• Title/Summary/Keyword: quaternion

Search Result 188, Processing Time 0.023 seconds

A Study on the Attitude Determination of the KOMPSAT (다목적 실용 위성의 자세결정에 관한 연구)

  • Kim, Byung-Doo;Lee, Ja-Sung;Choi, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.474-477
    • /
    • 1997
  • In this paper, an efficient attitude determination algorithm based on the Kalman Filter which combines earth/sun sensor data with gyro data in a mutually compensating manner is presented. Quaternion is used as the attitude state to save computation time and to prevent the gimbal-lock situation associated with Euler angles. Gyro data allows the use of the kinematic equation instead of space vehicle's dynamic equation which is usually based on approximation of the actual dynamics and inaccurate torque information. The gyro data are used to propagate the attitude through kinematic equation and the earth/sun sensor data are used to update the attitude and estimate the gyro bias. Simulation results for the KOMPSAT attitude determination system are presented.

  • PDF

NONABELIAN GROUP ACTIONS ON 3-DIMENSIONAL NILMANIFOLDS REVERSING FIBER ORIENTATION

  • Koo, Daehwan;Lee, Taewoong;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.475-486
    • /
    • 2018
  • We study free actions of finite nonabelian groups on 3-dimensional nilmanifolds with the first homology ${\mathbb{Z}}^2{\bigoplus}{\mathbb{Z}}_2$ which yield an orbit manifold reversing fiber orientation, up to topological conjugacy. We show that those nonabelian groups are $D_4$(the dihedral group), $Q_8$(the quaternion group), and $C_8.C_4$(the $1^{st}$ non-split extension by $C_8$ of $C_4$ acting via $C_4/C_2=C_2$).

SDINS Equivalent Error Models Using the Lyapunov Transformation (Lyapunov 변환을 이용한 SDINS 등가 오차모델)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.167-177
    • /
    • 2002
  • In Strapdown Inertial Navigation System(SDINS), error models based on previously proposed conversion equations between the attitude errors, are only valid in case the attitude errors are small. The SDINS error models have been independently studied according to the definition of the reference frame and of the attitude error. The conversion equations between the attitude errors applicable to SDINS with large attitude errors are newly derived. Lyapunov transformation matrices are also derived from the obtained results. Furthermore the general method, which is independent of the attitude error and the reference frame to derive SDINS error model, is proposed using the Lyapunov transformation.

A METHOD OF COMPUTING THE CONSTANT FIELD OBSTRUCTION TO THE HASSE PRINCIPLE FOR THE BRAUER GROUPS OF GENUS ONE CURVES

  • Han, Ilseop
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1431-1443
    • /
    • 2016
  • Let k be a global field of characteristic unequal to two. Let $C:y^2=f(x)$ be a nonsingular projective curve over k, where f(x) is a quartic polynomial over k with nonzero discriminant, and K = k(C) be the function field of C. For each prime spot p on k, let ${\hat{k}}_p$ denote the corresponding completion of k and ${\hat{k}}_p(C)$ the function field of $C{\times}_k{\hat{k}}_p$. Consider the map $$h:Br(K){\rightarrow}{\prod\limits_{\mathfrak{p}}}Br({\hat{k}}_p(C))$$, where p ranges over all the prime spots of k. In this paper, we explicitly describe all the constant classes (coming from Br(k)) lying in the kernel of the map h, which is an obstruction to the Hasse principle for the Brauer groups of the curve. The kernel of h can be expressed in terms of quaternion algebras with their prime spots. We also provide specific examples over ${\mathbb{Q}}$, the rationals, for this kernel.

3D Animation Authoring Tool Based On Whole Body IK and Motion Editing

  • Ju, Woo-Suk;Im, Choong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.869-874
    • /
    • 2008
  • The work of creating character motion needs the higher professional technology and sense and the creating work of realistic and natural motion possess the most part of production term. In this paper we introduce the easy and convenient 3D animation authoring tool which makes the motion based on whole-body inverse kinematics and motion editing function. The proposed 3D animation authoring tool uses the forward kinematics using quaternion and whole-body inverse kinematics to determine the rotation and displacement of skeleton. Also, it provides the motion editing function using multi-level B-spline with quasi-interpolant. By using the proposed tool, we can make 3D animation easily and conveniently.

