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SPANNING COLUMN RANKS OF NON-BINARY

BOOLEAN MATRICES AND THEIR PRESERVERS

Kyung-Tae Kang and Seok-Zun Song

Abstract. For any m × n nonbinary Boolean matrix A, its spanning

column rank is the minimum number of the columns of A that spans
its column space. We have a characterization of spanning column rank-1

nonbinary Boolean matrices. We investigate the linear operators that pre-
serve the spanning column ranks of matrices over the nonbinary Boolean

algebra. That is, for a linear operator T on m × n nonbinary Boolean

matrices, it preserves all spanning column ranks if and only if there exist
an invertible nonbinary Boolean matrix P of order m and a permutation

matrix Q of order n such that T (A) = PAQ for all m × n nonbinary

Boolean matrix A. We also obtain other characterizations of the (span-
ning) column rank preserver.

1. Introduction

Let Bk be the Boolean algebra of subsets of a k element set Sk and σ1, . . . , σk
denote the singleton subsets of Sk. Union is denoted by +, and intersection
by juxtaposition; 0 denotes the null set and 1 the set Sk. In particular, B1 is
called a binary Boolean algebra. For k ≥ 2, Bk is called a non-binary Boolean
algebra.

Let Mm,n(Bk) denote the set of all m × n matrices with entries in Bk.
Addition and multiplication of matrices over Bk are defined as if it were a field.
If m = n, we use the notation Mn(Bk) instead of Mn,n(Bk).

There is a great deal of literature on the study of matrix theory over a finite
Boolean algebra. But many results are stated only for the binary Boolean
matrices. This is due in part, as Kim point out in [4] (Appendix 1), to an
isomorphism between the matrices over the Boolean algebra of subsets of a k-
element set and the k-tuples of the binary Boolean matrices. This isomorphism
allows many questions concerning matrices over an arbitrary finite Boolean
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algebra to be referred to the binary Boolean case. However there are interesting
results about the general Boolean matrices that have not been mentioned and
they differ somewhat from the binary case. In many instances, the extension
of results to the general case is not immediately obvious even though it is not
difficult to derive via the isomorphism from the binary case. In [5], Kirkland
and Pullman gave a way to derive results in the non-binary Boolean algebra
case via the isomorphism from the binary Boolean algebra case by means of a
canonical form derived from the isomorphism.

There is much literature on the study of linear operators that preserve the
ranks of matrices over several semirings ([1], [3], [5–8] and therein). Boolean
matrices also have been the subject of research by many authors.

In 1984, Beasley and Pullman [1] characterized the linear operators that
preserve the ranks of matrices over binary Boolean algebra. In 1992, Kirkland
and Pullman [5] extended the results of binary Boolean case in [1] to those of
non-binary Boolean case. The results are following:

Theorem 1.1. Let T be a linear operator onMm,n(Bk). Then T preserves the
ranks of rank-1 matrices and rank-2 matrices if and only if T is in the group of
operators generated by the congruence (if m = n, also the rotation) operators
if and only if T preserves the ranks of matrices.

The definitions of congruence operators and rotation operators in Theorem
1.1 are given in Section 3.

In 1993, Song [6] obtained characterizations of the linear operators that
preserve the column ranks of matrices over binary Boolean algebra as following:

Theorem 1.2. Let T be a linear operator on Mm,n(B1) with n ≥ m ≥ 4.
Then the following are equivalent:

(i) T preserves column ranks 1, 2 and 3;
(ii) T is a congruence operator;
(iii) T preserves the column ranks of matrices.

Also, Song and Lee [8] gave the same results as Theorem 1.2 over non-binary
Boolean algebra Bk with min{m,n} ≥ 3. But their results had an error. On
the matrices over non-binary Boolean algebra Bk, some congruence operator
does not preserve the column rank of a column rank-3 matrix (see Example
4.3). So, we shall present some revised results (see Theorem 4.6).

Recently, Song and Hwang [7] characterized the linear operators that pre-
serve the spanning column ranks of nonnegative matrices.

In this paper, we characterize the linear operators that preserve the spanning
column ranks of matrices over non-binary Boolean algebra. From now on, Bk
means non-binary Boolean algebra with k ≥ 2.

2. Preliminaries

For each A = [ai,j ] ∈ Mm,n(Bk), the p-th constituent [5] of A, Ap, is the
matrix in Mm,n(B1) whose (i, j)th entry is 1 if and only if ai,j ⊇ σp. Via the
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constituents, every matrix A can be written uniquely as
∑k
p=1 σpAp, which is

called the canonical form of A.
It follows from the uniqueness of the decomposition, and the fact that the

singleton sets are mutually orthogonal idempotents, that for all A ∈Mm,n(Bk),
all B,C ∈Mn,q(Bk), and all α ∈ Bk,

(a)(AB)p = ApBp;
(b)(B + C)p = Bp + Cp;
(c)(αA)p = αpAp

for all p = 1, . . . , k.
The Boolean rank, b(A), of a nonzero matrix A ∈Mm,n(Bk) is defined as the

least integer r such that A = BC for some B ∈Mm,r(Bk) and C ∈Mr,n(Bk).
The Boolean rank of the zero matrix is zero. In the case of B1, we refer to
b(A) as the binary Boolean rank, and denote it by b1(A). For a binary Boolean
matrix A, we have b(A) = b1(A) by definition.

