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QUATERNIONS AND HOMOTHETIC MOTIONS IN
EUCLIDEAN AND LORENTZIAN SPACES

Gülsüm YÜCA∗ and Yusuf YAYLI

Abstract. In the present paper, we investigate homothetic motions de-
termined by quaternions, which is a general form of our previous paper
[20]. We introduce a transition between homothetic motions in 3D and 4D
Euclidean and Lorentzian spaces. In other words, we give a new method
that works as a handy tool for obtaining Lorentzian homothetic motions
from Euclidean homothetic motions. Moreover, some remarkable prop-
erties of homothetic motions, which are given in former studies on this
subject, are also examined by dual transformations. Then, we present
applications and visualize them with 3D-plots. Finally, we investigate
homothetic motions in dual spaces because of the importance in many
fields related to kinematics.

1. Introduction

Kinematics is the branch of mechanics that deals with the description of
motion and plays a central role in a great variety of fields. Motion is the phe-
nomenon of constant displacement of a rigid body relative to a certain reference
point. Displacement of a rigid body is used to describe the motion of systems
in engineering fields such as robotics and in other areas related. Homothetic
motions of a rigid body in n-dimensional Euclidean space are generated by the
homothetic transformations. In [6], the n-dimensional homothetic motion of a
body in Euclidean space is generated by the transformation
(1) Y = h.AX + C,

where h = h.In is a scalar matrix, A ∈ SO(n) and C ∈ Rn
1 . Homothetic

motions are studied by several authors [4], [14] and [15].
In this research, we examine homothetic motions provided by quaternions.

W. R. Hamilton discovered quaternions in 1843 and gave the fundamental
formula with the symbols, i, j, k;

i2 = j2 = k2 = ijk = −1.
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The set of quaternions denoted by H can be represented as
H = {q = x0 + x1i + x2j + x3k|x0, x1, x2, x3 ∈ R}.

Quaternions have long been used in many fields including kinematics, robot-
ics, computer graphics, aerospace, quantum physics, and other areas related.
Quaternions also have attracted attention as tools for rotations in recent years.
The groups SO(3) and SO(4) of rotations in 3D and 4D spaces will be used for
dual transformations during this study. The transition between Euclidean and
Lorentzian rotational motion matrices is given with the help of dual transfor-
mations between SO(n)\{ann = 0} and SO(n − 1, 1) in [5]. In the light of this
study, we investigate dual transformations in dual spaces by examining invari-
ant axes in both spaces, see [18]. Then, kinematics applications of dual trans-
formations are given in [17]. Additionally, we carry this research into Galilean
spaces in [19]. Afterward, we studied quaternions and dual transformations in
[20]. Lastly, homothetic motions are defined by using dual transformations in
[21]

The objective of this paper is to obtain homothetic motions determined
by quaternions, which is a general form of our previous paper [20]. In other
words, if we take h ≡ 1 in Eq. 1, then we have the results in [20]. We
introduce a transition between homothetic motions in 3D and 4D Euclidean
and Lorentzian spaces. Furthermore, some notable properties of homothetic
motions, which are given in former studies on this subject, are also examined
by dual transformations. Then, we give examples with figures. Finally, we
investigate homothetic motions in dual spaces because of the importance in
kinematics and other areas related.

2. Preliminaries

This section includes three subsections to provide a background for Lorentzian
space, quaternions, and dual transformations. Since the concepts to be pre-
sented in the subsections will be given with their dual notions, it would be
appropriate to give the definitions that belong to dual space beforehand.

Definition 2.1. If a and a∗ are real numbers and ϵ2 = 0, the combination
â = a + ϵa∗ is called a dual number, where ϵ is the dual unit.

Definition 2.2. The set of all dual numbers forms a commutative ring over
the real number field and is denoted by D. The set D3 = {

−→
â = (â1, â2, â3)|âi ∈

D, 1 ≤ i ≤ 3} is called a D-module or dual space.
Definition 2.3. The elements of D3 are called dual vectors. A dual vector−→

â can be written
−→
â = −→a + ϵ−→a ∗, where −→a and −→a ∗ are real vectors in R3.

Definition 2.4. The norm of a dual vector
−→
â is defined by |

−→
â | = |−→a | +

ϵ
⟨−→a , −→a ∗⟩

|−→a |2
.
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See [16].

2.1. Background on Lorentzian Space

In current years, studies on Lorentzian space have taken an important place
in the field of mathematical research. It can be seen as a part of differential
geometry (see [12], [13]) as well as robotics, computer graphics, most areas of
physics, and kinematics (see [16], [9], [10]). We mention some fundamental
definitions and properties in Lorentzian space that we use in this paper.

