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PRECISE ASYMPTOTICS IN STRONG LIMIT THEOREMS
FOR NEGATIVELY ASSOCIATED RANDOM FIELDS

DAE-HEE RYU

ABSTRACT. Let {Xn,n € Z‘_i*_} be a field of identically distributed and
negatively associated random variables with mean zero and set Sp =
Zk <n Xk, n€ Zi, d > 2. We investigate precise asymptotics for Z

In|™/P=2P(|Sn| > ¢[n|/P) and 3" _ “’g‘“) P(|Sn| > €4/In|logn]), (0 <
6<1)aseN\0.
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1. Introduction

Let d > 2 be a positive integer and {Xk, k € Z%} be a field of random
variables defined on a probability space (Q,F,P). The field {Xy, k € Z2} is
called negatively associated(NA) if, for every pair of disjoint subsets S, T of Zd
and any pair of coordinatewise increasing functions f(Xi,i € 5), g(Xj,j € T)

with E[fz(X,,l c S)] < o0 and E[f2( je T)] < 00 Cov(f(X1), 9(X;)) < 0

holds. The concept of NA was introduced by Joag-Dev and Proschan(1983).
As pointed out and proved by Joag-Dev and Proschan(1983), a number of well-
known multivariate distributions possess the NA property, such as multinomial
distribution, negatively correlated normal distribution, multivariate hypergeo-
metric distribution, etc. Negative association has found application in reliability
theory, statistical mechanics and multivariate statistical analysis. The interested
reader is referred to Roussas(1999). Roussas(1994) proved the central limit theo-
rem and Zhang and Wen(2001) investigated the weak convergence for negatively
associated random fields. Recently, Li(2009) obtained convergence rate in the
law of the iterated logarithm and Ko(2009)showed the complete convergence for
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negatively associated random fields. Now let Z%(d > 2) denote positive inte-
ger d-dimensional lattice with coordinatewise partial ordering <. The notation

m < n, where m = (my,ma,---,mg) and n = (ny,ng,---,ny), means that
d
mr < ng fork=1,2,---,d. We also use |n| for an, and n — oo is to be
k=1"
interpreted as ny — oo, for k=1,2,---,d and set S, = Z Xx.
k<n

Gut and Spataru(2003) proved the following precise asymptotics in strong
limit theorems for a field of i.i.d. random variables:

Theorem A. Let {Xi,k € Z4} be a field of i.i.d. random wvariables with
EX; =0 and let N denote a standard normal random variable. Suppose that
E[lel’"(logJr |X1|)d_1] < oo, T>2, seta? = EX12. Then, for 1 <p <2,

A r/p—2 >
iy gy 32 Sl 2 i)

1 20\ P meon i
B (d—1)!\2- r—pgzp EIN{ o

(here and in the sequel log™ x = log(e V z),z > 0).

Theorem B. Let {Xi,k € Z%} be a field of i.i.d. random wvariables with
EX, =0 and let N denote a standard normal random variable. Suppose that

E[]X1|2(log+ |X1|)d"1] < 0o and set 02 = EX?. Then, for 0 <6 <1,

iy 5440y Qo8I0 15, 2 e/ TuTogTm)

e\,0

1 0.25+2d 25+2d
- @d-1) 5rd N

In this paper we will extend similar results as above to the NA random fields.
2. Preliminaries

Let d(j) = Card{k : |k| = j} and M(j) = Cdrd{k: |k| < j}. Then following
asymptotics holds:
M(j) 1
jlogj)e-t  (d—1)!

An important fact is that,
Z =33 - (2.2)

Jj21[n[=j

as j — 00. (2.1)
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Whenever the function involving n only depends on the value of |n|, the sum-
mation can be simplified as follows. For example, for sum in Theorem A we
have

Y I P2P(ISy 2 enVP) = Yy In|/PTPP(|Sa 2 €lnl'P)  (2.3)

j21|n|=j
= Y d(§)iFTEP( S| 2 &)
Jjz1
where 7(j) = (4,1,1,---,1), 7 > 1. (See Gut and Spitaru(2003) for more

detail)
The following lemma will be used to prove the main results.

