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MOMENT CONVERGENCE RATES OF LIL FOR
NEGATIVELY ASSOCIATED SEQUENCES

Ke-Ang Fu and Li-Hua Hu

Abstract. Let {Xn; n ≥ 1} be a strictly stationary sequence of nega-
tively associated random variables with mean zero and finite variance.
Set Sn =

Pn
k=1 Xk, Mn = maxk≤n |Sk|, n ≥ 1. Suppose σ2 = EX2

1 +
2
P∞

k=2 EX1Xk (0 < σ < ∞). We prove that for any b > −1/2, if

E|X|2+δ(0 < δ ≤ 1), then

lim
ε↘0

ε2b+1
∞X

n=1

(log log n)b−1/2

n3/2 log n
E


Mn − σε

p
2n log log n

ff

+

=
2−1/2−bσE|N |2(b+1)

(b + 1)(2b + 1)

∞X

k=0

(−1)k

(2k + 1)2(b+1)

and for any b > −1/2,

lim
ε↗∞

ε−2(b+1)
∞X

n=1

(log log n)b

n3/2 log n
E


σε

s
π2n

8 log log n
−Mn

ff

+

=
Γ(b + 1/2)√

2(b + 1)

∞X

k=0

(−1)k

(2k + 1)2b+2
,

where Γ(·) is the Gamma function and N stands for the standard normal
random variable.

1. Introduction

Let {Xn; n ≥ 1} be a sequence of random variables with common distribu-
tion, EX1 = 0 and 0 < EX2

1 < ∞. Set Sn =
∑n

k=1 Xk,Mn = maxk≤n |Sk|,
n ≥ 1 and denote log x = ln(x ∨ e), log log x = log(log x). When {Xn; n ≥ 1}
is a sequence of i.i.d. random variables, Gut and Spǎtaru ([4]) discussed the
convergence rates of the usual law of the iterated logarithm, and proved the
following theorem.
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Theorem A. Suppose that EX1 = 0 and 0 < EX2
1 < ∞. Then we have

lim
ε↘0

ε2
∞∑

n=1

1
n log n

P(|Sn| ≥ ε
√

n log log n) = EX2
1 .

Also Chow ([3]) first discussed the moment convergence of i.i.d. random
variables, and got the following result.

Theorem B. Suppose that EX = 0. Assume p ≥ 1, α > 1/2, pα > 1 and
E(|X|p + |X| log(1 + |X|)) < ∞. Then for any ε > 0,

∞∑
n=1

npα−2−αE

{
max
j≤n

|Sj | − εnα

}

+

< ∞.

Recently, Jiang and Zhang ([5]) obtained the precise rates in the law of
the iterated logarithm for the moment convergence of i.i.d. random variables
via strong approximation method. In this paper, we consider the moment
convergence rates in the usual law of the iterated logarithm and the Chung-type
law of the iterated logarithm for negatively associated (NA) random variables.
Notice that the proof pattern is similar with that of Gut and Spǎtaru ([4]), and
our emphasis is on the convergence rates of Mn. Also we obtained the theorems
without the help of the Berry-Esseen theorem which was used in many other
cases (c.f. Li [7]).

First, we shall give the definition of negatively associated random variables:

Definition 1. A finite sequence of random variables {Xk; 1 ≤ k ≤ n} is
said to be negatively associated (NA), if for every disjoint subsets A and B of
{1, 2, . . . , n}, we have

Cov{f(Xi; i ∈ A), g(Xj ; j ∈ B)} ≤ 0,

whenever f and g are coordinatewise increasing and the covariance exists. An
infinite sequence of random variables is NA if every finite subsequence is NA.

The notion of NA was first introduced by Alam and Saxena ([1]). Joag-Dev
and Proschan ([6]) showed that many well known multivariate distributions
possess the NA property. Because of its wide application in multivariate statis-
tical analysis and system reliability, the notion of NA has received considerable
attention recently. We refer to Joag-Dev and Proschan ([6]) for fundamental
properties, Shao ([8]) for the moment inequalities for partial sums and maxi-
mum of partial sums, and Shao and Su ([9]) for the law of the iterated logarithm,
which holds under finite variance.

