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INJECTIVE LINEAR MAPS ON T∞(F ) THAT PRESERVE

THE ADDITIVITY OF RANK

Roksana S lowik

Abstract. We consider T∞(F ) – the space of upper triangular infinite
matrices over a field F . We investigate injective linear maps on this
space which preserve the additivity of rank, i.e., the maps φ such that
rank(x + y) = rank(x) + rank(y) implies rank(φ(x + y)) = rank(φ(x)) +
rank(φ(y)) for all x, y ∈ T∞(F ).

1. Introduction

In recent years, or even decades, many authors have dealt with the linear
preserver problem, i.e., with characterizing the linear operators on some spaces
which preserve some properties, functions or sets invariant. One of the most
intensively studied are problems concerning preserving the rank of matrices
and issues related to it.

Take into consideration the maps φ on some space S satisfying
(1.1)
rank(x+ y) = rank(x)+ rank(y) ⇒ rank(φ(x+ y)) = rank(φ(x))+ rank(φ(y))

for all x, y ∈ S.
If (1.1) holds, then we say that φ preserves the additivity of rank, or we say

that φ preserves pairs x, y satisfying extreme rank properties (as in [4] and
[16]). It was shown in [9] that the above condition is equivalent to preserving
the substractivity of rank. It is also worth mentioning that the rank additivity
has some connections with the range additivity (see [1]).

The properties of the additivity of rank were studied in [10]. It was a nat-
ural question to arise how maps that preserve the additivity of rank can be
described. Some authors applied partial orderings to solve it - this was done
for instance in [8], some made use of properties of ranks of finite matrices - like
in [2] (for more information about subspaces of matrices with the same rank
see [3, 15]). This problem was also generalized to describing all additive maps
satisfying (1.1) and solved in many cases in works [6, 7, 13, 14].
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In this article we would like to consider the raised above problem in T∞(F )
– the space of upper triangular infinite matrices over a field F . Many linear
preserver problems for Tn(F ) – the space of upper triangular matrices of di-
mension n over F , were solved in [5, 11]. However, we need to note that quite
often the arguments given for finite dimensional spaces do not apply to infinite
dimensional ones. To establish that difference, let us note that in the space of
all square matrices over a field F all nonzero maps fulfilling (1.1) are given ei-
ther by the formula φ(x) = axb or φ(x) = axT b, where a and b are nonsingular
matrices. In our case the result is somewhat different. We will prove:

Theorem 1.1. Let F be a field. If φ is an injective linear map on T∞(F )
satisfying condition (1.1), then either

(1) T∞(F ) contains some matrices x such that rank(x) < ∞ and

rank(φ(x)) = ∞ or

(2) there exists a number k ∈ N for which we have

(1.2) φ(x) = a1xb1 + · · ·+ akxbk,

where a1, b1, . . ., ak, bk are infinite matrices such that

• aixbi ∈ T∞(F ) for all 1 ≤ i ≤ k and x ∈ T∞(F ),
• the columns of all ai form a linearly independent set,

• the rows of all bi form a linearly independent set.

2. Proofs of results

Let enm stand for the infinite matrix with 1 in the position (n,m) and 0 in

every other position, and let e∞ be a matrix equal to
∑

n∈N enn. By M
fin
∞×1(F )

we denote the space of all vectors of the form (x1, x2, . . .)
T with xn ∈ F for

all n ∈ N, whose support is finite (xT is the transposition of x). We write
M1×∞(F ) for the space of all vectors of the form (x1, x2, . . .) with xn ∈ F . By

en we denote the vector from M
fin
∞×1(F ) such that (en)n = 1 and (en)i = 0 for

i 6= n. The symbol fn is used for eTn . Clearly, M
fin
∞×1(F ), M1×∞(F ) are linear

spaces. Moreover, {en : n ∈ N} is a basis of Mfin
∞×1(F ).

