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NONABELIAN GROUP ACTIONS ON 3-DIMENSIONAL

NILMANIFOLDS REVERSING FIBER ORIENTATION

Daehwan Koo*, Taewoong Lee**, and Joonkook Shin***

Abstract. We study free actions of finite nonabelian groups on
3-dimensional nilmanifolds with the first homology Z2 ⊕ Z2 which
yield an orbit manifold reversing fiber orientation, up to topological
conjugacy. We show that those nonabelian groups are D4(the dihe-
dral group), Q8(the quaternion group), and C8.C4(the 1

st non-split
extension by C8 of C4 acting via C4/C2 = C2).

1. Introduction

Let H be the 3–dimensional Heisenberg group; i.e. H consists of all
3 × 3 real upper triangular matrices with diagonal entries 1. Thus H
is a simply connected, 2-step nilpotent Lie group, and it fits an exact
sequence

1 → R → H → R2 → 1

where R = Z(H), the center of H. Hence H has the structure of a
line bundle over R2. We take a left invariant metric coming from the
orthonormal basis

 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0


for the Lie algebra of H. This is, what is called, the Nil-geometry and its
isometry group is Isom(H) = HoO(2) [8]. All isometries of H preserve
orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if
there is a subgroup π of Isom(H) so that π acts properly discontinuously
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and freely on H with quotient M = H
/
π. The simplest such a manifold

is the quotient of H by the lattice consisting of integral matrices.

Let Γ be any lattice of H and Z(H) be the center of H. Then Z = Γ∩
Z(H) and Γ

/
Γ ∩ Z(H) are lattices of Z(H) and H

/
Z(H), respectively.

Therefore, the lattice Γ is an extension of Z by Z2, that is, there is an
exact sequence:

1 → Z → Γ → Z2 → 1.

Let a, b, and c be elements of Γ such that the images of a and b in Z2

generate Z2 and c generates the center Z. Then it is known that such Γ
is isomorphic to one of the following groups, for some p :

Γp = ⟨a, b, c | [b, a] = cp, [c, a] = [c, b] = 1⟩, p ̸= 0,

where [b, a] = b−1a−1ba. This group is realized as a uniform lattice of H
if one takes

a =

 1 0 0
0 1 1
0 0 1

 , b =

 1 1 0
0 1 0
0 0 1

 , c =

 1 0 1
p

0 1 0
0 0 1

 .

Then Γ1 is the discrete subgroup of H consisting of all integral matrices
and Γp is a lattice of H containing Γ1 with index p. Remark that Γp is
equal to Γ−p. Clearly

H1(H/Γp;Z) = Γp/[Γp,Γp] = Z2 ⊕ Zp.

Note that these Γp
′s produce infinitely many distinct nilmanifolds

Np = H/Γp

covered by the standard nilmanifold N1.

In [2], the authors showed that if a finite group acts freely on the
standard 3-dimensional nilmanifold N1 with the first homology Z2, then
it is cyclic. Also, they showed that there does not exist any finite group
acting freely (up to topological conjugacy) on N1 which yields an orbit
manifold homeomorphic to H/π3 or H/π4. Later, free actions of finite
abelian groups on the 3-dimensional nilmanifold Np with the first ho-
mology Z2 ⊕ Zp were classified in [1]. In [5], the authors generalized the
results of [1] by changing the finite abelian group conditions to finite
group conditions by using the method in [1], up to topological conju-
gacy. However it is difficult to know exactly what the finite groups are,
since the finite groups acting freely on Np are represented by generators
in [5].
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In this paper we study free actions of finite nonabelian groups on N2

yielding orbit manifolds reversing fiber orientation, which is homeomor-
phic to H/π3 or H/π4. We will prove in Theorem 3.3 and Theorem 3.6
that the nonabelian groups are isomorphic to D4(the dihedral group),
Q8(the quaternion group), or C8.C4(the 1

st non-split extension by C8 of
C4 acting via C4/C2 = C2).

Note that our results cannot be obtained directly from [5]. But when
p = 2, we can find a necessary and sufficient condition for being a
normal nilpotent subgroup of an almost Bieberbach group, and classify
exactly what those groups are. This classification problem is reduced to
classifying all normal nilpotent subgroups of almost Bieberbach groups
of finite index, up to affine conjugacy.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all
possible finite group actions on 3-dimensional nilmanifolds with the first
homology Z2 ⊕ Zp. The problem will be reduced to a purely group-
theoretic one. We quote most of the Introduction and Section 2 of [1] in
this section for the reader’s convenience.