The content of the paper is organized as follows. In Section 2 we list the
main results. The proofs of Theorems 2.1 and 2.2 are given in Sections 3 and
4, respectively. In what follows let M and C etc. denote positive constants
whose values possibly vary from place to place. The notation of an ∼ bn means
that an

bn
→ 1 as n →∞, and [x] denotes the largest integer less than x.
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2. Main results

Here and in the sequel, let {Xn; n ≥ 1} be a sequence of strictly stationary
NA random variables, EX1 = 0, 0 < EX2

1 < ∞, and 0 < σ2 := EX2
1 +

2
∑∞

k=2 EX1Xk < ∞(0 < σ < ∞) unless it is specially mentioned. Now we are
in a position to present our main results.

Theorem 2.1. For any b > −1/2, if E|X|2+δ < ∞(0 < δ ≤ 1), then we have

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n3/2 log n
E

{
Mn − σε

√
2n log log n

}

+

=
2−1/2−bσE|N |2(b+1)

(b + 1)(2b + 1)

∞∑

k=0

(−1)k

(2k + 1)2(b+1)

and

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n3/2 log n
E

{
|Sn| − σε

√
2n log log n

}

+

(2.1)

=
2−1/2−bσ

(b + 1)(2b + 1)
E|N |2(b+1),

where N is the standard normal random variable.

Remark 2.1. The theorem holds under finite (2+δ)th moment since the central
limit theorem and weak invariance principle for NA sequences are applied, while
it holds under finite variance for i.i.d. case. Also here we obtain the moment
convergence rates for Mn.

Theorem 2.2. For any b > −1/2, we have

lim
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n3/2 log n
E

{
σε

√
π2n

8 log log n
−Mn

}

+

=
Γ(b + 1/2)√

2(b + 1)

∞∑

k=0

(−1)k

(2k + 1)2b+2
,

where Γ(·) is the Gamma function.

Remark 2.2. It is surprising that the precise rates in the Chung-type law of
the iterated logarithm holds under finite variance, since we avoid the use of the
Berry-Esseen theorem.

3. The proof of Theorem 2.1

In this section, we shall present the proof of Theorem 2.1. First, we give
some lemmas which will be used in the following proofs.
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Lemma 3.1 ([2]). Let {W (t); t ≥ 0} be a standard Wiener process, and let N
be a standard normal random variable. Then for any x > 0

P

{
sup

0≤s≤1
|W (s)| ≥ x

}
= 1−

∞∑

k=−∞
(−1)kP{(2k − 1)x ≤ N ≤ (2k + 1)x}

= 4
∞∑

k=0

(−1)kP{N ≥ (2k + 1)x}

= 2
∞∑

k=0

(−1)kP{|N | ≥ (2k + 1)x}.

In particular,

P

{
sup

0≤s≤1
W (s) ≥ x

}
∼ 2P(N ≥ x) ∼ 2√

2πx
exp

(
−x2

2

)
as x →∞.

Also, for any x > 0,

P

(
sup

0≤s≤1
|W (s)| ≤ x

)
=

4
π

∞∑

k=1

(−1)k

2k + 1
exp

{
− π2(2k + 1)2

8x2

}

and

P

(
sup

0≤s≤1
|W (s)| ≤ x

)
∼ 4

π
exp

(
− π2

8x2

)
as x → 0.

Lemma 3.2 ([11]). Under the moment condition of Theorem 2.1, we have

Mn

σ
√

n
→ sup

0≤s≤1
|W (s)| and

Sn

σ
√

n
→ N in distribution.

Lemma 3.3 ([8]). Let {Yi; 1 ≤ i ≤ n} be a sequence of NA random variables
with mean zero and finite variance. Denote Sk =

∑k
i=1 Yi, 1 ≤ k ≤ n, Bn =∑n

i=1 EY 2
i , then for any z > 0, y > 0,

P

(
max
k≤n

|Sk| ≥ z

)
≤ 2P

(
max
k≤n

|Yk| ≥ y

)
+ 4 exp

{
− z2

8Bn

}
+ 4

(
Bn

4(zy + Bn)

)z/(12y)

.

Now set b(ε) = exp(exp(M/ε2)),M > 4 and 0 < ε < 1/4, say. Without loss
of generality, assume σ = 1.