Moreover, by 〈ai : i ∈ I〉 we understand the subspace generated by the set
{ai : i ∈ I}.

We also note that 0 may denote the element of a field, as well as the zero
vector of any of aforementioned spaces; its exact meaning will follow from the
context.

If we write that some infinite matrix x is an infinite sum of matrices xi such
that for all pairs n, m the condition (xi)nm 6= 0 only for a finite number of
indices i, we simply mean that

xnm =
∑

i, (xi)nm 6=0

(xi)nm,

i.e., such Σ is rather a notation than a symbol of an algebraic operation.
We begin with two simple observations.



RANK ADDITIVITY PRESERVERS ON T
∞

(F ) 279

Remark 2.1. Every nonzero x ∈ T∞(F ) can be written as a sum
∑

i∈I uivi,
where

• I ⊆ N,

• ui ∈ M
fin
∞×1(F ), vi ∈ M1×∞(F ) for all i ∈ I,

• {ui : i ∈ I} and {vi : i ∈ I} are linearly independent sets,
• uivi ∈ T∞(F ).

In particular, if rank(x) is finite, then the set I is finite as well.

Lemma 2.1. Let φ be an injective linear map satisfying condition (1.1).
If x ∈ T∞(F ) has rank n (n ∈ N), then rank(φ(x)) ≥ n.

Proof. Let x have rank one. Since φ is linear and injective we have φ(x) 6= 0,
so rank(φ(x)) ≥ 1.

Suppose now that we have proved our claim for all matrices x with rank
at most n (n ≥ 1). Consider a matrix x having rank equal to n + 1. It can
be written as a sum of matrices y and z, whose ranks are equal to n and 1
respectively. Thus rank(x) = rank(y + z) = rank(y) + rank(z). As φ fulfills
(1.1), the latter fact and the inductive assumption yield

rank(φ(x)) = rank(φ(y + z)) = rank(φ(y)) + rank(φ(z)) ≥ n+ 1.

This completes the proof. �

Now we cite a result that follows from proofs given in [12].

Corollary 2.1. Let φ : T∞(F ) → T∞(F ) be a linear map. Assume that

there exist u(n) ∈ M
fin
∞×1(F ), v(m) ∈ M1×∞(F ) such that {u(n) : n ∈ N},

{v(m) : m ∈ N} are linearly independent sets and φ(enm) = u(n)v(m). Then

φ(
∑

n≤m xnmenm) =
∑

n≤m xnmφ(enm).

After the above preparations we give a proof of our main result.

Proof of Theorem 1.1. Consider an arbitrary pair of natural numbers n, m,
n ≤ m. If rank(φ(enm)) = ∞, then the first point of the claim holds. Suppose
then the opposite – that rank(φ(enm)) < ∞ for all n ≤ m. In this case we can
write all these matrices in the following form.

φ(enm) =

I(n,m)
∑

i=1

ui(n,m)vi(n,m),

where ui(n,m) ∈ M
fin
∞×1(F ), vi(n,m) ∈ M1×∞(F ) for all i, 1 ≤ i ≤ I(n,m),

and by Lemma 2.1 I(n,m) ∈ N. Moreover,

{ui(n,m) : i ∈ I(n,m)} , {vi(n,m) : i ∈ I(n,m)}

are both linearly independent sets.
Notice that since φ(enm) ∈ T∞(F ), we may assume that for any i the product

ui(n,m)vi(n,m) is in T∞(F ).
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Let now n,m, k, l ∈ N be such that n ≤ m, k ≤ l, n 6= k, m 6= l. Clearly
rank(enm + ekl) = rank(enm) + rank(ekl), so by (1.1)

rank(

I(n,m)
∑

i=1

ui(n,m)vi(n,m) +

I(k,l)
∑

i=1

ui(k, l)vi(k, l))

= rank(

I(n,m)
∑

i=1

ui(n,m)vi(n,m)) + rank(

I(k,l)
∑

i=1

ui(k, l)vi(k, l)).

