φ(T ) = AT tA−1 for all T ∈ Mn, where At denotes the

transpose of A.

Note that, linearity of Φ |F (X) in main theorems is enough.

2. Proofs

Assume that X and Y are complex infinite dimensional Banach spaces, A
and B are some standard algebras and Φ : A −→ B is an additive map which
preserves idempotent operators in both directions.

First we prove some elementary results which are useful in the proofs of
main theorems.

Lemma 2.1. Φ is injective.

Proof. Assume on the contrary that there exists a nonzero operator T ∈ A
such that Φ(T ) = 0. Then T is idempotent and it is clear that there exists an
idempotent operator S such that T + S is not idempotent. By the hypothesis,
since Φ preserves idempotent operators in both directions, Φ(T +S) = Φ(S) is
not idempotent. This is a contradiction and hence Φ is injective. ¤

Lemma 2.2. Let N ∈ A be of finite-rank and N2 = 0. Then Φ(N)2 = 0.
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Proof. We know that R(N) is finite dimensional. So we have X = R(N)⊕M
for some closed subspace M of X. Thus by this decomposition N has the
following operator matrix

N =
(

0 N1

0 0

)
.

Put

P =
(

I 0
0 0

)
.

It is clear that P + nN ∈ P (X) for all n ∈ N . It’s clear that dim R(P ) =
dim R(N). So P ∈ A and hence P + nN ∈ A for all n ∈ N . Thus (Φ(P ) +
nΦ(N)) ∈ P (Y ) for all n ∈ N . That is,

Φ(P ) + nΦ(N) = (Φ(P ))2 + n(Φ(P )Φ(N) + Φ(N)Φ(P )) + n2(Φ(N))2

for all n ∈ N . Setting n = 1 and n = 2 in last the equality yield

Φ(N) = Φ(P )Φ(N) + Φ(N)Φ(P ) + (Φ(N))2,

2Φ(N) = 2(Φ(P )Φ(N) + Φ(N)Φ(P )) + 4(Φ(N))2

that imply Φ(N)2 = 0 and hence the proof is complete. ¤
We next assume that Φ is surjective.

Lemma 2.3. Φ(I) = I.

Proof. Since I ∈ B, by surjectivity of Φ, there exists T ∈ A such that Φ(T ) = I.
Assume on the contrary that T 6= I. Then T is idempotent and there exists an
idempotent operator S such that T − S is not idempotent. By the hypothesis,
since Φ preserves idempotent operators in both directions, Φ(T−S) = I−Φ(S)
is not idempotent. This is a contradiction and hence Φ(I) = I. ¤
Lemma 2.4. Φ preserves the orthogonality of idempotents in both directions.

Proof. If P,Q ∈ A are the idempotent operators such that P⊥Q, then P +Q ∈
P (X) and hence Φ(P ) + Φ(Q) ∈ P (Y ). Since Φ(P ), Φ(Q) ∈ P (Y ), we obtain

Φ(P )Φ(Q) + Φ(Q)Φ(P ) = 0.

Thus we have
Φ(P )Φ(Q)Φ(P ) + Φ(Q)Φ(P ) = 0

and
Φ(P )Φ(Q) + Φ(P )Φ(Q)Φ(P ) = 0.

These together imply that

Φ(P )Φ(Q)Φ(P ) = 0

and hence
Φ(P )Φ(Q) = Φ(Q)Φ(P ) = 0

that implies Φ(P )⊥Φ(Q). The converse is similar. The proof is complete. ¤
Lemma 2.5. Φ preserves the order of idempotents in both directions.
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Proof. If P,Q ∈ A are the idempotent operators such that P < Q, then

(Q− I)P = P (Q− I) = 0

and so P⊥(Q− I). By Lemmas 2.4 and 2.3 we obtain

Φ(P )⊥(Φ(Q)− I)

that is,
Φ(P )(Φ(Q)− I) = (Φ(Q)− I)Φ(P ) = 0.

This implies
Φ(P )Φ(Q) = Φ(Q)Φ(P ) = Φ(P )

that is,
Φ(P ) < Φ(Q).

The converse is similar. The proof is complete. ¤

Lemma 2.6. Φ(P1(X)) = P1(Y ).

Proof. If P ∈ P1(X) and rankΦ(P ) ≥ 2, then there exists R ∈ P1(Y ) such
that R < Φ(P ). Since R ∈ B, there exists R1 ∈ A such that R = Φ(R1).
By Lemma 2.5, from Φ(R1) < Φ(P ) we obtain R1 < P . Since P is rank-1,
so rank R1 = 0, that implies R1 = 0 and then R = 0. This contradiction
show rank Φ(P ) = 1. Hence Φ(P1(X)) ⊆ P1(Y ). Moreover, Φ−1 has the same
property of Φ. Therefore Φ(P1(X)) = P1(Y ). ¤

Lemma 2.7. Φ(N1(X)) = N1(Y ).