Let V be a nonempty subset of Bnk =Mn,1(Bk). If V is closed under addition
and multiplication by scalars, then it is called a vector space over Bk, and
each member of V is called a vector. Lowercase, boldface letters will represent
vectors, a vector v is a column vector (vt is a row vector). The concepts of
subspaces, spanning sets, bases and dimension of a vector space V are defined
so as to coincide with familiar definition when Bk were a field.

A subset X of vectors in Bnk is linearly dependent if there exists some vector
x ∈ X such that x is a linear combination of vectors in X \ {x}. Otherwise,
X is linearly independent. Thus, any linearly independent set does not contain
the zero vector.

For any matrix A ∈ Mm,n(Bk), the column space of A is the vector space
over Bk that spanned by all columns of A.

Since B1 is canonically identified with the subsemiring {0, 1} of Bk, any
binary Boolean matrix can be considered as a matrix over both B1 and Bk.

The column rank, c(A), of A ∈ Mm,n(Bk) is the dimension of the column
space of A. The spanning column rank, sc(A), of A ∈ Mm,n(Bk) is the min-
imum cardinality of the columns of A that span its column space. As with
Boolean rank, the zero matrix is assigned column rank and spanning column
rank 0. For the binary Boolean algebra, we denote c(A) and sc(A) by c1(A)
and sc1(A), respectively for all A ∈Mm,n(B1).

It follows that

(2.1) 0 ≤ b(A) ≤ c(A) ≤ sc(A) ≤ n

for all A ∈Mm,n(Bk). Furthermore, we have

(2.2) b(A) = b(X), c(A) = c(X) and sc(A) = sc(X)

for all A ∈ Mm,n(Bk) and X =
[
A O1

O2 O3

]
, where the Oi are zero matrices of

suitable sizes.
Let µ(Bk,m, n) be the largest integer r such that for all A ∈ Mm,n(Bk),

b(A) = c(A) if b(A) ≤ r. Beasley and Pullman [2] determined the value of µ
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over B1 as follow:

(2.3) µ(B1,m, n) =

 1 if min(m,n) = 1;
3 if m ≥ 3 and n = 3;
2 otherwise.

Also, Song and Lee [8] determined the value of µ over Bk as follow:

(2.4) µ(Bk,m, n) =

{
2 if 2 = n ≤ m;
1 otherwise.

Lemma 2.1. If the columns of A ∈ Mm,n(Bk) are linearly independent, then
sc(A) = n.

Proof. The proof follows from the definition of linearly independent. �

But, Example 2.3 (below) shows that even if the columns of B ∈Mm,n(Bk)
are linearly independent, c(B) < n is possible.

Let A = [ai,j ] and B = [bi,j ] be matrices in Mm,n(Bk). Then we say that
the matrix A absorbs the matrix B if and only if ai,j ⊇ bi,j for all i = 1, . . . ,m
and j = 1, . . . , n, and we write A ⊇ B or B ⊆ A. If A ⊆ B and B ⊆ A, then
we have A = B. Similarly, for vectors a and b in Bnk , a ⊇ b can be defined
because a and b are considered as matrices in Mn,1(Bk).

For any matrix A ∈Mm,n(Bk), we write A = [a1 a2 · · ·an], where aj is the
jth column of A for j = 1, . . . , n.

Theorem 2.2. For any matrix A ∈Mm,n(B1), we have c1(A) = sc1(A).

Proof. Let A = [a1 a2 · · ·an], c1(A) = r and sc1(A) = s. By (2.1), we have
r ≤ s. So, we suffice to show that r ≥ s. Let V be the column space of A. Since
sc1(A) = s, there exists a linearly independent set X = {ah1, . . . ,ahs}, where
the ahi are columns of A such that V = span{ah1, . . . ,ahs}. Since c1(A) = r,
there exists a basis Y = {b1, . . . , br} of V. It follows that

(2.5) span{ah1, . . . ,ahs} = span{b1, . . . , br}.

Let aht be arbitrary in X. It follows from (2.5) that

(2.6) aht =

r∑
i=1

αibi and bi =

s∑
j=1

βj ahj

for some αi, βj ∈ Bk. Thus, we have

aht =

r∑
i=1

αi

( s∑
j=1

βj ahj

)
=

r∑
i=1

(αi βt)aht +

s∑
j=1,j 6=t

( r∑
i=1

αi βj

)
ahj .

Since X is linearly independent, we have
∑r
i=1(αi βt) 6= 0. That is, there exists

an index l ∈ {1, . . . , r} such that αlβt 6= 0 so that αl = βt = 1. It follows from
(2.6) that aht ⊇ b l and b l ⊇ aht, equivalently aht = b l. This shows that
X ⊆ Y , and hence r ≥ s. Therefore c1(A) = sc1(A) for all A ∈Mm,n(B1). �
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But, for the non-binary Boolean matrix, the column rank and the spanning
column rank may differ, and so the inequalities in (2.1) may be strict (see below
Example 2.3).

Let A ∈Mm,n(Bk) and B ∈Mp,q(Bk). We define the direct sum of A and B,
denoted A⊕B, as the block-diagonal matrix of the form [ A O

O B ]. Then we have
b(A⊕B) = b(A)+b(B), c(A⊕B) = c(A)+c(B) and sc(A⊕B) = sc(A)+sc(B).