Lemma 3.4. For any M > 4 and b > −1/2, we have

lim
ε↘0

ε2b+1
∑

n≤b(ε)

(log log n)b−1/2

n log n

∣∣∣∣n−1/2E
{

Mn − ε
√

2n log log n
}

+

−E

{
sup

0≤s≤1
|W (s)| − ε

√
2 log log n

}

+

∣∣∣∣ = 0(3.1)
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and

lim
ε↘0

ε2b+1
∑

n≤b(ε)

(log log n)b−1/2

n log n

∣∣∣∣n−1/2E
{
|Sn| − ε

√
2n log log n

}
+

−E
{
|N | − ε

√
2 log log n

}
+

∣∣∣∣ = 0.(3.2)

Proof. We only give the proof of (3.1), since the proof of (3.2) is similar. Note
that

ε2b+1
∑

n≤b(ε)

(log log n)b−1/2

n log n

∣∣∣∣n−1/2E
{

Mn − ε
√

2n log log n
}

+

− E

{
sup

0≤s≤1
|W (s)| − ε

√
2 log log n

}

+

∣∣∣∣

≤ Cε2b+1
∑

n≤b(ε)

(log log n)b

n log n

( ∫ Γn

0

+
∫ ∞

Γn

)∣∣∣∣P(Mn ≥ (x + ε)
√

2n log log n)

− P

(
sup

0≤s≤1
|W (s)| ≥ (x + ε)

√
2 log log n

) ∣∣∣∣dx.

Set Γn = (log log n)−1/2∆−1/2
n and

∆n = sup
x

∣∣∣∣P(Mn ≥ x
√

n)− P

(
sup

0≤s≤1
|W (s)| ≥ x

)∣∣∣∣ ,

and from Lemma 3.2, it follows that ∆n → 0 as n → ∞. Thus via Toeplitz
Lemma ([10]), it immediately leads to

ε2b+1
∑

n≤b(ε)

(log log n)b

n log n

∫ Γn

0

∣∣∣∣P
(
Mn ≥ (x + ε)

√
2n log log n

)
(3.3)

− P

(
sup

0≤s≤1
|W (s)| ≥ (x + ε)

√
2 log log n

) ∣∣∣∣dx

≤ ε2b+1
∑

n≤b(ε)

∆1/2
n (log log n)b−1/2

n log n

≤ M b+1/2 1
(log log[b(ε)])b+1/2

∑

n≤b(ε)

∆1/2
n (log log n)b−1/2

n log n
→ 0 as ε ↘ 0.
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Also observe that

ε2b+1
∑

n≤b(ε)

(log log n)b

n log n

∫ ∞

Γn

(
P

(
Mn ≥ (x + ε)

√
2n log log n

)

− P

(
sup

0≤s≤1
|W (s)| ≥ (x + ε)

√
2 log log n

))
dx

=: ε2b+1
∑

n≤b(ε)

(log log n)b

n log n

∫ ∞

Γn

(
(II1)− (II2)

)
dx.

Now we deal with (II1) and (II2), respectively. For (II1), denote θ =
√

1/EX2
1 ,

and therefore by using Lemma 3.3 (where we take z = (x+ε)
√

2n log log n, y =
βz and Bn = n/θ2), it leads to

∫ ∞

Γn

(II1)dx

≤
∫ ∞

Γn

(
2nP

{
|X1| ≥ β(x + ε)

√
2n log log n

}
+4 exp

{
− θ2(x + ε)2 log log n

4

}

+ 4
(

n/θ2

8β(x + ε)2n log log n

)1/(12β))
dx

≤ C(log log n)−1

∫ ∞

Γn

(x + ε)−2dx ≤ C(log log n)−1/2∆n
1/2.

As to (II2), we have that, by Lemma 3.1, for any m ≥ 1 and x > 0,

2
2m+1∑

k=0

(−1)kP {|N | ≥ (2k + 1)x} ≤ P

{
sup

0≤s≤1
|W (s)| ≥ x

}

≤ 2
2m∑

k=0

(−1)kP {|N | ≥ (2k + 1)x} .(3.4)

Thus it provides that
∫ ∞

Γn

(II2)dx =
∫ ∞

Γn

P

(
sup

0≤s≤1
|W (s)| ≥ (x + ε)

√
2 log log n

)
dx

≤ 2
2m∑

k=0

(−1)k

∫ ∞

Γn

P
(
|N | ≥ (2k + 1)(x + ε)

√
2 log log n

)
dx

≤ 2
2m∑

k=0

(−1)k

(2k + 1)2
(log log n)−1

∫ ∞

Γn

(x + ε)−2dx

≤ C(log log n)−1/2∆n
1/2.