  • PDF

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju;Tan, Ser Peow
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1131-1158
    • /
    • 2019
  • An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that $L_i$ intersects $L_{i+1},i=1,{\ldots},4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.

IDEAL RIGHT-ANGLED PENTAGONS IN HYPERBOLIC 4-SPACE

  • Kim, Youngju;Tan, Ser Peow
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.595-622
    • /
    • 2019
  • An ideal right-angled pentagon in hyperbolic 4-space ${\mathbb{H}}^4$ is a sequence of oriented geodesics ($L_1,{\ldots},L_5$) such that Li intersects $L_{i+1},\;i=1,\;{\ldots},\;4$, perpendicularly in ${\mathbb{H}}^4$ and the initial point of $L_1$ coincides with the endpoint of $L_5$ in the boundary at infinity ${\partial}{\mathbb{H}}^4$. We study the geometry of such pentagons and the various possible augmentations and prove identities for the associated quaternion half side lengths as well as other geometrically defined invariants of the configurations. As applications we look at two-generator groups ${\langle}A,B{\rangle}$ of isometries acting on hyperbolic 4-space such that A is parabolic, while B and AB are loxodromic.

Lunar ascent and orbit injection via locally-flat near-optimal guidance and nonlinear reduced-attitude control

  • Mauro, Pontani
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.433-447
    • /
    • 2022
  • This work deals with an explicit guidance and control architecture for autonomous lunar ascent and orbit injection, i.e., the locally-flat near-optimal guidance, accompanied by nonlinear reduced-attitude control. This is a new explicit guidance scheme, based on the local projection of the position and velocity variables, in conjunction with the real-time solution of the associated minimum-time problem. A recently-introduced quaternion-based reduced-attitude control algorithm, which enjoys quasi-global stability properties, is employed to drive the longitudinal axis of the ascent vehicle toward the desired direction. Actuation, based on thrust vectoring, is modeled as well. Extensive Monte Carlo simulations prove the effectiveness of the guidance, control, and actuation architecture proposed in this study for precise lunar orbit insertion, in the presence of nonnominal flight conditions.

QUATERNIONS AND HOMOTHETIC MOTIONS IN EUCLIDEAN AND LORENTZIAN SPACES

  • Gulsum YUCA;Yusuf YAYLI
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.198-214
    • /
    • 2023
  • In the present paper, we investigate homothetic motions determined by quaternions, which is a general form of our previous paper [20]. We introduce a transition between homothetic motions in 3D and 4D Euclidean and Lorentzian spaces. In other words, we give a new method that works as a handy tool for obtaining Lorentzian homothetic motions from Euclidean homothetic motions. Moreover, some remarkable properties of homothetic motions, which are given in former studies on this subject, are also examined by dual transformations. Then, we present applications and visualize them with 3D-plots. Finally, we investigate homothetic motions in dual spaces because of the importance in many fields related to kinematics.

COMBINATORIAL SUPERSYMMETRY: SUPERGROUPS, SUPERQUASIGROUPS, AND THEIR MULTIPLICATION GROUPS

  • Bokhee Im;Jonathan D. H. Smith
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.109-132
    • /
    • 2024
  • The Clifford algebra of a direct sum of real quadratic spaces appears as the superalgebra tensor product of the Clifford algebras of the summands. The purpose of the current paper is to present a purely settheoretical version of the superalgebra tensor product which will be applicable equally to groups or to their non-associative analogues - quasigroups and loops. Our work is part of a project to make supersymmetry an effective tool for the study of combinatorial structures. Starting from group and quasigroup structures on four-element supersets, our superproduct unifies the construction of the eight-element quaternion and dihedral groups, further leading to a loop structure which hybridizes the two groups. All three of these loops share the same character table.