Lemma 2.1 (Gut and Spataru(2003)). Let X be a random variable and r > 2,
assume that E[|X|"(logt [X|)?~1] < oo, and set p(e) = e 2P/(2P) where 1 <
p < 2. Then, for any constant a > 0,

S™ d(j)i/P " P(X| 2 aej?) < Ce"a T ElIX| (log™ |X])*) < 0. (2.4)

J>p(e)

Lemma 2.2 (Gut and Spataru(2003)). Let X be a random variable. Assume
that E{|X|2(log¥ | X])91] < oo and set c(e) = M/<, where M > 1. Let 0 < § <
1. For any positive constant a,

Y d(j)(log /)’ P(|X| > ae\/jlog j)

J>c(e)

< CePMo1g72 (l*'}[lez(log+ |X|)d_1} + (- log e)d’lEXQ) < 00.

Lemma 2.3 (Gut and Spataru(2003)). For § > —d + 1,

Ly~ (og)™™ ™t | (logh)**
2 j T {@d=-DI0+d)

k

d(j)(log j)°
2 j T d=1) 4

as k — oo.

j=2

Lemma 2.4 (Gut and Spataru(2003)). For v > —1,

k k
Ny 1 1 k" (logk)d!
E d(7)j7 ~ E 7 )41~ — 00.

Finally we introduce some results on NA sequences.

Lemma 2.5 (Shao(2000)). Let { Xk, k € Z1} be a field of identically distributed
NA random variables with EX, =0 and EX} < oo. Then forz >0, y > 0,

. T JEXY =
P(|Sz()| 2 @) < 2 P ‘ EX; '
(1Sr(i)| 2 2) < 25 P(|X1] 2 y) +4eﬂcp{ 8jEXf} +d (4(:171/ -f-JEXf))
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Finally, we introduce the central limit theorem for NA random variables obtalned
by Newman(1984).

Theorem 2.6 (Newman(1984)). Assume that {X,,n > 1} is a strictly sta-
tionary sequence of NA random variables with EX; = 0 and EX? < co. If
o0

0<o?=EX}+2) Cov(X1,X;) < co, then
j=2
Sn

o~ —P N(0,1) as n — 0.

3. Main results

- Throughout this section we assume that {Xk,k € Z‘i} are identically dis-

tributed NA random variables with o2 = EX% +2 Z EX7i Xk =1.
keZi

Theorem 3.1. Let { X,k € Z4} be a field of identically distributed NA random
variables with EX, = 0 and EX} < 0o and let N denote a standard normal
random variable. Assume that E[IXllr_(log+ |X1|)d_1] < oo 1 > 2. Then, for
r>2andl1<p<2
=Gy r/p—2
E%W % |n| P(|Sal > €|n|?) (3.1)
— 1 ( 2p )d—l D
(d—1D1"2—-p r—p

E|N|z=Z5 G-

To prove Theorem 3.1 we need the following Propositions:

Proposition 3.2 (Gut, Spataru(2003)). Let N be a standard normal random
variable. Forr > 2 and 1 < p < 2, we have

62_225 %_1) ' 1
P N > €)r .
i T 1Zd9).7 P(IN| = €j¥) (3.2)
1/ 2p yd-! "
= EN "—17 P
(d—l)!<2—p> r— V]

Proposition 3.3 Let {Xk,k € Z%} be a field of identically distributed NA
random variables with EX1 = 0 and let p(e) = ¢ 2P/=P) Then, for r > 2 and
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1<p<2
_2P— v L 11
!{%( loge)d— Z d(5)5» 2| P(|Sx(j)| = €7) —|P(IN| > ej»"2)| = 0.
J<p(€)1\1
(3.3)