Let G be a finite group acting freely on the nilmanifold Np. Then
clearly,M = Np/G is a topological manifold, and π = π1(M) ⊂ TOP(H)
is isomorphic to an almost Bieberbach group. Let π′ be an embed-
ding of π into Aff(H). Such an embedding always exists. Since any
isomorphism between lattices extends uniquely to an automorphism of
H, we may assume the subgroup Γp goes to itself by the embedding
π → π′ ⊂ Aff(H). Then the quotient group G′ = π′/Γp acts freely on the
nilmanifold Np = H/Γp. Moreover, M ′ = Np/G

′ is an infra-nilmanifold.
Thus, a finite free topological action (G,Np) gives rise to an isometric
action (G′,Np) on the nilmanifold Np. By works of Waldhausen and
Heil ([4, 9]), M is homeomorphic to M ′.

Definition 2.1. Let groups Gi act on manifolds Mi, for i = 1, 2.
The action (G1,M1) is topologically conjugate to (G2,M2) if there exists
an isomorphism θ : G1 → G2 and a homeomorphism h : M1 → M2

such that

h(g · x) = θ(g) · h(x)
for all x ∈ M1 and all g ∈ G1. When G1 = G2 and M1 = M2, topologi-
cally conjugate is the same as weakly equivariant.
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For Np/G and Np/G
′ being homeomorphic implies that the two ac-

tions (G,Np) and (G′,Np) are topologically conjugate. Such a pair
(G′,Np) is not unique. However, by the result obtained by Lee and
Raymond [7], all the others are topologically conjugate.

The following proposition gives a characterization of an almost Bieber-
bach group (see [6]).

Proposition 2.2. An abstract group π is the fundamental group
of a 3-dimensional infra-nilmanifold if and only if π is torsion-free and
contains Γk for some k > 0 as a maximal normal nilpotent subgroup of
finite index.

It is known ([3, Proposition 6.1]) that there are 15 classes of distinct
closed 3-dimensional manifolds M with a Nil-geometry.

Note that if M = H
/
π is a 3-dimensional infra-nilmanifold, then

there is a diffeomorphism f between H and R3, and an isomorphism φ
between π and π′, where π′ is a subgroup of

Aff(R3) = R3 oGL(3,R)

such that (π,H) and (π′,R3) are weakly equivariant. Therefore, an
infra-nilmanifold M = H

/
π is diffeomorphic to an affine manifold M ′ =

R3
/
π′.
The list for 15 kinds of the 3-dimensional almost Bieberbach groups

imbedded in Aff(H) = H o (R2 o GL(2,R)) is presented in [1, p.799-
p.801]. We shall use

t1 =

1 1 0
0 1 0
0 0 1

 , I

 , t2 =

1 0 0
0 1 1
0 0 1

 , I

 , t3 =

1 0 − 1
k

0 1 0
0 0 1

 , I

 ,

respectively, where I is the identity in Aut(H) = R2 oGL(2,R).
Let (G,Np) be a free affine action of a finite group G on the nilman-

ifold Np. Then Np/G is an infra-nilmanifold. Let π = π1(Np/G) and
Γp = π1(Np). Then π is an almost Bieberbach group. In fact, since the
covering projection Np → Np/G is regular, Γp is a normal subgroup of
π.

Definition 2.3. Let π ⊂ Aff(H) = H o Aut(H) be an almost
Bieberbach group, and let N1, N2 be subgroups of π. We say that
(N1, π) is affinely conjugate to (N2, π), denoted by N1 ∼ N2, if there
exists an element (t, T ) ∈ Aff(H) such that (t, T )π(t, T )−1 = π and
(t, T )N1(t, T )

−1 = N2.
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Our classification problem of free finite group actions (G,Np) with

π1(Np/G) ∼= π

can be solved by finding all normal nilpotent subgroups N of π each of
which is isomorphic to Γp, and classify (N, π) up to affine conjugacy.
This procedure is a purely group-theoretic problem and can be handled
by affine conjugacy.

The following proposition [1, Proposition 3.1] is a working criterion
for determining all normal nilpotent subgroups of π which are isomorphic
to Γp.

Proposition 2.4. Let N be a normal nilpotent subgroup of an al-
most Bieberbach group π and isomorphic to Γp. Then N can be repre-
sented by a set of generators

N = ⟨ td11 tm2 tn1
3 , td22 tn2

3 , t
Kd1d2

p

3 ⟩,
where d1, d2 are divisors of p; K is determined by tK3 = [t2, t1]; 0 ≤
m < d2, 0 ≤ ni <

Kd1d2
p (i = 1, 2).