Example 2.3. Consider matrices

A =

[
σ1 σ1 σ1 + σ2
0 σ1 + σ2 σ1 + σ2

]
∈M2,3(Bk) and B =

[
σ1 0
0 σ2

]
∈M2(Bk).

Then we have b(A) = 2 and c(A) = 3 (see Lemma 4.2), and thus sc(A) = 3
by (2.1). Since two columns of B are linearly independent, we have sc(B) = 2
by Lemma 2.1. But we can easily show that {[ σ1

σ2
]} is a basis of the column

space of B. Therefore we have c(B) = 1. Also, b(B) = 1 by (2.1) (in fact,
B = [ σ1

σ2
]
[
σ1 σ2

]
). Let

X = A⊕B ⊕ [0] ∈M5,6(Bk).

Then we have b(X) = 3, c(X) = 4 and sc(X) = 5. Therefore we conclude that
0 < b(X) < c(X) < sc(X) < 6.

Lemma 2.4. Let A ∈Mm,n(Bk) and B ∈Mn,q(Bk). Then we have sc(AB) ≤
sc(B).

Proof. Let sc(B) = r. Then there exist columns bi1, . . . , bir of B with minimum
cardinality such that {bi1, . . . , bir} spans the column space of B. Notice that
any jth column of AB is of the form Abj and bj =

∑r
l=1 αlbil for some αl ∈ Bk.

Hence we have Abj =
∑r
l=1 αl(Abil). This shows that any column of AB can

be written as a linear combination of Abi1, . . . , Abir. Hence sc(AB) ≤ r =
sc(B). �

But, in general, it is possible that sc(A1B) > sc(A1) and sc(A2B) < sc(A2)
for some matrices A1, A2 and B over Bk. For example, consider matrices

A1 = [σ1 1 0], A2 = [σ1 σ2 σ3] and B =

1 0 0
0 σ2 0
0 0 0


over B3. Then we can easily show that sc(A1) = 1 and sc(A2) = 3 by Lemma
2.1. But we have A1B = A2B = [σ1 σ2 0] so that sc(A1B) = sc(A2B) = 2 by
Lemma 2.1 and (2.2). It follows that sc(A1B) > sc(A1) and sc(A2B) < sc(A2).

Lemma 2.5. Let A ∈ Mm,n(Bk). Then sc(A) = 1 if and only if there exists
a nonzero column a of A such that A = axt for some nonzero vector x ∈ Bnk
with sc(xt) = 1.

Proof. It is straightforward to see that sc(axt) = 1 for a nonzero column a of A
and a nonzero vector x ∈ Bnk with sc(xt) = 1. Conversely, assume that sc(A) =
1 and let A = [a1 a2 · · ·an]. Then there exists a nonzero column a of A such
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that span{a} is the column space of A. Thus there exist α1, α2, . . . , αn in Bk,
not all zeros, such that aj = αja for all j = 1, . . . , n. Let x = [α1 α2 · · ·αn]t.
Then we have

A = axt = [α1aα2a · · ·αna].

It remains to show that sc(xt) = 1. Since sc(A) = 1, there exists a nonzero
column αra of A such that αja = βj(αra) for all j = 1, . . . , n and βj ∈ Bk.
Thus, we have αj ⊆ αr for all j = 1, . . . , n so that

∑n
j=1 αj ⊆ αr. Hence αr =∑n

j=1 αj . This shows that span{αr} is the column space of xt = [α1 α2 · · ·αn].

Thus, we have sc(xt) = 1. �

Corollary 2.6. If A = [a1 a2 · · ·an] ∈ Mm,n(Bk) has spanning column rank
1, then there exists a nonzero column a of A such that a =

∑n
j=1 aj.

Proof. Since sc(A) = 1, by Lemma 2.5 and its proof, there exist a nonzero
column a of A and scalars α1, . . . , αn ∈ Bk, not all zeros, such that A =
[α1aα2a · · ·αna] and αr =

∑n
j=1 αj for some r ∈ {1, . . . , n}. It follows that

aj = αja ⊆ αra ⊆ a

for all j = 1, . . . , n, equivalently
∑n
j=1 aj ⊆ a. Hence we have a =

∑n
j=1 aj

because
∑n
j=1 aj ⊇ a. �

Lemma 2.7. Let A ∈Mm,n(Bk). If all entries of A are 0 or 1, then sc(A) =
sc1(A).

Proof. Since B1 can be considered as a subsemiring of Bk, we have sc(A) ≤
sc1(A). Now, we will show that sc(A) ≥ sc1(A). If sc(A) = r, then there exist
columns ai1, . . . ,air ofA with minimum cardinality such that span{ai1, . . . ,air}
is the column space of A. Then the p-th constituents (ai1)p, . . . , (air)p generate
all columns of Ap over B1. Hence sc1(Ap) ≤ r. But A = Ap for all p = 1, . . . , k.
Hence sc1(A) ≤ r = sc(A). �

A matrix A ∈ Mn(Bk) is called invertible if there exists a matrix B ∈
Mn(Bk) such that AB = In = BA, where In is the identity matrix. It is
well-known [9] that a matrix A ∈ Mn(Bk) is invertible if and only if all its
constituents are permutation matrices. In particular, if A is invertible, then
A−1 = At, where At denotes the transpose of A. Furthermore, permutation
matrices are the only invertible members of Mn(B1).