Proof. Let M > 1 be a positive number and set Ay = sup |P(|Sx¢)| = Viz)—
X

P(|N| > z)|. Then we can easily get that A;;) — 0 as j — oo by Theorem

2.6 and we first conclude that by Lemma 2.4 with v = % — 2 and Toepliz

lemma(Stout(1995), p 120)
lim > d(j)jF 2 Axg) = 0. (3.4)

m—o0 mp l(logmd 1

i<m
Letting € ™\, 0, we then obtain

62—% >~ 1

lim ———— Z d(5)j7 2 Ay (3.5)
(—lowe)d—1 Ar(
e\0 (—loge) ey
e -1 M])+!
= !{%(Tge)d—lz\}lm [p(e)M]7 ™" (log[p(€) M])
1 N Z—2
— d(7)37 " "Ax(j)
[p(e) M5~ (log[p(e) M])— js[p%m ’
< lim lim CM"_I( 2p _logM)d_1 X !
= eN0M-ooo 2—p loge [p(€)M]7 ~ (log[p(e) M])d-1
X d(5)iT P Aggy =0 by (3.4).
3<[p(e)M]

Proposition 3.4 (Gut and Spataru(2003)). Let N be a standard normal ran-
dom variable. Then, we have, forr > 2 and 1 <p < 2 ‘

62_5_—)

[SIE

oI o
d(j)jz 2P(IN| > €j?
i>ple)M

)=0.  (3.6)

N L

Proposition 3.5. Let {Xy,k € Z%} be a field of identically distributed NA

random variables with- EX7; = 0. Assume that E[|X1|’"(log+ |X1|)d_1] < 0.
Then, forr >2 and 1 <p < 2

2L (r_
62—1: P

d(5)j* " P(|S=;)| = €j?) = 0. (3.7)
j>ple)M

lim li _—
yim Jim sup oy
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Proof. Let M > 1. Lemma 2.5 with z = ej% and y = ej%/lm withy =7/(2—p)
yields

D d5)iP T2 P(IS()] = €57) | (3.8)
i>ple)M

<2 Y d(iFTIP(Xa| 2 ¢P/129)
j>ple)M

N L9 €2j2/p
+4 Y d()iv exp(—SjEXQ)
1

129j(EX3)\"”
4e242/p

+4 ), dG)iv
3>ple) M
= L+ 1+ Is.
For I;, it follows from Lemma 2.1 that

L= 2 Y d§)i» 2P(1Xye| > €j7 /127)
3>ple)M

< 2 ) dG)iFTIP(Xa) > €7 /129)
i>p(e)

< CeYB|IXa| (log* | Xa )]

Hence, we obtain

755 (51
o1 M ogaet 1 T 9
2
by the fact that pp(% —1) > r. It follow from (2.1) that
d(j) M(j) (log )™ _ (logk)¢!
2 i SO S SC) SO —5—,
Jj2k jzk J2k
which yields
72 (Z-1) 72 (L-1) 2.:2/p
€2-p\p €2-p'p T €97
—_— = — E d(§)j7 % exp (— - > (3.10)
_ d—1 _ d—1 2
(—loge) (—loge) i M 8iEX;
2p log M d-1 r_1 24
< — —
< C(Z—p loge) M7 " exp(—bM>»™ "), b>0
— 0 as M — oo where b~ =8EX2,
and
L (z_1) d—1
€Z-r'\¥ _ 2p log M
— L <CM™! — 1 .
(Cloge)T1 3 < (2—1) loge) —0as M — (3.11)

by Lemma 2.3.
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From (3.8), (3.9), (3.10) and (3.11) the result (3.7) follows. ‘ O

Proof of Theorem 3.1: The triangle inequality and combining Propositions 3.2 -
3.5 yield (3.1).

Theorem 3.6. Let { X1,k € Z2} be a ﬁe.ld of identically distributed NA random
variables with EX1 = 0 and EX? < oo and let N note a standard normal random
variable. Assume '

E[|X1;2(1og+ |X1|)d-1] < 0, (3.12)
o*=EX;+2 Y EX;Xi =1 (3.13)
kezd |

Then, for 0 <6 <1,
i 20+2d (_IM > _ 1
lim e Zn: - P(!Sn} > e |n]log]n|> -

eN\0
(3.14)

Proposition 3.7. Let N be a standard normal random variable. For 0 <6 <1

: d(j)(log j)° : 1
1 26+2d P(IN| > 1 — E N 25+2d'
N ; g PNz eviesd) = i gy FIN

(3.15)

Proposition 3.8. Let {Xx,k € Z1} be a field of identically distributed NA
random variables with EX; = 0 and let c(¢) = /<", where M > 1. Then

) (lo i\é ; ; / .
lim €29+24 E d(J)( gjj) |P(ISx()| 2 €v/7logj) — P(IN| > €y/log j)| = 0.