Therefore the set

{ui(n,m) : 1 ≤ i ≤ I(n,m)} ∪ {ui(k, l) : 1 ≤ i ≤ I(k, l)}

is linearly independent, as well as

{vi(n,m) : 1 ≤ i ≤ I(n,m)} ∪ {vi(k, l) : 1 ≤ i ≤ I(k, l)} .

Assume now that m ≤ l and consider the triple enm, enl, ekl. From

rank(enm + enl + ekl) = rank(enm + enl) + rank(ekl),

rank(enm + enl + ekl) = rank(enm) + rank(enl + ekl),

it follows that

rank(

I(n,m)
∑

i=1

ui(n,m)vi(n,m) +

I(n,l)
∑

i=1

ui(n, l)vi(n, l))

+ rank(

I(k,l)
∑

i=1

ui(k, l)vi(k, l))

= rank(

I(n,m)
∑

i=1

ui(n,m)vi(n,m) +

I(n,l)
∑

i=1

ui(n, l)vi(n, l)

+

I(k,l)
∑

i=1

ui(k, l)vi(k, l))

= rank(

I(n,m)
∑

i=1

ui(n,m)vi(n,m)) + rank(

I(n,l)
∑

i=1

ui(n, l)vi(n, l)

+

I(k,l)
∑

i=1

ui(k, l)vi(k, l)).

As all ranks in the above equations are finite we must either have

(2.1)
〈ui(n, l) : 1 ≤ i ≤ I(n, l)〉 ⊆ 〈ui(n,m) : 1 ≤ i ≤ I(n,m)〉

and
〈vi(n, l) : 1 ≤ i ≤ I(n, l)〉 ⊆ 〈vi(k, l) : 1 ≤ i ≤ I(k, l)〉
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or

(2.2)
〈ui(n, l) : 1 ≤ i ≤ I(n, l)〉 ⊆ 〈ui(k, l) : 1 ≤ i ≤ I(k, l)〉

and
〈vi(n, l) : 1 ≤ i ≤ I(n, l)〉 ⊆ 〈vi(n,m) : 1 ≤ i ≤ I(n,m)〉.

Suppose that for some n, m, k, l it holds (2.1) and for some it holds (2.2).
More precisely, assume that for some n, m, k, l it holds (2.1), and for some n′,
m′, k′, l′ it holds (2.2). (With no loss of generality we assume that n ≤ n′.)
Then

〈ui(n, l) : 1 ≤ i ≤ I(n, l)〉 ⊆ 〈ui(k, l) : 1 ≤ i ≤ I(k, l)〉
and

〈ui(n
′, l′) : 1 ≤ i ≤ I(n′, l′)〉 ⊆ 〈ui(k

′, l′) : 1 ≤ i ≤ I(k′, l′)〉.

Hence

〈ui(n, l
′) : 1 ≤ i ≤ I(n, l′)〉

⊆ 〈vi(n,m) : 1 ≤ i ≤ I(n,m)〉 ∩ 〈vi(k
′, l′) : 1 ≤ i ≤ I(k′, l′)〉.

However we have already learnt that the sets

〈vi(n,m) : 1 ≤ i ≤ I(n,m)〉, 〈vi(k
′, l′) : 1 ≤ i ≤ I(k′, l′)〉

are linearly independent as well as their union. This yields that their inter-
section consists only of the zero matrix, i.e., φ(enl′) = 0 – this contradicts the
injectivity.

Assume now that (2.2) holds. Consider 〈vi(1,m) : 1 ≤ i ≤ I(1,m)〉. Let
si be the smallest number such that (vi(1,m))si 6= 0. Notice that there exist
numbers p ∈ N and i, 1 ≤ i ≤ I(1,m), such that p > si and (ui(1,m))p 6=
0. This forces (ui(1,m)vi(1,m))psi 6= 0 and consequently ui(1,m)vi(1,m) /∈
T∞(F ) – a contradiction. Hence it is (2.1) that must hold.