Definition 2.5. The Lorentzian metric ⟨, ⟩ defined by

(2) ⟨u, v⟩ = u1v1 + u2v2 + ... + un−1vn−1 − unvn

in En
1 will be used in this study.

It is pointed out that ⟨, ⟩ is a non-degenerate metric of index 1. It can also
be written in the form:

(3) ⟨u, v⟩ = uT


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . −1

v = uT Gv.

Definition 2.6. A vector v ∈ En
1 is called spacelike if ⟨v, v⟩ > 0 or v = 0,

timelike if ⟨v, v⟩ < 0, lightlike if ⟨v, v⟩ = 0 and v ̸= 0.

Definition 2.7. An n × n matrix S is called semi symmetric if ST = GSG
or S = GST G, semi skew-symmetric if ST = −GSG or S = −GST G, semi-
orthogonal if ST = GS−1G or S−1 = GST G, where G is the sign matrix of
Lorentzian space.

Definition 2.8. The Lorentzian inner product of dual vectors
−→
â and

−→
b̂ is

defined by 〈
−→
â ,

−→
b̂

〉
=

〈−→a ,
−→
b

〉
+ ϵ(

〈−→a ,
−→
b ∗

〉
+

〈−→a ∗,
−→
b

〉
)

with
−→
â = −→a + ϵ−→a ∗ and

−→
b̂ =

−→
b + ϵ

−→
b ∗. A dual vector

−→
â is called timelike if〈−→

â ,
−→
â

〉
< 0, spacelike if

〈−→
â ,

−→
â

〉
> 0 and lightlike (or null) if

〈−→
â ,

−→
â

〉
= 0,

where ⟨, ⟩ is Lorentzian inner product. We call the dual space D3 together with
this Lorentzian inner product as dual Lorentzian space and indicate it by D3

1.

2.2. Background on Quaternions

We now give some concepts of real and dual quaternions to provide a back-
ground for the main results of this study. A real quaternion q is an expression
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of the form q = x0 + x1i + x2j + x3k, where x0, x1, x2 and x3 are real num-
bers, and i, j, k are real quaternionic units which satisfy the non-commutative
multiplication rules

i2 = j2 = k2 = ijk = −1
ij = −ji = k, jk = −kj = i, ki = −ik = j.

A real quaternion q = x0 + x1i + x2j + x3k is pieced into two parts with scalar
piece Sq = x0 and vectorial piece −→

Vq = x1i+x2j+x3k. We also write q = Sq+−→
Vq.

The quaternionic conjugate of q = Sq +−→
Vq is defined as q̄ = Sq −

−→
Vq. The norm of

a real quaternion q = x0+x1i+x2j+x3k is |q| = qq̄ = q̄q = x2
0+x2

1+x2
2+x2

3 ≥ 0,
where q ∈ R. If |q| = 1 then q is called unit real quaternion. For more details
about concepts and properties of real quaternions see [2], [7], [8] and [11].

The set of dual quaternions is denoted by HD can be represented as
HD = {q̂ = x̂0 + x̂1i + x̂2j + x̂3k|x̂0, x̂1, x̂2, x̂3 ∈ D}.

The ring of dual quaternions is defined as the four-dimensional vector space
over dual numbers D having a basis {1,i,j,k} with the same multiplication
property of the basis elements in real quaternions. A dual quaternion q̂ =
x̂0 + x̂1i + x̂2j + x̂3k can be written as q̂ = q + ϵq∗, where q and q∗ are real
and pure dual quaternion components, respectively. We may consider a dual
quaternion as q̂ = x0 + x1i + x2j + x3k + ϵ(x∗

0 + x∗
1i + x∗

2j + x∗
3k). For more

details about concepts and properties of dual quaternions see [1], [3].

2.3. Dual Transformations

The dual transformation between SO(n)\{ann = 0} and SO(n − 1, 1) which
is defined below will be used for obtaining semi-orthogonal matrices from or-
thogonal matrices.

Definition 2.9. Dual transformation between SO(n)\{ann = 0} and SO(n−
1, 1) is defined in [5]. The two sets to use when applying dual transformation
are as follows

SO(n) = {A ∈ GL(n,R)|AT A = AAT = In, det A = 1},

SO(n − 1, 1) = {A ∈ GL(n,R)|AT GA = AGAT = G, det A = 1},

where G =
[

In−1 0
0 −1

]
and In is n × n identity matrix.

Let A ∈ SO(n). Then it can be written in the block form as

A =
[

B C

D ann

]
,

where ann ̸= 0. Here, B is an (n − 1) × (n − 1) square matrix, C is a column
matrix and D is a row matrix. Since ann ̸= 0, we can use the following two
sets given by

S1 = {A ∈ SO(n)|ann ̸= 0},
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S2 = {A ∈ SO(n − 1, 1)|ann ̸= 0}.