N0 Jj<e(e)

Proof. Let Ar(jy = sup |P(|Sx(;5| > v/§x) — P(|N| > z)|. Then by Theorem 2.6
Ay = 0 as j — oco. It follows from Lemma 2.4 that

625—}—2(1 (10g3)6
lim ——— d(j Ay =0.
im a2 W) ) =0
Jj<c(e)

O

Proposition 3.9 (Gut and Spataru(2003)). Let N be a standard normal random
variable and let c(€) = exp(M/€?) where M > 1. Then

o ; log j)°
lim lim supe?°+24 E d(j) ( Og.']) P(IN| > ey/logj) = 0.
M=% o\ ot J
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Proposition 3.10. Let {Xx,k € Z4} be a field of identically distributed NA
random vartables with- EX; = 0, EX] < oo and satisfying (3.12) and (3.13)
and let c(€) = exp(M/e?) where M > 1. Then, for 0 <6< 1

log j)°
lim 11msup625+2d Z d(j)(oij) |P(|S7r(j)|

M—oco N0 iSe(e)

> ey/jlogj) — P(|N| 2 ey/logj)| = 0.

Proo f.

og7)?
> )L (s, ) 2 eviTogd)

j>c(e)
<2 ) d(j)(log )’ |P(IX1| > ——/jlogj)

o 12(d + 2)

( gJ) _e’logj
J>c(e)
_ d+2

4D di) 1% log j

J>c(e)
= Iy + Is + Is.

Since j > c(¢) implies (logj)? < (¢2/M)'~%jlogj, by Lemma 2.2 we estimate

I, < C ) (logj)*'(logj)’P(e’jlogj < a™2X7 < €(j + 1)log(j + 1))
j>c(e)

< Ce®MPT Y Ejlogj(log )T
Jj>c(e)
xP(e’jlogj < a X3 < €*(j + 1) log(j + 1)))

< CePMPTH[ Y Pjlog j(log(ejlog 5))? T + (—2loge)!
J>c(e)

xP(ezj logj <a 2X; <e2(j+1)log(j + 1))
< Ce2p0-! (E[Xf log(1 + | X1)%!] + (- 1oge)d—1Ex‘1~’)

1
he = —.
where a 1204+ 2) Hence,
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lim limsupe?°t24],

M—c N0

< Ch}lm lim sup 2 M° Y (EX? (log(1 + | X1]))* ! + (~ loge)* ' EX3)
—oC N0 .

= 0.

For Is, we also estimate

d—1+6 2
Is < OZ (—loéy)———exp(-— c logj>

2
i J SEXY
o8 (log x)d—l—l—é 2
= C/(e) ——x—exp( SEX? log z)dx
o (Iog:r)d 1+4
< - d
1 d—146 ' o
since (—OL is a decreasing function
z
M
< 2\d+6 _
from which it follows that
lim lim e2°+24[5 = 0.
M—o0 e\,0
I = C ) ()™ (logj)’~%/j
j>c(e)

< (6_2)d+2(M/€2)5_2,

which yields

lim limsupe?®? [ < C lim limsup M% 2 =0.
M—oo N0 M—oo e\0

Proof of Theorem 3.6: From triangle inequality and Propositions 3.7-3.10, (3.14)
follows.

Note that Fu and Zhang(2007) have already established a similar result for
d =1 case as follows:

Theorem 3.11. {X,,,n > 1} be a sequence of strictly stationary NA ran-
dom wvariables with EX; = 0 and 0 < EX12 < 00 and set 0 < 02 = EX12 +
2>°72,Cov(X1,Xj) = 1< o0. Forb> -1 if EX}(log|X1])*~! < o0, then

: 2. (logn)® E|N|2(+D)
1 2(b+1) —( n > 1 =
lim € nEZI ~ P(|Sn]| > ev/nlogn) 1
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