Then an application of Toeplitz Lemma ([10]) again, combined with (3.3),
completes the proof. ¤
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Lemma 3.5. For 0 < ε < 1/4 and b > −1/2, we have uniformly

lim
M→∞

ε2b+1
∑

n>b(ε)

(log log n)b−1/2

n log n
E

{
sup

0≤s≤1
|W (s)| − ε

√
2 log log n

}

+

= 0.

Proof. For k large enough, we obtain

ε2b+1
∑

n>b(ε)

(log log n)b−1/2

n log n

∫ ∞

0

P

{
sup

0≤s≤1
|W (s)| ≥ ε

√
2 log log n + x

}
dx

≤
√

2ε2b+1
∑

n>b(ε)

(log log n)b

n log n

∫ ∞

0

P
{

N ≥ (x + ε)
√

2 log log n
}

dx

≤ Cε2b+1
∑

n>b(ε)

(log log n)b

n log n

∫ ∞

0

E|N |k
(x + ε)k(log log n)k/2

dx

≤ Cε2b+1
∑

n>b(ε)

(log log n)b−k/2

n log n
ε−k+1 = CM b+1−k/2 → 0,

when M →∞, uniformly for 0 < ε < 1/4. ¤

Lemma 3.6. For b > −1/2, if E|X1|2+δ < ∞(0 < δ ≤ 1), then

lim
M→∞

lim
ε↘0

ε2b+1
∑

n>b(ε)

(log log n)b−1/2

n3/2 log n
E

{
Mn − ε

√
2n log log n

}
+

= 0.

Proof. Write θ =
√

1/EX2
1 .

By applying Lemma 3.3 (where z = (x + ε)
√

2n log log n, y = β′z and Bn =
n/θ2) again, similarly with Lemma 3.4, we have

ε2b+1
∑

n>b(ε)

(log log n)b−1/2

n3/2 log n
E

{
Mn − ε

√
2n log log n

}
+

≤ Cε2b+2M−1−δ/2
∑

n>b(ε)

1
n1+δ/2

+ C

∫ ∞

θ2M/4

sbe−sds + Cε−2 1
log log b(ε)

.

Then we can get the desired result immediately by letting ε → 0 and M →
∞. ¤

Proposition 3.1. For any b > −1/2, we have

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n
E

{
sup

0≤s≤1
|W (s)| − ε

√
2 log log n

}

+

(3.5)

=
2−1/2−bE|N |2(b+1)

(b + 1)(2b + 1)

∞∑

k=0

(−1)k

(2k + 1)2(b+1)
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and

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n
E

{
|N | − ε

√
2 log log n

}
+

=
2−1/2−bE|N |2(b+1)

(b + 1)(2b + 1)
,

(3.6)

where N is the standard normal random variable.

Proof. Note that for any m ≥ 1 and x > 0, (3.4) holds. Thus it follows that
for any t > 0

E

{
sup

0≤s≤1
|W (s)| − t

}

+

=
∫ ∞

0

P

(
sup

0≤s≤1
|W (s)| ≥ t + x

)
dx

≤ 2
2m∑

k=0

(−1)k

∫ ∞

0

P (|N | ≥ (2k + 1)(t + x)) dx

= 2
2m∑

k=0

(−1)k

2k + 1

∫ ∞

0

P (|N | ≥ (2k + 1)t + x) dx

= 2
2m∑

k=0

(−1)k

2k + 1
E{|N | − (2k + 1)t}+

and

E

{
sup

0≤s≤1
|W (s)| − t

}

+

≥ 2
2m+1∑

k=0

(−1)k

2k + 1
E {|N | − (2k + 1)t}+ .

So, it suffices to show that for any q ≥ 1 and b > −1/2,

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n
E

{
|N | − qε

√
2 log log n

}
+

= q−2b−1 2−1/2−bE|N |2(b+1)

(b + 1)(2b + 1)
.