3. Free actions of finite nonabelian groups on the nilmani-
fold N2

We shall find all possible finite nonabelian groups acting freely (up to
topological conjugacy) on the 3-dimensional nilmanifold N2 which yield
an orbit manifold homeomorphic to H/π3 or H/π4.

The following lemma gives a necessary condition for being a normal
nilpotent subgroup of an almost Bieberbach group π3 which is isomor-
phic to Γp.

Lemma 3.1 ([5]). Let N be a normal nilpotent subgroup of an almost
Bieberbach group π3 and isomorphic to Γp. Then N can be represented
by one of the following sets of generators

N r
1 = ⟨td11 , td22 tr3, t

2nd1d2
p

3 ⟩, N r
2 = ⟨td11 t

2nd1d2
2p

3 , td22 tr3, t
2nd1d2

p

3 ⟩,

N ℓ
3 = ⟨td11 t

d2
2
2 tℓ3, td22 ts3, t

2nd1d2
p

3 ⟩,

where 2d1 is a divisor of p, s = 2ℓ if p = 4kd1, or s = 2ℓ+ 2nd1d2
2p

if p = 2(2k − 1)d1 for k ∈ N.

The following proposition is a working criterion for affine conjugacy
among normal nilpotent subgroups of π3.
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Proposition 3.2 ([5]). Let N r
1 , N

r
2 , and N ℓ

3 be a normal nilpotent
subgroup of π3 in lemma 3.1 and isomorphic to Γp. Then we have the
following:

(1) N r
1 ∼ N r′

2 if and only if d2 = p, r ≡ r′(mod d2).
(2) N r

1 � N ℓ
3 , N r

2 � N ℓ
3 .

(3) N r
1 ∼ N r′

1 if and only if r ≡ r′(mod d2).

(4) N r
2 ∼ N r′

2 if and only if r ≡ r′(mod d2).

(5) N ℓ
3 ∼ N ℓ′

3 if and only if 2ℓ ≡ 2ℓ′(mod d2).

Now by using Lemma 3.1 and Proposition 3.2, we can obtain the
following result. Note that we deal only with n = 1 and p = 2 in this
paper.

Theorem 3.3. Suppose G is a finite nonabelian group acting freely
on N2 which yields an orbit manifold homeomorphic to H/π3. Then G
is isomorphic to the dihedral group D4.

Proof. Note that

π3 = ⟨ t1, t2, t3, α | [t2, t1] = t23, [t3, t1] = [t3, t2] = 1, αt3α
−1 = t−1

3 ,

αt1α
−1 = t1, αt2 = t−1

2 αt−1
3 , α2 = t1 ⟩.

Let N be a normal nilpotent subgroup of an almost Bieberbach group
π3 and isomorphic to Γ2. Then by Lemma 3.1, N can be represented
by one of the following sets of generators

N r
1 = ⟨td11 , td22 tr3, td1d23 ⟩, N r′

2 = ⟨td11 t
d1d2

2
3 , td22 tr

′
3 , td1d23 ⟩,

N ℓ
3 = ⟨td11 t

d2
2
2 tℓ3, td22 ts3, td1d23 ⟩,

where 2d1 is a divisor of 2. In N ℓ
3 , s = 2ℓ if 2kd1 = 1, or s = 2ℓ + d1d2

2
if (2k − 1)d1 = 1 for k ∈ N.

Since d1, d2, 2d1 are divisors of 2, the possible pairs of (d1, d2) are
(1, 1), (1, 2).

(I) When d1 = 1, d2 = 1:

Since d1d2
2 = 1

2 /∈ Z, N r′
2 and N ℓ

3 do not occur. Thus the possible
normal nilpotent subgroup is N r

1 = ⟨ t1, t2tr3, t3 ⟩ = ⟨ t1, t2, t3 ⟩. We
denote this group by N . Then, since N = ⟨ t1, t2, t3 ⟩ ⊃ [π3, π3] =
⟨ t22 t3, t23 ⟩, π3/N is abelian. It is not hard to see π3/N ∼= Z2.

(II) When d1 = 1, d2 = 2:
By Proposition 3.2, we can obtain that N1

1 ∼ N1
2 , N

0
1 ∼ N0

2 , and
N0

3 ∼ N1
3 . So, we have the following three cases.

