LINEAR MAPS PRESERVING IDEMPOTENT OPERATORS

Ali Taghavi and Roja Hosseinzadeh

Abstract

Let A and B be some standard operator algebras on complex Banach spaces X and Y, respectively. We give the concrete forms of linear idempotence preserving maps $\Phi: A \longrightarrow B$ on finite-rank operators.

1. Introduction

The study of linear maps on operator algebras preserving certain properties or subsets is a topic which attracts much attention of many authors. Let $B(X)$ and $B(Y)$ be the algebras of all bounded linear operators on complex Banach spaces X and Y, respectively. In [5], the additive idempotence preserving surjections $\Phi: B(X) \longrightarrow B(Y)$ which have another several properties, are considered. Also in [3] and [7] the concrete forms of surjective maps on $B(X)$ which preserves the nonzero idempotency of products of operators have been given.

Recall that a standard operator algebra on X is a norm closed subalgebra of $B(X)$ which contains the identity and all finite-rank operators. In this paper, we consider linear surjections between standard operator algebras such that preserve idempotent operators. Let $P(X)=\left\{P \in B(X): P^{2}=P\right\}$ be the set of all idempotent operators and $N(X)=\left\{N \in B(X): N^{k}=\right.$ 0 for some positive integer $k\}$ be the set of all nilpotent operators. We denote by $P_{1}(X)$ and $N_{1}(X)$ the set of all rank-1 idempotent operators and the set of all rank-1 nilpotent operators in $B(X)$, respectively. If X has dimension n with $2 \leq n<\infty, B(X)$ is identified with the algebra M_{n} of $n \times n$ complex matrices. Let X^{\prime} denote the dual space of X and $\operatorname{dim} X$ denote the dimension of X. For an operator $T \in B(X), R(T)$ and $\operatorname{rank} T$ denote the range and rank of T, respectively. Let $F(X)$ and $F_{1}(X)$ denote the set of all finite-rank operators and the set of all rank-1 operators in $B(X)$, respectively. For every nonzero $x \in X$ and $f \in X^{\prime}$, the symbol $x \otimes f$ stands for the rank- 1 linear operator on X defined by $(x \otimes f) y=f(y) x$ for any $y \in X$. Note that every rank-1 operator in $B(X)$ can be written in this way. The rank-1 operator $x \otimes f$ is an idempotent if and only if $f(x)=1$ and $x \otimes f$ is an nilpotent if and only if $f(x)=0$. Given

[^0]$P, Q \in P(X)$, we say $P<Q$ if $P Q=Q P=P$ and $P \neq Q$. In addition, we say that P and Q are orthogonal if $P Q=Q P=0$.

The aim of this paper is to prove the following theorems.
Theorem 1.1. Let A and B be some standard algebras on complex infinitedimensional Banach spaces X and Y, respectively. Also let $\Phi: A \longrightarrow B$ be a linear surjective map. If Φ preserves idempotent operators in both direction, then one of the following forms hold.
(1) There exists a bijective bounded linear or conjugate linear operator A : $X \longrightarrow Y$ such that

$$
\Phi(T)=A T A^{-1}
$$

for all $T \in F(X)$, or
(2) there exists a bijective bounded linear or conjugate linear operator A : $X^{\prime} \longrightarrow Y$ such that

$$
\Phi(T)=A T^{\prime} A^{-1}
$$

for all $T \in F(X)$, where T^{\prime} denote the dual operator of T.
Note that the following theorem was proved in [5]. But in this note we show it is a consequence of above the theorem.

Theorem 1.2. Let Φ be a linear map on M_{n}. Then Φ preserves idempotent operators in both direction if and only if there exists an invertible $A \in M_{n}$ such that one of the following forms hold.
(1) $\Phi(T)=A T A^{-1}$ for all $T \in M_{n}$;
(2) $n=2$ and $\Phi(T)=A T^{t} A^{-1}$ for all $T \in M_{n}$, where A^{t} denotes the transpose of A.

Note that, linearity of $\left.\Phi\right|_{F(X)}$ in main theorems is enough.

2. Proofs

Assume that X and Y are complex infinite dimensional Banach spaces, A and B are some standard algebras and $\Phi: A \longrightarrow B$ is an additive map which preserves idempotent operators in both directions.

First we prove some elementary results which are useful in the proofs of main theorems.