Let Q = [qi,j ] ∈ Mn(Bk) be invertible. Since all constituents of Q are
permutation matrices, it follows that

∑n
l=1 qi,l = 1 and

∑n
l=1 ql,j = 1 for all

i, j = 1, . . . , n. In addition, for all i, j, r, s = 1, . . . , n, we have

(2.7) qi,rqi,s =

{
qi,r if r = s

0 if r 6= s
and qr,jqs,j =

{
qr,j if r = s

0 if r 6= s

because all elements of Bk are idempotents.

Lemma 2.8. If P ∈ Mm(Bk) is invertible, then sc(PA) = sc(A) for all
A ∈Mm,n(Bk).
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Proof. If ai1, . . . ,air be any columns of A, then we can easily show that
{ai1, . . . ,air} spans the column space of A if and only if {Pai1, . . . , Pair}
spans the column space of PA. Thus, the Lemma follows. �

But, even if Q ∈ Mn(Bk) is invertible, then sc(AQ) = sc(A) may not be
true as the following example shows:

Example 2.9. Let a and b be elements in Bk such that a+ b = 1 and ab = 0.
Consider a matrix

Q =

[
a b
b a

]
⊕ In−2 ∈Mn(Bk),

where n ≥ 2. Then QQt = In so that Q is invertible. But, for a matrix

A = [a b]⊕O ∈Mm,n(Bk),

we have sc(A) = 2 by Lemma 2.1 and (2.2), while

sc(AQ) = sc([1 0]⊕O) = 1.

Hence we have sc(AQ) 6= sc(A).

3. Spanning column rank preservers

In this section, we have characterizations of the linear operators that preserve
the spanning column ranks of matrices over non-binary Boolean algebra Bk.

Suppose that T is an operator on Mm,n(Bk). Say that

(i) T is linear if T (αX + βY ) = αT (X) + βT (Y ) for all α, β ∈ Bk and for
all X,Y ∈Mm,n(Bk),

(ii) T is a congruence operator if there exist invertible matrices P ∈Mm(Bk)
and Q ∈Mn(Bk) such that T (X) = PXQ for all X ∈Mm,n(Bk),

(iii) T preserves spanning column rank if sc(T (X)) = sc(X) for all X ∈
Mm,n(Bk),

(iv) T preserves spanning column rank r if sc(T (X)) = r whenever sc(X) =
r for all X ∈Mm,n(Bk).

Boolean rank (respectively, column rank) preservers are defined in a manner
similar to (iii) and (iv).

Since the column rank and the spanning column rank of matrices over B1

are the same by Theorem 2.2, we can apply Theorem 1.2 for the column rank
of matrices over B1 to the case of the spanning column. Thus we obtain the
following:

Theorem 3.1. Let T be a linear operator on Mm,n(B1) with n ≥ m ≥ 4.
Then the following are equivalent:

(i) T preserves spanning column ranks 1, 2 and 3;
(ii) T is a congruence operator;
(iii) T preserves spanning column rank.
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If n ≤ 3, then the characterizations of linear operators that preserve (span-
ning) column rank onMm,n(B1) are the same as those of linear operators that
preserve Boolean rank on Mm,n(B1) by (2.3), which were characterized in [1].

But, as shown in Example 2.3, the column rank and the spanning column
rank may differ overMm,n(Bk). Thus, the characterizations of linear operators
that preserve spanning column rank of matrices over Bk, may not be the same
as those over B1. The following Example shows that some congruence operator
on Mm,n(Bk) does not preserve spanning column rank 2.

Example 3.2. Let Q be the matrix in Example 2.9. Define a linear operator T
onMm,n(Bk) by T (X) = XQ for all X ∈Mm,n(Bk). Then we have that T is a
congruence operator since Q is invertible. Consider the matrix A ∈Mm,n(Bk)
in Example 2.9. Then sc(A) = 2, while sc(T (A)) = sc(AQ) = 1 as we showed
in Example 2.9. Therefore, T does not preserve spanning column rank 2.

If T is a linear operator on Mm,n(Bk), for each p = 1, . . . , k, define its p-th
constituent operator, Tp, by Tp(X) = (T (X))p for all X ∈ Mm,n(Bk). By the
linearity of T , we have

T (X) =

k∑
p=1

σpTp(Xp)

for all X ∈Mm,n(Bk).

Lemma 3.3. Let T be a linear operator onMm,n(Bk). If T preserves spanning
column rank r, then each constituent operator Tp preserves spanning column
rank r on Mm,n(B1).

Proof. Assume that A is a matrix in Mm,n(B1) with sc1(A) = r. Then by
Lemma 2.7, we have sc(A) = r and sc(σpA) = r for each p = 1, . . . , k.
Since T preserves spanning column rank r, we obtain that sc(T (A)) = r and
sc(T (σpA)) = r. It follows that

sc1(Tp(A)) = sc(Tp(A)) = sc(σpTp(A)) = sc

σp
 k∑
j=1

σjTj(Aj)


= sc(σpT (A)) = sc(T (σpA)) = r

for all p = 1, . . . , k. Therefore each constituent operator Tp preserves spanning
column rank r on Mm,n(B1). �

But the converse of Lemma 3.3 is not true. For example, consider a linear
operator T on Mm,n(Bk) in Example 3.2. Then we can easily show that all
constituent operators Tp onMm,n(B1) preserve spanning column rank 2, while
T on Mm,n(Bk) does not preserve spanning column rank 2.