Notice that from (2.1) we get that I(n,m) ≤ I(n, l) and I(n, l) ≤ I(k, l)
for any n ≤ m < l, k ≤ l, i.e., the numbers I(n,m) are increasing when n is
increasing and m is fixed, and analogously, in the case when m is increasing
and n fixed. Repeating the arguments given above for enl, enp, ekl and for
enl, ekl, ekp, where p > l, we obtain that I(n,m) are decreasing when n is
increasing and m is fixed, and the same in the case when m is increasing and
n fixed. Hence I(n′,m) = I(n,m) = I(n,m′) for all n, m, n′, m′ such that
n, n′ ≤ m, n ≤ m,m′. Denote this number by I. We have

(2.3)
〈ui(n,m) : 1 ≤ i ≤ I〉 = 〈ui(n, l) : 1 ≤ i ≤ I〉,

〈vi(n,m) : 1 ≤ i ≤ I〉 = 〈vi(k,m) : 1 ≤ i ≤ I〉.

For fixed n denote by u1(n), u2(n), . . ., uI(n) the vectors u1(n, n), u2(n, n),
. . ., uI(n, n). Since (2.3) is fulfilled, there exist vectors v′i(n,m) ∈ M1×∞(F )
such that

φ(enm) =

I
∑

i=1

ui(n,m)vi(n,m) =

I
∑

i=1

ui(n)v
′
i(n,m).
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Notice that since φ(enn), φ(enn + enm) ∈ T∞(F ) and ui(n)v
′
i(n, n) ∈ T∞(F ),

the latter substitution does not change the fact that ui(n)v
′
i(n,m) ∈ T∞(F ).

Now we wish to prove that for any i, 1 ≤ i ≤ I, 〈v′i(n,m)〉 = 〈v′i(n
′,m)〉 for

all n, n′ ≤ m. Observe that since for n > 1 we have

rank(e1m + e1l + e1s + enl + ens)

= rank(e1m + e1l + e1s) + rank(enl + ens)

= rank(e1m) + rank(e1l + e1s + enl + ens),

then

(2.4)

rank(φ(e1m + e1l + e1s + enl + ens))

= rank(
I

∑

i=1

ui(1)(v
′
i(1,m) + v′i(1, l) + v′i(1, s)))

+ rank(

I
∑

i=1

ui(n)(v
′
i(n, l) + v′i(n, s)) = I + I = 2I.

On the other hand

rank(φ(e1m + e1l + e1s + enl + ens))

= rank(

I
∑

i=1

ui(1)v
′
i(1,m))

+ rank(

I
∑

i=1

ui(1)v
′
i(1, l) +

I
∑

i=1

ui(1)v
′
i(1, s) +

I
∑

i=1

ui(n)v
′
i(n, l)+

+

I
∑

i=1

ui(n)v
′
i(n, s))

= I + rank(
I

∑

i=1

ui(1)v
′
i(1, l) +

I
∑

i=1

ui(1)v
′
i(1, s) +

I
∑

i=1

ui(n)v
′
i(n, l)+

+

I
∑

i=1

ui(n)v
′
i(n, s))

= I + rank(

I
∑

i=1

ui(1)(v
′
i(1, l) + v′i(1, s)) +

I
∑

i=1

ui(n)(v
′
i(n, l) + v′i(n, s))).