Lemma 2.1. Φ is injective.
Proof. Assume on the contrary that there exists a nonzero operator $T \in A$ such that $\Phi(T)=0$. Then T is idempotent and it is clear that there exists an idempotent operator S such that $T+S$ is not idempotent. By the hypothesis, since Φ preserves idempotent operators in both directions, $\Phi(T+S)=\Phi(S)$ is not idempotent. This is a contradiction and hence Φ is injective.

Lemma 2.2. Let $N \in A$ be of finite-rank and $N^{2}=0$. Then $\Phi(N)^{2}=0$.

Proof. We know that $R(N)$ is finite dimensional. So we have $X=R(N) \oplus M$ for some closed subspace M of X. Thus by this decomposition N has the following operator matrix

$$
N=\left(\begin{array}{cc}
0 & N_{1} \\
0 & 0
\end{array}\right)
$$

Put

$$
P=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

It is clear that $P+n N \in P(X)$ for all $n \in N$. It's clear that $\operatorname{dim} R(P)=$ $\operatorname{dim} R(N)$. So $P \in A$ and hence $P+n N \in A$ for all $n \in N$. Thus $(\Phi(P)+$ $n \Phi(N)) \in P(Y)$ for all $n \in N$. That is,

$$
\Phi(P)+n \Phi(N)=(\Phi(P))^{2}+n(\Phi(P) \Phi(N)+\Phi(N) \Phi(P))+n^{2}(\Phi(N))^{2}
$$

for all $n \in N$. Setting $n=1$ and $n=2$ in last the equality yield

$$
\begin{gathered}
\Phi(N)=\Phi(P) \Phi(N)+\Phi(N) \Phi(P)+(\Phi(N))^{2} \\
2 \Phi(N)=2(\Phi(P) \Phi(N)+\Phi(N) \Phi(P))+4(\Phi(N))^{2}
\end{gathered}
$$

that imply $\Phi(N)^{2}=0$ and hence the proof is complete.
We next assume that Φ is surjective.
Lemma 2.3. $\Phi(I)=I$.
Proof. Since $I \in B$, by surjectivity of Φ, there exists $T \in A$ such that $\Phi(T)=I$. Assume on the contrary that $T \neq I$. Then T is idempotent and there exists an idempotent operator S such that $T-S$ is not idempotent. By the hypothesis, since Φ preserves idempotent operators in both directions, $\Phi(T-S)=I-\Phi(S)$ is not idempotent. This is a contradiction and hence $\Phi(I)=I$.

Lemma 2.4. Φ preserves the orthogonality of idempotents in both directions.
Proof. If $P, Q \in A$ are the idempotent operators such that $P \perp Q$, then $P+Q \in$ $P(X)$ and hence $\Phi(P)+\Phi(Q) \in P(Y)$. Since $\Phi(P), \Phi(Q) \in P(Y)$, we obtain

$$
\Phi(P) \Phi(Q)+\Phi(Q) \Phi(P)=0
$$

Thus we have

$$
\Phi(P) \Phi(Q) \Phi(P)+\Phi(Q) \Phi(P)=0
$$

and

$$
\Phi(P) \Phi(Q)+\Phi(P) \Phi(Q) \Phi(P)=0
$$

These together imply that

$$
\Phi(P) \Phi(Q) \Phi(P)=0
$$

and hence

$$
\Phi(P) \Phi(Q)=\Phi(Q) \Phi(P)=0
$$

that implies $\Phi(P) \perp \Phi(Q)$. The converse is similar. The proof is complete.
Lemma 2.5. Φ preserves the order of idempotents in both directions.