Proof. Let N = x ⊗ f ∈ N1(X) for some nonzero x ∈ X and nonzero f ∈ X ′

such that f(x) = 0. Then Φ(N) ∈ N(X) by Lemma 2.2. Take f1 ∈ X ′ such
that f1(x) = 1. If Q = x⊗f1, then Q and Q+N are in P1(X). So by Lemma 2.6
we can write Φ(Q) = y1 ⊗ g1 and Φ(Q + N) = y2 ⊗ g2 for some y1, y2 ∈ X and
g1, g2 ∈ X ′ such that g1(y1) = g2(y2) = 1. Put P = 1

2 ((Q + N) + Q). It’s clear
that P ∈ P1(X) and then by Lemma 2.6, Φ(P ) ∈ P1(X). We Know

Φ(P ) =
1
2
(Φ(Q + N) + Φ(Q)) =

1
2
(y1 ⊗ g1 + y2 ⊗ g2).

It follows that either y1 and y2 or g1 and g2 are linearly dependent. If y1 and
y2 are linearly dependent, then we may assume that y1 = y2. Thus

Φ(P ) =
1
2
y1 ⊗ (g1 + g2)

that implies g1(y1) + g2(y1) = 2. Since g1(y1) = 1, we obtain g2(y1) = 1. Thus
Φ(N) = Φ(Q + N) − Φ(Q) = y1 ⊗ (g1 − g2) and (g1 − g2)(y1) = 0. Hence
Φ(N) ∈ N1(X). By similar discussion we obtain the same result if g1 and g2

are linearly dependent. The proof is complete. ¤

We next assume that φ is linear.

Lemma 2.8. Φ(F1(X)) = F1(Y ) and Φ(F (X)) = F (Y ).
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Proof. Since every non-nilpotent rank-1 operator is a nonzero scalar multiple of
rank-1 idempotent operator, we know that Φ(F1(X)) = F1(Y ) by Lemmas 2.6
and 2.7 and also by linearity of Φ. Moreover every finite-rank operator can be
written as a linear combination of finitely many rank-1 operators. It follows
from the linear property of Φ that Φ(F (X)) = F (Y ). ¤

Proof of Theorem 1.1. Now by the mentioned properties of Φ, Theorem 1.2 in
[4] assures us that either

(i) there exist linear transformations A : X −→ Y and C : X ′ −→ Y ′ such
that Φ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X ′; or

(ii) there exist linear transformations A : X ′ −→ Y and C : X −→ Y ′ such
that Φ(x⊗ f) = Af ⊗ Cx for all x ∈ X and f ∈ X ′.

Since Φ |F (X) is bijective, in both cases, A and C are bijective. Suppose
(1) holds. By Lemmas 2.6 and 2.7 and the linearity of Φ, it can be shown
that Cf(Ax) = f(x) for all x ∈ X and f ∈ X ′, which implies that C is the
adjoint of A−1, and hence C is bounded. Thus, A−1 and A are bounded too.
Furthermore, for any y ∈ X,

Φ(x⊗ f)y = (Ax⊗ Cf)y = (Cf)(y)Ax = f(A−1y)Ax = A(x⊗ f)A−1y.

Thus Φ(T ) = ATA−1 for all rank-1 operator T and so the assertion follows
easily by linearity of Φ.

Suppose (ii) holds. Then by a similar argument, we can show that Φ(T ) =
AT ′A−1 for all rank-1 operator T and hence Φ(T ) = AT ′A−1 for all T ∈ F (X).
The proof is complete. ¤

Proof of Theorem 1.2. The sufficient part is obvious. Let Φ be a linear map on
Mn preserving idempotent operators in both directions. It is easy to check that
all of the above lemmas are true when X be a Banach space with dim X ≥ 2.
Then by Lemma 2.1, Φ is injective and thus surjective. So by these and another
properties of Φ that have been mentioned by above lemmas, again Theorem 1.2
in [4] assures us the same mentioned two cases in the above proof occur. If (i)
holds, then we easily have that Φ(T ) = ATB for all T ∈ Mn. It is clear that
B = A−1. We have the form (1).

If (ii) holds, then we similarly have that Φ(T ) = AT tA−1 for all T ∈ Mn.
However this can not occur if n ≥ 3. Thus in this case we have n = 2. The
proof is complete. ¤

Since B(X) is a standard operator algebra, so we can have following result.

Theorem 2.9. Let X and Y be complex infinite-dimensional Banach spaces
and Φ : B(X) −→ B(Y ) be a linear map. If Φ preserves idempotent operators
in both directions, then one of the following forms hold.

(1) There exists a bijective bounded linear or conjugate linear operator A :
X −→ Y such that

Φ(T ) = ATA−1
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for all T ∈ F (X), or
(2) there exists a bijective bounded linear or conjugate linear operator A :

X ′ −→ Y such that
Φ(T ) = AT ′A−1

for all T ∈ F (X).
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