Lemma 3.4 ([8]). Let T be a linear operator onMm,n(Bk). If each constituent
operator of T preserves binary Boolean rank r, then T preserves Boolean rank
r on Mm,n(Bk).
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Lemma 3.5. Let n ≥ 2, and let Q be invertible in Mn(Bk). Define a linear
operator T on Mm,n(Bk) by T (X) = XQ for all X ∈ Mm,n(Bk). Then T
preserves spanning column ranks 1 and 2 (if and) only if Q is a permutation
matrix.

Proof. Suppose that T preserves spanning column ranks 1 and 2. Since Q =
[qi,j ] is invertible, we lose no generality in assuming that qj,j 6= 0 for all j =
1, . . . , n.

Claim. Let j ∈ {1, . . . , n} be arbitrary. Then we claim that qi,j = 0 for all
i ∈ {1, . . . , n} \ {j}. If this is true, then qj,j = 1. Since j is arbitrary, it follows
that Q = In is a permutation matrix.

Proof of Claim. First, we show that q2,1 = q3,1 = · · · = qn,1 = 0. Let i be an
arbitrary index in {2, . . . , n}. Let

X1 = [q1,1 0 · · · 0 qi,1 0 · · · 0]

be an 1 × n matrix, and let Y1 =
[
X1

O

]
∈ Mm,n(Bk) so that sc(X1) = sc(Y1)

by (2.2). It follows from (2.7) that

T (Y1) = [q1,1 + qi,1]⊕O,

and thus sc(T (Y1)) = 1. If qi,1 6= 0, then {q1,1, qi,1} are linearly independent
since q1,1q1,i = 0 by (2.7). Hence by Lemma 2.1, sc(X1) = sc(Y1) = 2. This
contradicts to the fact that T preserves spanning column rank 2. Hence qi,1 = 0.
Since i ∈ {2, . . . , n} is arbitrary, we have q2,1 = q3,1 = · · · = qn,1 = 0. This
implies that q1,1 = 1. �

Next, suppose that j is an arbitrary index in {1, . . . , n}. Now, we will show
that qi,j = 0 for all i ∈ {1, . . . , n} \ {j}. Let i be arbitrary in {1, . . . , n} \ {j},
and let X = [x1 x2 · · ·xn] be an 1× n matrix, where

xt =

 qi,j if t = i;
qj,j if t = j;

0 elsewhere.

Let Y = [XO ] ∈ Mm,n(Bk) so that sc(X) = sc(Y ). Then the only (1, j)th
entry of T (Y ) is nonzero and qj,j + qi,j so that sc(T (Y )) = 1. If qi,j 6= 0, then
{qj,j , qi,j} are linearly independent since qj,jqi,j = 0 by (2.7). Hence by Lemma
2.1, sc(X) = sc(Y ) = 2, a contradiction to the fact that T preserves spanning
column rank 2. Hence qi,j = 0. Since i ∈ {1, . . . , n} \ {j} is arbitrary, we have
qi,j = 0 for all i ∈ {1, . . . , n} \ {j}, and thus qj,j = 1. Since j is arbitrary, it
follows that Q = In. �

Let σ∗ denote the complement of σ for each σ ∈ Bk. For each p = 1, . . . , k,
we define the p-th rotation operator, R(p) on Mn(Bk) by

R(p)(X) = σpX
t
p + σ∗pX
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for all X ∈ Mn(Bk). Then we see that R(p) has the effect of transposing Xp

while leaving the remaining constituents unchanged. Each rotation operator is
linear onMn(Bk) and their product is the transposition operator, X → Xt for
all X ∈Mn(Bk).

Example 3.6. Let R(p) be any p-th rotation operator on Mn(Bk) with n ≥
2. Now, we will show that R(p) does not preserve spanning column rank 1.
Consider a matrix

A =

[
σp 1
0 0

]
⊕O ∈Mn(Bk).

Then sc(A) = 1. But R(p)(A) =
[
σp σ

∗
p

σp 0

]
⊕ O has spanning column rank 2 by

Lemma 2.1. Hence R(p) does not preserve spanning column rank 1.

Theorem 3.7. Suppose that T is a linear operator on Mm,n(Bk) with n ≥ 2.
Then the following statements are equivalent:

(i) T preserves spanning column rank;
(ii) T preserves spanning column ranks 1 and 2;
(iii) there exist an invertible matrix P ∈Mm(Bk) and an n×n permutation

matrix Q such that T (X) = PXQ for all X ∈Mm,n(Bk).