(3.7)

Obviously,

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n
E

{
|N | − qε

√
2 log log n

}
+

(3.8)

= lim
ε↘0

ε2b+1

∫ ∞

ee

(log log y)b−1/2

y log y

∫ ∞

qε
√

2 log log y

P{|N | ≥ x}dxdy

= 21/2−bq−2b−1 lim
ε↘0

∫ ∞
√

2qε

z2b

∫ ∞

z

P{|N | ≥ x}dxdz

= q−2b−1 2−1/2−bE|N |2(b+1)

(b + 1)(2b + 1)
.

Thus the proposition is now proved by taking q = 2k+1 and q = 1, respectively.
¤
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Proposition 3.2. For any b > −1/2, we have

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n

∣∣∣∣n−1/2E
{

Mn − ε
√

2n log log n
}

+

− E

{
sup

0≤s≤1
|W (s)| − ε

√
log log n

}

+

∣∣∣∣ = 0

and

lim
ε↘0

ε2b+1
∞∑

n=1

(log log n)b−1/2

n log n

∣∣∣∣n−1/2E
{
|Sn| − ε

√
2n log log n

}
+

− E{|N | − ε
√

log log n}+
∣∣∣∣ = 0.

Proof. It is trivial from Lemmas 3.4-3.6. ¤

The Proof of Theorem 2.1. By using the Propositions 3.1 and 3.2, we can easily
get the conclusions. ¤

4. The proof of Theorem 2.2

Similarly, we state some lemmas before showing the proof of Theorem 2.2.

Lemma 4.1. For any b > −1/2 and M > 4, we have

lim
ε↗∞

ε−2(b+1)
∑

n≤b(1/ε)

(log log n)b

n log n

∣∣∣∣n−1/2E

{
ε

√
π2n

8 log log n
−Mn

}

+

− E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

∣∣∣∣ = 0.

Proof. Take ∆n = supx |P(Mn ≤ x
√

n) − P(sup0≤s≤1 |W (s)| ≤ x)| here, and
thus via Toeplitz Lemma ([10]), we get the desired result by following the lines
in Lemma 3.4. ¤

Lemma 4.2. For ε > 0 sufficiently large and b > −1/2, we have

lim
M→∞

ε−2(b+1)
∑

n>b(1/ε)

(log log n)b

n log n
E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

= 0,

uniformly in ε.
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Proof. By virtue of Lemma 3.1, we have that

ε−2(b+1)
∑

n>b(1/ε)

(log log n)b

n log n
E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

= ε−2(b+1)
∑

n>b(1/ε)

(log log n)b

n log n

∫ ε
q

π2
8 log log n

0

P

{
sup

0≤s≤1
|W (s)| ≤ t

}
dt

≤ C

∫ ∞

M

yb−1/2e−ydy → 0 as M →∞.
¤

Lemma 4.3. There exist constants λ > 0 and C > 0 such that for any x ≥ 1
and n ≥ 1,

P{Mn ≤ x
√

n/ log log n} ≤ C exp
(
− λ log log n

2x2

)
.

Proof. It follows from Lemma 3.2 that P(Sm ≤ 2
√

m) → P(N ≤ 2) as m →∞.
Thus, there exist λ > 0 and m0 such that P(Sm ≤ 2

√
m) ≤ e−λ < 1, when

m ≥ m0/2. Set m = [nx2/ log log n] and N = [n/(m+1)]. Thus, when x ≥ 1 and
n ≥ m2

0, we have m ≥ m0/2. Notice that Sk(m+1) − S(k−1)(m+1), k = 1, . . . , N,

are also negatively associated. Hence, for those x ≥ 1 and n ≥ m2
0 satisfying

x2/ log log n < 1/4, we have

P

{
Mn ≤ x

√
n

log log n

}
≤ P

{
Mn ≤

√
m + 1

}

≤ P
{|Sk(m+1) − S(k−1)(m+1)| ≤ 2

√
m + 1; k = 1, 2, . . . , N

}

≤ P
{
Sk(m+1) − S(k−1)(m+1) ≤ 2

√
m + 1; k = 1, 2, . . . , N

}

≤
N∏

k=1

P
{
Sk(m+1) − S(k−1)(m+1) ≤ 2

√
m + 1

}

= PN{Sm+1 ≤ 2
√

m + 1} ≤ e−λN

≤ exp
{
−λ

(
n

m + 1
− 1

)}
≤ exp

{
−λ

( n

2m
− 1

)}

≤ exp
{
−λ

(
log log n

2x2
− 1

)}
≤ eλ exp

{
−λ log log n

2x2

}
.