(i) N1
1 = ⟨ t1, t22t3, t23 ⟩.
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Note that N1
1 ⊃ [π3, π3] = ⟨ t22 t3, t23 ⟩. As in the case of N =

⟨ t1, t2, t3 ⟩, we can easily check that π3/N
1
1
∼= Z2 × Z4.

(ii) N0
1 = ⟨ t1, t22, t23 ⟩.

Clearly, N0
1 is a normal subgroup of π3 and since

t3N
0
1 = t3α

2N0
1 = t2t

−1
2 t3α

2N0
1 = t2t

−1
2 αt−1

3 αN0
1 = t2αt2αN

0
1 = (t2αN

0
1 )

2,

t2N
0
1 = t2α

2N0
1 = (t2αN

0
1 )(αN

0
1 ), t1N

0
1 = α2N0

1 ,

we have

π3/N
0
1 = ⟨ t1, t2, t3, α⟩/⟨ t1, t22, t23 ⟩ = ⟨ t2α, α⟩/⟨ t1, t22, t23 ⟩.

Also, since

(t2αN
0
1 )

2 = t2αt2αN
0
1 = t2t

−1
2 αt−1

3 αN0
1 = t3N

0
1 ,

(t2αN
0
1 )

4 = (αN0
1 )

2 = 1,

(αN0
1 )(t2αN

0
1 ) = t−1

2 αt−1
3 αN0

1 = t−1
2 t3α

2N0
1 = t2t3α

2N0
1 = t3t2α

2N0
1

= (t2α)
2t2α

2N0
1 = (t2α)

3N0
1αN

0
1 = (t2α)

−1N0
1 (αN

0
1 ),

we obtain that

π3/N
0
1 = ⟨t2αN0

1 , αN
0
1 | (t2αN0

1 )
4 = (αN0

1 )
2 = 1,

(αN0
1 )(t2αN

0
1 ) = (t2α)

−1N0
1 (αN

0
1 )⟩.

This group is isomorphic to the dihedral group D4.
(iii) N0

3 = ⟨ t1t2, t22t3, t23 ⟩.
It is easy to see that N0

3 is a normal subgroup of π3 and π3/N
0
3 is

abelian. It needs some calculations to show that π3/N
0
3
∼= Z8.

Next we shall deal with the case of π4. The following lemma gives a
necessary condition for being a normal nilpotent subgroup of an almost
Bieberbach group π4 which is isomorphic to Γp.

Lemma 3.4 ([5]). Let N be a normal nilpotent subgroup of an almost
Bieberbach group π4 and isomorphic to Γp. Then N can be represented
by one of the following sets of generators: for s, w ∈ N,
(A) p = 4sd1, p = 2wd2 :

N(1,1) = ⟨td11 , td22 , t
4nd1d2

p

3 ⟩, N(1,2) = ⟨td11 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩,

N(2,1) = ⟨td11 t
4nd1d2

2p

3 , td22 , t
4nd1d2

p

3 ⟩,

N(2,2) = ⟨td11 t
4nd1d2

2p

3 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩,
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N(3,1) = ⟨td11 t
d2
2
2 , td22 , t

4nd1d2
p

3 ⟩, N(3,3) = ⟨td11 t
d2
2
2 t

4nd1d2
2p

3 , td22 , t
4nd1d2

p

3 ⟩.

(B) p = 2(2s− 1)d1, p = 2wd2 :

N(1,1) = ⟨td11 , td22 , t
4nd1d2

p

3 ⟩, N(1,2) = ⟨td11 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩,

N(2,1) = ⟨td11 t
4nd1d2

2p

3 td22 , t
4nd1d2

p

3 ⟩,

N(2,2) = ⟨td11 t
4nd1d2

2p

3 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩,

N(4,1) = ⟨td11 t
d2
2
2 t

12nd1d2
4p

3 , td22 , t
4nd1d2

p

3 ⟩,

N(4,3) = ⟨td11 t
d2
2
2 t

4nd1d2
4p

3 , td22 , t
4nd1d2

p

3 ⟩.

(C) p = 4sd1, p = (2w − 1)d2 :

N(3,2) = ⟨td11 t
d2
2
2 t

4nd1d2
4p

3 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩,

N(3,4) = ⟨td11 t
d2
2
2 t

12nd1d2
4p

3 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩.

(D) p = 2(2s− 1)d1, p = (2w − 1)d2 :

N(4,2) = ⟨td11 t
d2
2
2 , td22 t

4nd1d2
2p

3 , t
4nd1d2

p

3 ⟩,

N(4,4) = ⟨td11 t
d2
2
2 t

4nd1d2
2p

3 , td22 t
4nd1d2

2p

3 , t
4nd1d2

p

3 ⟩.