Proof. It is obvious that (i) implies (ii). Assume that T preserves spanning col-
umn ranks 1 and 2. By Lemma 3.3, each constituent operator Tp onMm,n(B1)
preserves spanning column ranks 1 and 2. Since the column rank and the
spanning column rank over Mm,n(B1) are equal by Theorem 2.2, each Tp on
Mm,n(B1) preserves column ranks 1 and 2. It follows from (2.3) that each
Tp on Mm,n(B1) preserves binary Boolean ranks 1 and 2. Then T preserves
Boolean ranks 1 and 2 on Mm,n(Bk) by Lemma 3.4. Thus, by Theorem 1.1,
T is in the group of operators generated by the congruence (if m = n, also the
rotation) operators. But any rotation operator does not preserve spanning col-
umn rank 1 by Example 3.6. Hence T should be a congruence operator. That
is, there exist invertible matrices P ∈ Mm(Bk) and Q ∈ Mn(Bk) such that
T (X) = PXQ for all X ∈ Mm,n(Bk). Assume that Q is not a permutation
matrix. By Lemma 3.5, there exists a matrix A ∈Mm,n(Bk) with sc(A) = 1 or
2 such that sc(A) 6= sc(AQ). Since P is invertible in Mm(Bk), it follows from
Lemma 2.8 that sc(AQ) = sc(PAQ), and hence sc(A) 6= sc(PAQ). Thus, T
does not preserve spanning column rank 1 or 2, and therefore Q must be a per-
mutation matrix. This shows that (ii) implies (iii). It follows from Lemma 2.8
that (iii) implies (i) because the spanning column rank of a matrix inMm,n(Bk)
is unchanged post-multiplication by a permutation matrix. �

Thus we have characterizations of the linear operators that preserve the
spanning column ranks of matrices over non-binary Boolean algebra.
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4. Column rank preservers

In this section, we obtain characterizations of the linear operators that pre-
serve the column ranks of matrices over non-binary Boolean algebra.

Song [6] characterized the linear operators on Mm,n(B1) that preserve col-
umn rank (see Theorem 1.2). Furthermore, Song and Lee [8] gave a character-
ization of the linear operators on Mm,n(Bk) preserving column ranks 1, 2 and
3 as following:

Theorem 4.1. Let T be a linear operator onMm,n(Bk) with m ≥ 2 and n ≥ 3.
Then T preserves column ranks 1, 2 and 3 if and only if T is a congruence
operator.

But we assert that for matrices over non-binary Boolean algebra, some con-
gruence operator does not preserve column rank 3 (see Example 4.3), which
shows that Theorem 4.1 does not hold. So, we present the revised characteri-
zations on the above Theorem (see Theorem 4.6).

Lemma 4.2. Let A =
[
a a b
0 b b

]
∈ M2,3(Bk), where a 6= 0, a ⊆ b ⊆ 1 but a 6= b.

Then we have c(A) = 3.

Proof. Let V be the column space of A. Then any vector in V is of the form

x

[
a
0

]
+ y

[
a
a

]
+ z

[
a
b

]
+ w

[
b
b

]
,

where x, y ⊆ a and z, w ⊆ b. Let Ω be any subset of V generating V. If [ a0 ] /∈ Ω,
then

(4.1)

[
a
0

]
=

[
ya+ za+ wb
ya+ zb+ wb

]
for some y ⊆ a and z, w ⊆ b. But then a = ya+ za+wb ⊆ ya+ zb+wb = 0 by
the second row in (4.1), which is impossible. Thus, [ a0 ] ∈ Ω. If [ ab ] /∈ Ω, then

(4.2)

[
a
b

]
=

[
xa+ ya+ wb
ya+ wb

]
for some x, y ⊆ a and w ⊆ b. But then a = xa+ ya+ wb = xa+ b ⊇ b by the
second row in (4.2), a contradiction to the fact that a ⊆ b but a 6= b. Therefore,
[ ab ] ∈ Ω. If

[
b
b

]
/∈ Ω, then [

b
b

]
=

[
(x+ y + z)a
ya+ zb

]
for some x, y ⊆ a and z ⊆ b. But then b = (x+y+z)a ⊆ a, which is impossible
because a ⊆ b but a 6= b. Hence

[
b
b

]
∈ Ω. Therefore we have concluded that{

[ a0 ] , [ ab ] ,
[
b
b

]}
⊆ Ω, and hence c(A) = 3. �
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Example 4.3. Let m ≥ 2 and n ≥ 3. Consider a matrix

Q =

a b 0
b a 0
0 0 1

⊕ In−3 ∈Mn(Bk),

where a, b ∈ Bk with a, b 6= 0, 1, a+b = 1 and ab = 0. Define a linear operator T
on Mm,n(Bk) by T (X) = XQ for all X ∈Mm,n(Bk). Then T is a congruence
operator on Mm,n(Bk) because QQt = In and hence Q is invertible. Consider
a matrix A = [ a a 1

0 1 1 ] ⊕ O ∈ Mm,n(Bk). It follows from Lemma 4.2 and (2.2)
that c(A) = 3. But the column rank of

T (A) = AQ =

[
a a 1
b a 1

]
⊕O

is at most 2 since the first and third columns of T (A) spans the column space
of T (A). Thus, T does not preserve column rank 3.

Lemma 4.4. Let m ≥ 2 and n ≥ 3. Suppose that Q is invertible in Mn(Bk).
Define a linear operator T onMm,n(Bk) by T (X)=XQ for all X ∈Mm,n(Bk).
Then T preserves column ranks 1, 2 and 3 (if and) only if Q is a permutation
matrix.