On the other hand, if x2/ log log n > 1/4, then

P
{

Mn ≤ x
√

n/ log log n
}
≤ 1 ≤ e2λ exp

{
−λ log log n

2x2

}
.

Moreover, when x ≥ 1 and n ≤ m2
0, we have

P
{

Mn ≤ x
√

n/ log log n
}
≤ 1 ≤ eλ log log m2

0 exp
{
−λ log log n

2x2

}
.
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Hence, the conclusion follows, as desired. ¤

Lemma 4.4. Uniformly for ε sufficiently large, we have for b > −1/2,

lim
M→∞

ε−2(b+1)
∑

n>b(1/ε)

(log log n)b

n3/2 log n
E

{
ε

√
π2n

8 log log n
−Mn

}

+

= 0.

Proof. Notice that for any ε large enough, it follows from Lemma 4.3 that

ε−2(b+1)
∑

n>b(1/ε)

(log log n)b

n3/2 log n
E

{
ε

√
π2n

8 log log n
−Mn

}

+

≤ Cε−2b−1
∑

n>b(1/ε)

(log log n)b−1/2

n log n
P

(
Mn ≤ ε

√
π2n

8 log log n

)

≤ Cε−2b−1
∑

n>b(1/ε)

(log log n)b−1/2

n log n
exp

(
− 4λ log log n

ε2π2

)

≤ C

∫ ∞

M

yb−1/2 exp
(
− 4λ

π2
y
)
dy → 0 as M →∞.

¤

Proposition 4.1. For any b > −1/2, we have

lim
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n log n
E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

=
Γ(b + 1/2)√

2(b + 1)

∞∑

k=0

(−1)k

(2k + 1)2b+2
.

Proof. It follows from Lemma 3.1 that

lim
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n log n
E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

= lim
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n log n

∫ ε
q

π2
8 log log n

0

P

{
sup

0≤s≤1
|W (s)| ≤ t

}
dt

= lim
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n log n

∫ ε
q

π2
8 log log n

0

4
π

∞∑

k=0

(−1)k

2k + 1
exp

{
−π2(2k + 1)2

8t2

}
dt

=
4
π

∞∑

k=0

(−1)k

2k + 1
lim

ε↗∞
ε−2(b+1)

∫ ∞

ee

(log log x)b

x log x

∫ ε
q

π2
8 log log x

0

exp
{
−π2(2k + 1)2

8t2

}
dtdx
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=
1√
2

∞∑

k=0

(−1)k lim
ε↗∞

ε−2(b+1)

∫ ∞

ee

(log log x)b

x log x

∫ ∞

(2k+1)2 log log x/ε2
y−3/2e−ydydx

(
t =

π(2k + 1)
2
√

2
y−1/2

)

=
1√
2

∞∑

k=0

(−1)k

(2k + 1)2b+2
lim

ε↗∞

∫ ∞

(2k+1)2/ε2
sb

∫ ∞

s

y−3/2e−ydyds

=
1√
2

∞∑

k=0

(−1)k

(2k + 1)2b+2
lim

ε↗∞

∫ ∞

(2k+1)2/ε2
y−3/2e−y

∫ y

(2k+1)2/ε2
sbdsdy

=
1√

2(b + 1)

∞∑

k=0

(−1)k

(2k + 1)2b+2
lim

ε↗∞

∫ ∞

(2k+1)2/ε2
yb−1/2e−ydy

=
Γ(b + 1/2)√

2(b + 1)

∞∑

k=0

(−1)k

(2k + 1)2b+2
.

¤

Proposition 4.2. For any b > −1/2, we have

lim sup
ε↗∞

ε−2(b+1)
∞∑

n=1

(log log n)b

n log n

∣∣∣∣n−1/2E

{
εσ

√
nπ2

8 log log n
−Mn

}

+

− E

{
ε

√
π2

8 log log n
− sup

0≤s≤1
|W (s)|

}

+

∣∣∣∣ = 0.

Proof. From Lemmas 4.1, 4.2 and 4.4, it follows easily. ¤

The Proof of Theorem 2.2. By virtue of Propositions 4.1 and 4.2, we complete
the proof immediately. ¤
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