Proof. If $P, Q \in A$ are the idempotent operators such that $P<Q$, then

$$
(Q-I) P=P(Q-I)=0
$$

and so $P \perp(Q-I)$. By Lemmas 2.4 and 2.3 we obtain

$$
\Phi(P) \perp(\Phi(Q)-I)
$$

that is,

$$
\Phi(P)(\Phi(Q)-I)=(\Phi(Q)-I) \Phi(P)=0
$$

This implies

$$
\Phi(P) \Phi(Q)=\Phi(Q) \Phi(P)=\Phi(P)
$$

that is,

$$
\Phi(P)<\Phi(Q)
$$

The converse is similar. The proof is complete.
Lemma 2.6. $\Phi\left(P_{1}(X)\right)=P_{1}(Y)$.
Proof. If $P \in P_{1}(X)$ and $\operatorname{rank} \Phi(P) \geq 2$, then there exists $R \in P_{1}(Y)$ such that $R<\Phi(P)$. Since $R \in B$, there exists $R_{1} \in A$ such that $R=\Phi\left(R_{1}\right)$. By Lemma 2.5, from $\Phi\left(R_{1}\right)<\Phi(P)$ we obtain $R_{1}<P$. Since P is rank-1, so rank $R_{1}=0$, that implies $R_{1}=0$ and then $R=0$. This contradiction show $\operatorname{rank} \Phi(P)=1$. Hence $\Phi\left(P_{1}(X)\right) \subseteq P_{1}(Y)$. Moreover, Φ^{-1} has the same property of Φ. Therefore $\Phi\left(P_{1}(X)\right)=P_{1}(Y)$.
Lemma 2.7. $\Phi\left(N_{1}(X)\right)=N_{1}(Y)$.
Proof. Let $N=x \otimes f \in N_{1}(X)$ for some nonzero $x \in X$ and nonzero $f \in X^{\prime}$ such that $f(x)=0$. Then $\Phi(N) \in N(X)$ by Lemma 2.2. Take $f_{1} \in X^{\prime}$ such that $f_{1}(x)=1$. If $Q=x \otimes f_{1}$, then Q and $Q+N$ are in $P_{1}(X)$. So by Lemma 2.6 we can write $\Phi(Q)=y_{1} \otimes g_{1}$ and $\Phi(Q+N)=y_{2} \otimes g_{2}$ for some $y_{1}, y_{2} \in X$ and $g_{1}, g_{2} \in X^{\prime}$ such that $g_{1}\left(y_{1}\right)=g_{2}\left(y_{2}\right)=1$. Put $P=\frac{1}{2}((Q+N)+Q)$. It's clear that $P \in P_{1}(X)$ and then by Lemma 2.6, $\Phi(P) \in P_{1}(X)$. We Know

$$
\Phi(P)=\frac{1}{2}(\Phi(Q+N)+\Phi(Q))=\frac{1}{2}\left(y_{1} \otimes g_{1}+y_{2} \otimes g_{2}\right) .
$$

It follows that either y_{1} and y_{2} or g_{1} and g_{2} are linearly dependent. If y_{1} and y_{2} are linearly dependent, then we may assume that $y_{1}=y_{2}$. Thus

$$
\Phi(P)=\frac{1}{2} y_{1} \otimes\left(g_{1}+g_{2}\right)
$$

that implies $g_{1}\left(y_{1}\right)+g_{2}\left(y_{1}\right)=2$. Since $g_{1}\left(y_{1}\right)=1$, we obtain $g_{2}\left(y_{1}\right)=1$. Thus $\Phi(N)=\Phi(Q+N)-\Phi(Q)=y_{1} \otimes\left(g_{1}-g_{2}\right)$ and $\left(g_{1}-g_{2}\right)\left(y_{1}\right)=0$. Hence $\Phi(N) \in N_{1}(X)$. By similar discussion we obtain the same result if g_{1} and g_{2} are linearly dependent. The proof is complete.

We next assume that ϕ is linear.
Lemma 2.8. $\Phi\left(F_{1}(X)\right)=F_{1}(Y)$ and $\Phi(F(X))=F(Y)$.

Proof. Since every non-nilpotent rank-1 operator is a nonzero scalar multiple of rank-1 idempotent operator, we know that $\Phi\left(F_{1}(X)\right)=F_{1}(Y)$ by Lemmas 2.6 and 2.7 and also by linearity of Φ. Moreover every finite-rank operator can be written as a linear combination of finitely many rank-1 operators. It follows from the linear property of Φ that $\Phi(F(X))=F(Y)$.

Proof of Theorem 1.1. Now by the mentioned properties of Φ, Theorem 1.2 in [4] assures us that either
(i) there exist linear transformations $A: X \longrightarrow Y$ and $C: X^{\prime} \longrightarrow Y^{\prime}$ such that $\Phi(x \otimes f)=A x \otimes C f$ for all $x \in X$ and $f \in X^{\prime}$; or
(ii) there exist linear transformations $A: X^{\prime} \longrightarrow Y$ and $C: X \longrightarrow Y^{\prime}$ such that $\Phi(x \otimes f)=A f \otimes C x$ for all $x \in X$ and $f \in X^{\prime}$.