By (2.4) the rank of

I
∑

i=1

ui(1)(v
′
i(1, l) + v′i(1, s)) +

I
∑

i=1

ui(n)(v
′
i(n, l) + v′i(n, s))
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must be equal to I. This is possible only if for every i there exists exactly one
j such that

v′i(n, l) + v′i(n, s) = α(v′j(1, l) + v′j(1, s))

for some α ∈ F ∗. Since

〈v′i(n, l) : 1 ≤ i ≤ I〉 ∋ v′i(n, l)− αv′j(n1, l)

= − v′i(n, s) + αv′j(n1, s) ∈ 〈v′i(n, s) : 1 ≤ i ≤ I〉

and 〈v′i(n, l) : 1 ≤ i ≤ I〉 ∩ 〈v′i(n, s) : 1 ≤ i ≤ I〉 = {0} for l 6= s, we must have
v′i(n, l) = αv′j(1, l) and v′i(n, s) = αv′j(1, s). Now we change the enumeration
of u1(n), . . ., uI(n) for the one satisfying the following condition. If v′i(n, s) =
αv′j(1, s), then we replace ui(n) with uj(n). Then we have v′i(n, l) = αv′i(1, l).

As α is the same for all i, it depends only on n. Hence we may denote by u′
i(n)

the vectors αui(n). Moreover, denote by vi(m) the vectors v′i(n,m).
Summing up, we can write that for each n, m there exist u1(n), u2(n), . . .,

uI(n) ∈ M
fin
∞×1(F ), v1(m), v2(m), . . ., vI(m) ∈ M1×∞(F ) such that φ(enm) =

∑I

i=1 u
′
i(n)vi(m). Consider now the maps φi : T∞(F ) → T∞(F ) (1 ≤ i ≤ I)

defined by the conditions φi(enm) = u′
i(n)vi(m). Clearly, φ = φ1 + · · · + φI .

By Corollary 2.1 we have φi(x) =
∑

n≤m xnmu′
i(n)vi(m). Define the matrices

ai, bi by the following

(ai)nm = (ui(m))n, (bi)nm = (vi(n))m.

Then we have φi(x) = aixbi. Consequently φ(x) =
∑I

i=1 aixbi. �

Let us now present some examples.

Example 2.1. Let φ be such that

φ













x11 x12 · · ·
x22

. . .












=















x11 x11 x12 x12

x11 0 x12

x22 x22

x22

. . .















.

This map preserves the additivity of rank. According to the notation from our
proof we have

u1(n) = e2n−1, v1(m) = f2m−1 + f2m, u2(n) = e2n, v2(m) = f2m.

Hence

a1 =



















1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

. . .



















, b1 =















1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

. . .















,
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a2 =



















0 0 0
1 0 0
0 0 0
0 1 0
0 0 0

. . .



















, b2 =











0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

. . .











.

Example 2.2. Let φ be given by

u1(2n− 1) =
∑−2n+2

i=−3n+3 en2+i, u1(2n) =
∑−n

i=−2n+3 en2+i

v1(m) =
∑−m+2

i=−3m+4 fm2+i

2

, for n,m ∈ N,

i.e.,

φ





















x11 x12 x13 · · ·
x22 x23

x33

. . .





















=















x11 x12 x12 x13 x13 x13

x22 x22 x23 x23 x23

x33 x33 x33

x33 x33 x33

. . .















.

Then φ preserves the additivity of rank. Notice that although blocks which are
images of enm are getting bigger, all φ(enm) have rank one.

The next example shows that not all maps φ of form (1.2) fulfill condition
(1.1).

Example 2.3. We put

φ





















x11 x12 x13 · · ·
x22 x23

x33

. . .





















=















x11 x12 x13 x14 · · ·
x11 + x22 x12 + x23 x13 + x24

x22 + x33 x23 + x34

x33 + x44

. . .















.

We can write that φ(x) = a1xb1 + a2xb2, where

a1 = b1 = e∞, a2 =















0 0 0 0 · · ·
1 0 0 0
0 1 0 0
0 0 1 0

. . .















, b2 =















0 1 0 0 · · ·
0 0 1 0
0 0 0 1
0 0 0 0

. . .















.
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One can observe that this φ does not preserve the additivity of rank. In par-
ticular rank(e11 + e22) = rank(e11) + rank(e22), but

rank(φ(e11 + e22)) = 3 6= 4 = rank(φ(e11)) + rank(φ(e22)).