Thus, the dual transformation can be defined as
f : S1 → S2

(4) f : A 7→ f(A) = 1
ann

[
ann(B−1)T C

−D 1

]
,

where T denotes transposition.

We now give the definition of dual transformation in dual spaces. We will use
it for obtaining dual semi-orthogonal matrices from dual orthogonal matrices.

In order to define f dual transformation, we need the following sets given
by

SÔ(n) = {Â ∈ GL(n,D)|ÂT Â = ÂÂT = In, det Â = 1},

SÔ(n − 1, 1) = {Â ∈ GL(n,D)|ÂT GÂ = ÂGÂT = G, det Â = 1},

where G =
[

In−1 0
0 −1

]
and In is n × n identity matrix.

We write the dual matrix Â ∈ SÔ(n) in the block form as

Â =
[

B̂ Ĉ

D̂ ânn

]
,

where ânn ̸= 0. Since ânn ̸= 0, then two sets can be written as

Ŝ1 = {Â ∈ SÔ(n)|ânn ̸= 0},

Ŝ2 = {Â ∈ SÔ(n − 1, 1)|ânn ̸= 0}.

Then, f dual transformation can be defined as below

f : Ŝ1 → Ŝ2

(5) f : Â 7→ f(Â) = 1
ânn

[
ânn(B̂−1)T Ĉ

−D̂ 1

]
.

See [18].

3. Homothetic Motions With Dual Transformations in E3 and E3
1

In this section, we obtain a Lorentzian homothetic motion from a Euclidean
homothetic motion with the help of quaternions and dual transformations in
3D-spaces. First, we give the one-parameter homothetic motion along a curve
in 3D Euclidean space which is investigated in [14]. In 3D Euclidean space,
one-parameter homothetic motions of a rigid body are generated by the trans-
formation Y = h.AX + C with the matrix representation as

(6)
[

Y
1

]
=

[
h.A C

0 1

]
.

[
X
1

]
,
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where h is a homothetic scalar and A ∈ SO(3). The matrix B = h.A is called a
homothetic matrix and Y , X and C ∈ R3

1. The homothetic scalar h and the el-
ements of A and C are continuously differentiable functions of a real parameter
t. Y and X correspond to the position vectors of the same point with respect
to the rectangular coordinate systems of the moving space Ro and the fixed
space R, respectively. At the initial time t = to, we consider the coordinate
systems of Ro and R are coincident. To avoid the case of affine transformation
we assume that h(t) ̸= cons. and to avoid the case of a pure translation or a
pure rotation, we assume that d

dt
(hA) ̸= 0,

d

dt
(C) ̸= 0.

Let us consider the quaternion curve α : I ⊂ R → E4 defined by α(t) =
(α0(t), α1(t), α2(t), α3(t)), for every t ∈ I. We suppose that the curve α(t) is a
differentiable regular curve of order r which does not pass through the origin.

Let us write the matrix B as follows:
(7)

B =

α0(t)2 + α1(t)2 − α2(t)2 − α3(t)2 −2α0(t)α3(t) + 2α1(t)α2(t) 2α0(t)α2(t) + 2α1(t)α3(t)

2α1(t)α2(t) + 2α3(t)α0(t) α0(t)2 − α1(t)2 + α2(t)2 − α3(t)2 2α2(t)α3(t) − 2α1(t)α0(t)

2α1(t)α3(t) − 2α2(t)α0(t) 2α1(t)α0(t) + 2α2(t)α3(t) α0(t)2 − α1(t)2 − α2(t)2 + α3(t)2

 .

For the matrix B, we have BBT = BT B = h2I3 and detB = h3,
where

h : I ⊂ R → R,

t 7→ h(t) = α0(t)2 + α1(t)2 + α2(t)2 + α3(t)2.

We can represent the matrix B as

(8) B = h.


b11

h

b12

h

b13

h

b21

h

b22

h

b23

h

b31

h

b32

h

b33

h

 = h.A.

Here, A ∈ SO(3), B is a homothetic matrix and Eq.6 determines a homothetic
motion. See [14].

We give the following theorem presents the transition between Euclidean
and Lorentzian homothetic motion matrices. After that, we can provide exam-
ples and theorems of homothetic motions in Lorentzian space.

Theorem 3.1. Let B̄ ∈ E3 determines a homothetic motion of a rigid body
given by

(9) B̄ = h.A + C,

where h = h.I3 is a scalar matrix, A ∈ SO(3) and C ∈ R3
1. fh defines a dual

transformation between Euclidean and Lorentzian homothetic motion matrices
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in 3D-spaces.
fh : E3 → E3

1

(10) B̄ 7→ fh(B̄) = h.f(A) + C,

where f is the dual transformation given in Eq.4, f(A) ∈ SO(2, 1). Eq.10
determines a homothetic motion of a rigid body in 3D Lorentzian space.