Since $\left.\Phi\right|_{F(X)}$ is bijective, in both cases, A and C are bijective. Suppose (1) holds. By Lemmas 2.6 and 2.7 and the linearity of Φ, it can be shown that $C f(A x)=f(x)$ for all $x \in X$ and $f \in X^{\prime}$, which implies that C is the adjoint of A^{-1}, and hence C is bounded. Thus, A^{-1} and A are bounded too. Furthermore, for any $y \in X$,

$$
\Phi(x \otimes f) y=(A x \otimes C f) y=(C f)(y) A x=f\left(A^{-1} y\right) A x=A(x \otimes f) A^{-1} y
$$

Thus $\Phi(T)=A T A^{-1}$ for all rank-1 operator T and so the assertion follows easily by linearity of Φ.

Suppose (ii) holds. Then by a similar argument, we can show that $\Phi(T)=$ $A T^{\prime} A^{-1}$ for all rank-1 operator T and hence $\Phi(T)=A T^{\prime} A^{-1}$ for all $T \in F(X)$. The proof is complete.

Proof of Theorem 1.2. The sufficient part is obvious. Let Φ be a linear map on M_{n} preserving idempotent operators in both directions. It is easy to check that all of the above lemmas are true when X be a Banach space with $\operatorname{dim} X \geq 2$. Then by Lemma 2.1, Φ is injective and thus surjective. So by these and another properties of Φ that have been mentioned by above lemmas, again Theorem 1.2 in [4] assures us the same mentioned two cases in the above proof occur. If (i) holds, then we easily have that $\Phi(T)=A T B$ for all $T \in M_{n}$. It is clear that $B=A^{-1}$. We have the form (1).

If (ii) holds, then we similarly have that $\Phi(T)=A T^{t} A^{-1}$ for all $T \in M_{n}$. However this can not occur if $n \geq 3$. Thus in this case we have $n=2$. The proof is complete.

Since $B(X)$ is a standard operator algebra, so we can have following result.
Theorem 2.9. Let X and Y be complex infinite-dimensional Banach spaces and $\Phi: B(X) \longrightarrow B(Y)$ be a linear map. If Φ preserves idempotent operators in both directions, then one of the following forms hold.
(1) There exists a bijective bounded linear or conjugate linear operator A : $X \longrightarrow Y$ such that

$$
\Phi(T)=A T A^{-1}
$$

for all $T \in F(X)$, or
(2) there exists a bijective bounded linear or conjugate linear operator A : $X^{\prime} \longrightarrow Y$ such that

$$
\Phi(T)=A T^{\prime} A^{-1}
$$

for all $T \in F(X)$.
Acknowledgements. This research is partially supported by the Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

References

[1] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms, and local derivations, Canad. J. Math. 45 (1993), no. 3, 483-496.
[2] _ Invertibility preserving maps preserve idempotents, Michigan Math. J. 45 (1998), no. 3, 483-488.
[3] L. Fang, G. Ji, and Y. Pang, Maps preserving the idempotency of products of operators, Linear Algebra Appl. 426 (2007), no. 1, 40-52.
[4] J. C. Hou, Rank-preserving linear maps on $B(X)$, Sci. China Ser. A 32 (1989), no. 8, 929-940.
[5] B. Kuzma, Additive idempotence preservers, Linear Algebra Appl. 355 (2002), 103-117.
[6] M. Omladič and P. Šemrl, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182 (1993), 239-256.
[7] M. Wang, L. Fang, G. Ji, and Y. Pang, Linear maps preserving idempotency of products or triple Jordan products of operators, Linear Algebra Appl. 429 (2008), no. 1, 181-189.

Ali Taghavi
Department of Mathematics
Faculty of Basic Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran

E-mail address: taghavi@umz.ac.ir
Roja Hosseinzadeh
Department of Mathematics
Faculty of Basic Sciences
University of Mazandaran
P. O. Box 47416-1468, Babolsar, Iran

E-mail address: ro.hosseinzadeh@umz.ac.ir

[^0]: Received February 20, 2009; Revised August 22, 2009.
 2000 Mathematics Subject Classification. 46J10, 47B48.
 Key words and phrases. standard algebra, linear preserver, idempotent.