The reason for this is that the columns of a1, a2 and rows of b1, b2 do not form
linearly independent sets.

The last two examples concern the maps φ such that φ(T∞(F )) contains
some matrices φ(x) that have infinite rank although the rank of x is finite.

Example 2.4. Consider φ given by

φ(e1n) =

∞
∑

i=1

e2i−1,2i+2n−3 for n ∈ N, φ(enm) = e2n,2m for m ≥ n ≥ 2,

i.e.,

φ





















x11 x12 x13

x22 x23

x33

. . .





















=























x11 0 x12 0 x13 0 0
0 0 0 0 0 0

x11 0 x12 0 x13

x22 0 x23 0
x11 0 x12

x33 0
. . .























.

In this case if x1n 6= 0 for any n ∈ N, then rank(φ(x)) = ∞. However, if
rank(x) < ∞ and x1n = 0 for all n, we have rank(φ(x)) < ∞.

Example 2.5. Let

φ(enm) =

∞
∑

i=1

e2m−1(2i−1),2m−1(2i−1)+n−1.

We have

φ





















x11 x12 x13 . . .

x22 x23

x33

. . .





















=























x11 0 0
x12 x22 0

x11 0 0
x13 x23 x33

x11 0 0
x12 x22

. . .























.

In this case ranks of all matrices in φ(T∞(F )), except φ(0) = 0, are infinite.
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We wish to focus on one more issue. Consider the maps φ on T∞(F ) satis-
fying the condition
(2.5)
rank(x+ y) = rank(x)+ rank(y) ⇔ rank(φ(x+ y)) = rank(φ(x))+ rank(φ(y))

for all x, y ∈ T∞(F ). On some assumptions such maps are described by the
following.

Theorem 2.1. Let φ be an injective linear map on T∞(F ) satisfying condition

rank(φ(x)) = ∞ if only if rank(x) = ∞. Such φ satisfies (1.1) if and only if it

satisfies (2.5).

Proof. Obviously, it suffices to prove that if φ fulfills (1.1), then from rank(φ(x+
y)) = rank(φ(x))+ rank(φ(y)), it follows that rank(x+ y) = rank(x)+ rank(y).

Consider then φ1, . . ., φI which were defined as in the proof of Theorem 1.1.
Let x be a matrix of rank one. From the construction of ai, bi, we conclude

that rank(φi(x)) = 1 and rank(
∑I

i=1 φi(x)) = |I|.
Assume now that rank(x) = r + 1. Then x = y + z for some y, z such that

rank(y) = r, rank(z) = 1. By the inductive assumption

rank(φ(x)) = rank(φ(y)+φ(z)) = rank(φ(y))+ rank(φ(z)) = rI+ I = (r+1)I.

Consequently, if rank(φ(x)) = rI, then rank(x) = r.
Let us now get back to condition (2.5). Suppose that rank(φ(x + y)) =

rank(φ(x)) + rank(φ(y)).
If rank(φ(x)) or rank(φ(y)) is infinite, then rank(φ(x) + φ(y)) is infinite as

well. This implies the fact that either rank(x) or rank(y) is infinite, and so is
rank(x+ y), which yields the equality rank(x+ y) = rank(x) + rank(y).

If ranks of φ(x), φ(y) are both finite, then there exist r1, r2 ∈ N such that
rank(φ(x)) = r1I, rank(φ(y)) = r2I. Consequently rank(φ(x) + φ(y)) = (r1 +
r2)I. From these facts and the paragraph above we obtain that rank(x) = r1,
rank(y) = r2 and rank(x+ y) = r1 + r2, which completes the proof. �

At the end of the paper we wish to raise two questions that are connected
to our considerations.

Problem 2.1. How to characterize all bijective maps on T∞(F ) satisfying
(1.1)?

Problem 2.2. How to characterize all maps on T∞(F ) satisfying (1.1) that
are not injective?
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