Proposition 3.5 ([5]). Let N(i,j)(i, j = 1, 2, 3, 4) be a normal nilpo-
tent subgroup of π4 in lemma 3.4 and isomorphic to Γp. Then we have
the following:

(1) N(1,2) ∼ N(2,1) if and only if d1 = d2.
N(1,1) � N(1,2), N(1,1) � N(2,1), N(1,1) � N(2,2), N(1,2) � N(2,2),
N(2,1) � N(2,2).

(2) N(3,1) � N(3,3), N(4,1) � N(4,3).
(3) N(3,2) ∼ N(3,4) if and only if d2 = p.

N(4,2) ∼ N(4,4) if and only if d2 = p or 2d1 = p.
(4) N(1,k) � N(3,j), N(1,k) � N(4,j), N(2,k) � N(3,j), N(2,k) � N(4,j)(k =

1, 2).

By using Lemma 3.4 and Proposition 3.5, we prove that there exist
three kinds of nonabelian free actions in π4.
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Theorem 3.6. Suppose G is a finite nonabelian group acting freely
on N2 which yields an orbit manifold homeomorphic to H/π4. Then G
is isomorphic to D4(the dihedral group), Q8(the quaternion group), or
C8.C4(the 1st non-split extension by C8 of C4 acting via C4/C2 = C2).

Proof. Note that

π4 = ⟨ t1, t2, t3, α, β | [t2, t1] = t43, [t3, t1] = [t3, t2] = [α, t3] = 1,

βt3β
−1 = t−1

3 , αt1 = t−1
1 αt23, αt2 = t−1

2 αt−2
3 ,

α2 = t3, β
2 = t1, βt1β

−1 = t1, βt2 = t−1
2 βt−2

3 ,

αβ = t−1
1 t−1

2 βαt−3
3 ⟩.

Let N be a normal nilpotent subgroup of an almost Bieberbach group
π4 and isomorphic to Γ2. Note that d1, d2 are divisors of 2. So, by
Lemma 3.4, the cases (A) and (C) do not occur. Therefore we only have
to deal with the cases (B) and (D).

(I) p = 2(2s− 1)d1, p = 2wd2:

In this case, we must have d1 = d2 = 1 and then d2
2 = 1

2 /∈ Z. So,
there exist four possible normal nilpotent subgroups

N(1,1) = ⟨ t1, t2, t23 ⟩, N(1,2) = ⟨ t1, t2t3, t23 ⟩,

N(2,1) = ⟨ t1t3, t2, t23 ⟩, N(2,2) = ⟨ t1t3, t2t3, t23 ⟩.
Since d1 = d2 = 1, by Proposition 3.5, it follows that N(1,2) is affinely
conjugate to N(2,1).

(i) N(1,1) = ⟨ t1, t2, t23 ⟩.
The following relations

αt1α
−1 = t−1

1 αt23α
−1 = t−1

1 t23 ∈ N(1,1), βt1β
−1 = t1 ∈ N(1,1),

αt2α
−1 = t−1

2 αt−2
3 α−1 = t−1

2 t−2
3 ∈ N(1,1),

βt2β
−1 = t−1

2 βt−2
3 β−1 = t−1

2 t23 ∈ N(1,1),

βt23β
−1 = t−2

3 ∈ N(1,1), α
2 = t3, β

2 = t1

show that N(1,1) is a normal subgroup of π4 and

π4/N(1,1) = ⟨ t1, t2, t3, α, β ⟩/⟨ t1, t2, t23 ⟩ = ⟨αN(1,1), βN(1,1) ⟩.

Since

(αN(1,1))
4 = t23N(1,1) = 1, (βN(1,1))

2 = t1N(1,1) = 1,

βαN(1,1) = t2t1αβt
3
3N(1,1) = αβt3N(1,1) = αt−1

3 βN(1,1) = α−1βN(1,1),
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we have

π4/N(1,1) = ⟨αN(1,1), βN(1,1) | (αN(1,1))
4 = (βN(1,1))

2 = 1,

(βN(1,1))(αN(1,1)) = (αN(1,1))
−1(βN(1,1)) ⟩.

This group is isomorphic to the dihedral group D4.

