• Title/Summary/Keyword: random sum

Search Result 252, Processing Time 0.038 seconds

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • KIM TAE-SUNG;BAEK JONG IL
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.

PRECISE ASYMPTOTICS IN STRONG LIMIT THEOREMS FOR NEGATIVELY ASSOCIATED RANDOM FIELDS

  • Ryu, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1025-1034
    • /
    • 2010
  • Let {$X_n$, $n\;{\in}\;\mathbb{Z}_+^d$} be a field of identically distributed and negatively associated random variables with mean zero and set $S_n\;=\;{\sum}_{k{\leq}n}\;X_k$, $n\;{\in}\;\mathbb{Z}_+^d$, $d\;{\geq}\;2$. We investigate precise asymptotics for ${\sum}_n|n|^{r/p-2}P(|S_n|\;{\geq}\;{\epsilon}|n|^{1/p}$ and ${\sum}_n\;\frac{(\log\;|n|)^{\delta}}{|n|}P(|S_n|\;{\geq}\;{\epsilon}\;\sqrt{|n|\log|n|)}$, ($0\;{\leq}\;{\delta}\;{\leq}\;1$) as ${\epsilon}{\searrow}0$.

Random Pattern Testability of AND/XOR Circuits

  • Lee, Gueesang
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • Often ESOP(Exclusive Sum of Products) expressions provide more compact representations of logic functions and implemented circuits are known to be highly testable. Motivated by the merits of using XOR(Exclusive-OR) gates in circuit design, ESOP(Exclusive Sum of Products) expressions are considered s the input to the logic synthesis for random pattern testability. The problem of interest in this paper is whether ESOP expressions provide better random testability than corresponding SOP expressions of the given function. Since XOR gates are used to collect product terms of ESOP expression, fault propagation is not affected by any other product terms in the ESOP expression. Therefore the test set for a fault in ESOP expressions becomes larger than that of SOP expressions, thereby providing better random testability. Experimental results show that in many cases, ESOP expressions require much less random patterns compared to SOP expressions.

  • PDF

PRECISE ASYMPTOTICS IN LOGLOG LAW FOR ρ-MIXING RANDOM VARIABLES

  • Ryu, Dae-Hee
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.525-536
    • /
    • 2010
  • Let $X_1,X_2,\cdots$ be identically distributed $\rho$-mixing random variables with mean zeros and positive finite variances. In this paper, we prove $$\array{\lim\\{\in}\downarrow0}{\in}^2 \sum\limits_{n=3}^\infty\frac{1}{nlogn}P({\mid}S_n\mid\geq\in\sqrt{nloglogn}=1$$, $$\array{\lim\\{\in}\downarrow0}{\in}^2 \sum\limits_{n=3}^\infty\frac{1}{nlogn}P(M_n\geq\in\sqrt{nloglogn}=2 \sum\limits_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}$$ where $S_n=X_1+\cdots+X_n,\;M_n=max_{1{\leq}k{\leq}n}{\mid}S_k{\mid}$ and $\sigma^2=EX_1^2+ 2\sum\limits{^{\infty}_{i=2}}E(X_1,X_i)=1$.

ON THE PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE OF NA SEQUENCES

  • Han, Kwang-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.977-986
    • /
    • 2010
  • Let $X_1$, $X_2$, $\cdots$ be identically distributed negatively associated random variables with $EX_1\;=\;0$ and $E|X_1|^3$ < $\infty$. In this paper we prove $lim_{{\epsilon\downarrow}0}\;\frac{1}{-\log\;\epsilon}\sum\limits_{n=1}^\infty\frac{1}{n^2}ES_n^2I\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;2$ and $lim_{\epsilon\downarrow0}\;\epsilon^{2-p}\sum\limits_{n=1}^\infty\frac{1}{n^p}$ $E|S_n|^pI\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;\frac{2}{2-p}$ for 0 < p < 2, where $S_n\;=\;\sum\limits_{i=1}^{n}X_i$ and 0 < $\sigma^2\;=\;EX_1^2\;+\;\sum\limits_{i=2}^{\infty}Cov(X_1,\;X_i)$ < $\infty$. We consider some results of i.i.d. random variables obtained by Liu and Lin(2006) under negative association assumption.

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

  • Fu, Ke-Ang;Hu, Li-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • Let {$X_n;n\;\geq\;1$} be a strictly stationary sequence of negatively associated random variables with mean zero and finite variance. Set $S_n\;=\;{\sum}^n_{k=1}X_k$, $M_n\;=\;max_{k{\leq}n}|S_k|$, $n\;{\geq}\;1$. Suppose $\sigma^2\;=\;EX^2_1+2{\sum}^\infty_{k=2}EX_1X_k$ (0 < $\sigma$ < $\infty$). We prove that for any b > -1/2, if $E|X|^{2+\delta}$(0<$\delta$$\leq$1), then $$lim\limits_{\varepsilon\searrow0}\varepsilon^{2b+1}\sum^{\infty}_{n=1}\frac{(loglogn)^{b-1/2}}{n^{3/2}logn}E\{M_n-\sigma\varepsilon\sqrt{2nloglogn}\}_+=\frac{2^{-1/2-b}{\sigma}E|N|^{2(b+1)}}{(b+1)(2b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2(b+1)}}$$ and for any b > -1/2, $$lim\limits_{\varepsilon\nearrow\infty}\varepsilon^{-2(b+1)}\sum^{\infty}_{n=1}\frac{(loglogn)^b}{n^{3/2}logn}E\{\sigma\varepsilon\sqrt{\frac{\pi^2n}{8loglogn}}-M_n\}_+=\frac{\Gamma(b+1/2)}{\sqrt{2}(b+1)}\sum^{\infty}_{k=0}\frac{(-1)^k}{(2k+1)^{2b+2'}}$$, where $\Gamma(\cdot)$ is the Gamma function and N stands for the standard normal random variable.

A tightness theorem for product partial sum processes indexed by sets

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.141-149
    • /
    • 1995
  • Let N denote the set of positive integers. Fix $d_1, d_2 \in N with d = d_1 + d_2$. Let X and Y be real random variables and let ${X_i : i \in N^d_1} and {Y_j : j \in N^d_2}$ be independent families of independent identically distributed random variables with $L(X) = L(X_i) and L(Y) = L(Y_j)$, where $L(\cdot)$ denote the law of $\cdot$.

  • PDF

On the Functional Central Limit Theorem of Negatively Associated Processes

  • Baek Jong Il;Park Sung Tae;Lee Gil Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.117-123
    • /
    • 2005
  • A functional central limit theorem is obtained for a stationary linear process of the form $X_{t}= \sum\limits_{j=0}^\infty{a_{j}x_{t-j}}$, where {x_t} is a strictly stationary sequence of negatively associated random variables with suitable conditions and {a_j} is a sequence of real numbers with $\sum\limits_{j=0}^\infty|a_{j}|<\infty$.

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.