Proof. Suppose that T preserves column ranks 1, 2 and 3. Assume that Q is not
a permutation matrix. Then there exists a row or a column of Q = [qi,j ] such
that it has at least two nonzero elements different from 1. We lose no generality
in assuming that q1,1, q1,2 6= 0, 1 with σ1 ⊆ q1,1 and σ2 ⊆ q1,2. Furthermore,
we may assume that q2,1 6= 0, 1 because q1,1 6= 0, 1 and

∑n
i=1 qi,1 = 1. Let

Ai =

[
σi σi σ1 + σ2 0 · · · 0
0 σ1 + σ2 σ1 + σ2 0 · · · 0

]
∈M2,n(Bk),

where i = 1 or 2, and let B =
[
Ai

O

]
∈Mm,n(Bk). By Lemma 4.2 and (2.2), we

have c(Ai) = c(B) = 3. Now, we will show that c(T (B)) ≤ 2. Thus, it suffices
to consider the case m = 2. Let V be the column space of T (Ai). To prove
c(T (Ai)) ≤ 2, we will consider two cases:

Case 1. Let σ2 ⊆ q2,1. Then there are two possibilities: either σ1 ⊆ q2,2 or
σ1 6⊆ q2,2. First, suppose that σ1 ⊆ q2,2. Then we have

σ1 σ2 q1,3 · · · q1,n
σ2 σ1 q2,3 · · · q2,n
q3,1 q3,2 q3,3 · · · q3,n

...
...

...
...

qn,1 qn,2 qn,3 · · · qn,n

 ⊆ Q.
Hence (2.7) ensures that

(4.3) σ1 + σ2 6⊆ q3,i and σ1 + σ2 6⊆ qi,j
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for all i = 1, 2 and for all j ≥ 3. It follows that

T (A1) =

[
σ1 σ1 (σ1 + σ2)q3,3 · · · (σ1 + σ2)q3,n
σ2 σ1 (σ1 + σ2)q3,3 · · · (σ1 + σ2)q3,n

]
.

Since
∑n
l=1 q3,l = 1 and σ1 + σ2 6⊆ q3,1 + q3,2 by (4.3), we have σ1 + σ2 ⊆∑n

l=3 q3,l. Hence
[
σ1+σ2
σ1+σ2

]
∈ V and

{
[ σ1
σ2

] ,
[
σ1+σ2
σ1+σ2

]}
spans V. But then c(T (A1))

≤ 2, a contradiction since c(A1) = 3. Next, suppose that σ1 6⊆ q2,2. Then we
may assume that σ1 ⊆ q2,3 and σ1 ⊆ q3,2 because σ1 6⊆ q1,2 + q2,1 + q2,2. It
follows that

T (A1) =

[
σ1 σ1 σ1 + σ2q3,3 σ2q3,4 · · · σ2q3,n
σ2 σ1 σ1 + σ2q3,3 σ2q3,4 · · · σ2q3,n

]
.

Since σ2 ⊆ q2,1 and σ2 ⊆ q1,2, we have σ2 6⊆ q3,1+q3,2 and hence σ2 ⊆
∑n
l=3 q3,l.

This implies that
[
σ1+σ2
σ1+σ2

]
∈ V. As shown in the above, c(T (A1)) ≤ 2, a

contradiction.

Case 2. Let σ2 6⊆ q2,1. Since σ2 6⊆ q1,1 and
∑n
l=1 ql,1 = 1, we may assume

that σ2 ⊆ q3,1. We can consider two possibilities: either σ1 ⊆ q2,2 or σ1 6⊆ q2,2.
First, suppose that σ1 ⊆ q2,2. Then we may assume that σ2 ⊆ q2,3 since
σ2 6⊆ q2,1 + q2,2. It follows that

T (A2) =

[
σ2 σ2 σ2 + σ1q3,3 σ1q3,4 · · · σ1q3,n
σ2 σ1 σ2 + σ1q3,3 σ1q3,4 · · · σ1q3,n

]
.

Since σ1 6⊆ q3,1 + q3,2, we have σ1 ⊆
∑n
l=3 q3,l. This shows that

[
σ1+σ2
σ1+σ2

]
∈ V

and
{

[ σ2
σ1

] ,
[
σ1+σ2
σ1+σ2

]}
spans V and hence c(T (A2)) ≤ 2, a contradiction since

c(A2) = 3. Next, suppose that σ1 6⊆ q2,2. Since σ1 6⊆ q2,1, we may assume that
σ1 ⊆ q2,3. Then we have

σ1 σ2 q1,3 q1,4 · · · q1,n
q2,1 q2,2 q2,3 q2,4 · · · q2,n
σ2 q3,2 q3,3 q3,4 · · · q3,n
...

...
...

...
...

qn,1 qn,2 qn,3 qn,4 · · · qn,n

 ⊆ Ω.

It follows that

T (A1) =

[
σ1 + σ2 σ1q3,2 σ1 σ1q3,4 · · · σ1q3,n
σ2 σ1q3,2 σ1 + σ2q2,3 σ2q2,4 + σ1q3,4 · · · σ2q2,n + σ1q3,n

]
.

Clearly [ σ1
σ1

] ∈ V since [ σ1
σ1

] = σ1
[ σ1
σ1+σ2q2,3

]
. If σ2 ⊆ q2,3, then [ σ1

σ1+σ2
] ∈ V.