(ii) N(1,2) = ⟨ t1, t2t3, t23 ⟩.
Since N(1,2) ⊃ [π4, π4] = ⟨t21, t22, t23, t1t2t3⟩, it is easy to check π4/N(1,2)

∼= Z2 × Z4, which is the same as the result of [1, Theorem 3.5].

(iii) N(2,2) = ⟨ t1t3, t2t3, t23 ⟩.
The following relations

αt1t3α
−1 = t−1

1 αt23t3α
−1 = t−1

1 t33 = (t1t3)
−1t43 ∈ N(2,2),

βt1t3β
−1 = t1ββ

−1t−1
3 = t1t

−1
3 = (t1t3)t

−2
3 ∈ N(2,2),

αt2t3α
−1 = t−1

2 αt−2
3 t3α

−1 = (t2t3)
−1 ∈ N(2,2),

βt2t3β
−1 = t−1

2 βt−2
3 t3β

−1 = t−1
2 βt−1

3 β−1 = t−1
2 t3 = (t2t3)

−1t23 ∈ N(2,2)

show that N(2,2) is a normal subgroup of π4. Also, from the following
relations,

t2N(2,2) = t2t
2
3N(2,2) = t3N(2,2) = α2N(2,2),

(βN(2,2))
2 = t1t3t

−1
3 N(2,2) = t3N(2,2) = (αN(2,2))

2,

(αN(2,2))
4 = t23N(2,2) = 1,

βαN(2,2) = t2t1αβt
3
3N(2,2) = αβt3N(2,2) = αt−1

3 βN(2,2) = α−1βN(2,2),

it follows that

π4/N(2,2) = ⟨αN(2,2), βN(2,2) | (αN(2,2))
4 = 1, (αN(2,2))

2 = (βN(2,2))
2,

(βN(2,2))(αN(2,2)) = (αN(2,2))
−1(βN(2,2)) ⟩.

This group is isomorphic to the quaternion group Q8.

(II) p = 2(2s− 1)d1, p = (2w − 1)d2:

In this case, we have d1 = 1 and d2 = 2. So, we have two possible nor-
mal nilpotent subgroups N(4,2) = ⟨ t1t2, t22t23, t43 ⟩, N(4,4) = ⟨ t1t2t23, t22t23,
t43 ⟩. By Proposition 3.5, we know that N(4,4) is affinely conjugate to
N(4,2). Therefore there exists only one normal nilpotent subgroup N(4,2).
Normality of N(4,2) can be easily checked as in the case of (iii). Note
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that

(αN(4,2))
8 = t43N(4,2) = 1, (βN(4,2))

2 = t1N(4,2),

(βN(4,2))
3 = βt1N(4,2) = βt1t2t

−1
2 N(4,2) = βt−1

2 N(4,2) = βt2t
2
3N(4,2),

(βN(4,2))
4 = β2t2t

2
3N(4,2) = t1t2t

2
3N(4,2) = t23N(4,2) = α4N(4,2) = (αN(4,2))

4,

t2N(4,2) = t−1
1 t1t2N(4,2) = t−1

1 N(4,2) = β−2N(4,2).

Let a = αβ2N(4,2) and b = βN(4,2). Then we have

π4/N(4,2) = ⟨αN(4,2), βN(4,2)⟩ = ⟨ a, b ⟩.

From the following relation,

βαN(4,2) = t2t1αβt
3
3N(4,2) = t1t2t

4
3αβt

3
3N(4,2) = αβt33N(4,2)

= αβt−1
3 N(4,2) = αt3βN(4,2) = α3βN(4,2),

we can obtain that

(αβ2N(4,2))(α
3β2N(4,2)) = αβ2α3β2N(4,2) = α28β4N(4,2)

= α4β4N(4,2) = α8N(4,2) = 1.

This implies a−1 = α3β2N(4,2). Hence

bab−1 = β(αβ2)β7N(4,2) = βαβN(4,2) = α3β2N(4,2) = a−1

and

a2 = (αβ2)(αβ2)N(4,2) = α10β4N(4,2) = α2β4N(4,2),

a4 = (α2β4)(α2β4)N(4,2) = α164β8N(4,2) = α4N(4,2) = β4N(4,2) = b4,

a8 = 1.

Therefore π4/N(4,2) = ⟨ t1, t2, t3, α, β ⟩/⟨ t1t2, t21t22, t43 ⟩ is isomorphic to
the group

C8.C4 = ⟨a, b | a8 = 1, a4 = b4, bab−1 = a−1⟩,

that is, the 1st non-split extension by C8 of C4 acting via C4/C2 =
C2.
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