But if σ2 6⊆ q2,3, we may assume that σ2 ⊆ q2,4 since σ2 6⊆ q2,1 + q2,2. Hence
the 4th column of T (A1) is either

[
0
σ2

]
or [ σ1

σ1+σ2
]. Since [ σ1

σ1+σ2
] = [ σ1

σ1
] +[

0
σ2

]
, we have [ σ1

σ1+σ2
] ∈ V. Consequently,

{[
σ1+σ2
σ2

]
, [ σ1
σ1+σ2

]
}

spans V so that
c(T (A1)) ≤ 2, a contradiction.

Therefore Q must be a permutation matrix. �
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Lemma 4.5 ([8]). Let T be a linear operator on Mm,n(Bk). If T preserves
column rank r, then each constituent Tp on Mm,n(B1) preserves column rank
r.

Now, we give a revised statement of Theorem 4.1 as following:

Theorem 4.6. Suppose T is a linear operator on Mm,n(Bk) with m ≥ 2 and
n ≥ 3. Then the following are equivalent:

(i) T preserves column rank;
(ii) T preserves column ranks 1, 2 and 3;
(iii) there exist an invertible matrix P ∈Mm(Bk) and an n×n permutation

matrix Q such that T (X) = PXQ for all X ∈Mm,n(Bk).

Proof. Obviously (i) implies (ii). Assume that T preserves column ranks 1, 2
and 3. By Lemma 4.5, each constituent operator Tp on Mm,n(B1) preserves
column ranks 1, 2 and 3. It follows from (2.3) that each Tp on Mm,n(B1)
preserves binary Boolean ranks 1 and 2. Then T preserves Boolean ranks 1
and 2 onMm,n(Bk) by Lemma 3.4. Thus, by Theorem 1.1, T is in the group of
operators generated by the congruence (if m = n, also the rotation) operators.
But, we claim that any rotation operator R(p) on Mn(Bk) does not preserve
column rank 3. Consider a matrix

A =

 0 0 0
σp σp 1
0 1 1

⊕O ∈Mn(Bk).

Then c(A) = 3 by Lemma 4.2 and (2.2). But R(p)(A) = At has column rank
2. Thus T should be a congruence operator onMm,n(Bk). That is, there exist
invertible matrices P ∈Mm(Bk) and Q ∈Mn(Bk) such that T (X) = PXQ for
all X ∈ Mm,n(Bk). Now it remains to show that Q is a permutation matrix.
Define a linear operator L on Mm,n(Bk) by L(X) = P−1T (X) = XQ. Then
we can easily show that T preserves column ranks 1, 2 and 3 if and only if so
do L. Also, Lemma 4.4 shows that L preserves column ranks 1, 2 and 3 if and
only if Q is a permutation matrix. Thus, (ii) implies (iii).

Assume (iii). Since the column rank of a matrix inMm,n(Bk) is unchanged
by post-multiplication by a permutation matrix, we lose no generality in as-
suming that Q = In. That is, there exists an invertible matrix P ∈ Mm(Bk)
such that T (X) = PX for all X ∈ Mm,n(Bk). Consider any matrix A in
Mm,n(Bk). Let x1, . . . ,xr be arbitrary column vectors in Bmk . Then we can
easily show that {x1, . . . ,xr} is a basis of the column space of A if and only
if {Px1, . . . , Pxr} is a basis of the column space of PA. This shows that
c(A) = c(T (A)) for all A ∈Mm,n(Bk). Hence (i) is satisfied. �

If n ≤ 2, then the linear operators that preserve column ranks of matrices
over Bk are the same as the Boolean rank-preservers, which were characterized
in Theorem 1.1.
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Thus we have characterized the linear operators that preserve the column
ranks of matrices over non-binary Boolean algebra Bk.

References

[1] L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1

spaces, Linear Algebra Appl. 59 (1984), 55–77.

[2] , Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33–48.
[3] L. B. Beasley, S. Z. Song, K. T. Kang, and B. K. Sarma, Column ranks and their pre-

servers over nonnegative real matrices, Linear Algebra Appl. 399 (2005), 3–16.

[4] K. H. Kim, Boolean Matrix Theory and Applications, Monographs and Textbooks in Pure
and Applied Mathematics, 70, Marcel Dekker, Inc., New York, 1982.

[5] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary

Boolean matrices, Linear and Multilinear Algebra 33 (1993), no. 3-4, 295–300.
[6] S.-Z. Song, Linear operators that preserve column rank of Boolean matrices, Proc. Amer.

Math. Soc. 119 (1993), no. 4, 1085–1088.
[7] S.-Z. Song and S.-G. Hwang, Spanning column ranks and their preservers of nonnegative

matrices, Linear Algebra Appl. 254 (1997), 485–495.

[8] S.-Z. Song and S.-G. Lee, Column ranks and their preservers of general Boolean matrices,
J. Korean Math. Soc. 32 (1995), no. 3, 531–540.

[9] J. H. M. Wedderburn, Boolean linear associative algebra, Ann. of Math. (2) 35 (1934),

no. 1, 185–194.

Kyung-Tae Kang
Department of Mathematics

Jeju National University

Jeju 63243, Korea
Email address: kangkt@jejunu.ac.kr

Seok-Zun Song
Department of Mathematics

Jeju National University

Jeju 63243, Korea
Email address: szsong@jejunu.ac.kr