We have denoted h.A as a homothetic matrix B ∈ E3 in Eq. 8. Then, we
now denote h.f(A) as BL since it is a homothetic matrix in E3

1 .

Proof. We observe that
f2

h(B̄) = fh(fh(B̄))
= fh(B̄L), f2 = id.

= B̄

=⇒ f2
h = id.

Thus, fh is a dual transformation.

Example 3.2. Let us consider a curve α : I ⊂ R → E4 given by α(t) =
( 1√

2
cos(t), 1√

2
sin(t), 1,

t√
2

), for every t ∈ I. α(t) is a differentiable regular

curve of order r. Since α(t) does not pass through the origin, we can write the
matrix B as follows

B =


−

t2

2
−

1
2

−t cos(t) +
√

2 sin(t)
√

2 cos(t) + t sin(t)

t cos(t) +
√

2 sin(t)
cos2(t) − sin2(t)

2
−

t2

2
+ 1

√
2t − sin(t) cos(t)

t sin(t) −
√

2 cos(t) sin(t) cos(t) +
√

2t
cos2(t) − sin2(t)

2
+

t2

2
− 1



= (3 + t2

2 )


−t2 − 1
t2 + 3

2
√

2 sin(t) − 2t cos(t)
t2 + 3

2
√

2 cos(t) + 2t sin(t)
t2 + 3

2
√

2 sin(t) + 2t cos(t)
t2 + 3

2 cos2(t) − t2 + 1
t2 + 3

2
√

2t − 2 sin(t) cos(t)
t2 + 3

2t sin(t) − 2
√

2 cos(t)
t2 + 3

2 sin(t) cos(t) + 2
√

2t

t2 + 3
2 cos2(t) + t2 − 3

t2 + 3


= (3 + t2

2 )A,

where h(t) = 3 + t2

2 , A ∈ SO(3). Therefore, B is a homothetic matrix and it
determines a homothetic motion in E3.

Now, we obtain BL by applying the fh dual transformation in Eq. 10 to
the matrix B.

BL = (3 + t2

2 )


2 cos2(t) − t2 + 1
2 cos2(t) + t2 − 3

−2
√

2 sin(t) − 2t cos(t)
2 cos2(t) + t2 − 3

2
√

2 cos(t) + 2t sin(t)
2 cos2(t) + t2 − 3

−2
√

2 sin(t) + 2t cos(t)
2 cos2(t) + t2 − 3

−t2 − 1
2 cos2(t) + t2 − 3

2
√

2t − 2 sin(t) cos(t)
2 cos2(t) + t2 − 3

−2t sin(t) + 2
√

2 cos(t)
2 cos2(t) + t2 − 3

−2 sin(t) cos(t) − 2
√

2t

2 cos2(t) + t2 − 3
t2 + 3

2 cos2(t) + t2 − 3


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= (3 + t2

2 )f(A),

where h(t) = (3 + t2

2 ), f(A) ∈ SO(2, 1). Therefore, BL is a homothetic matrix
and it determines a homothetic motion in E3

1 .
We continue with obtaining surfaces from homothetic matrices by multi-

plying with the curve γ(s) = (cos(s), sin(s), s3). Initially, we get a surface
from Euclidean homothetic matrix by multiplying the curve γ(s). The ele-
ments of the matrix B.γ(s) can be represented by the surface S1 = ((−t2 −
1)/2) cos(s)+(− cos(t)t+

√
2 sin(t)) sin(s)+(

√
2 cos(t)+sin(t)t)s3, ((2 cos(t)2 −

t2+1)/2) sin(s)+(cos(t)t+
√

2 sin(t)) cos(s)+(
√

2t−cos(t) sin(t))s3, (sin(t) cos(t)
+

√
2t) sin(s) + (sin(t)t −

√
2 cos(t)) cos(s) + ((2 cos(t)2 + t2 − 3)/2)s3. See Fig.

1

Figure 1. The surface S1 ∈ R3

Subsequently, we obtain the surface from Lorentzian homothetic matrix
BL by multiplying with the same curve γ(s) = (cos s, sin s, s3). The ele-
ments of the matrix BL.γ(s) can be represented by the surface S2 = δ(t, s) =
2 sin(s)(− cos(t)t−

√
2 sin(t)/(cos(t)2−sin(t)2+t2−2)+cos(s)(cos(t)2−sin(t)2−

t2+2)/(cos(t)2−sin(t)2+t2−2)+2s3(sin(t)t+
√

2 cos(t))/(cos(t)2−sin(t)2+t2−
2), sin(s)(cos(t)2 +sin(t)2 −t2 −2)/(cos(t)2 −sin(t)2 +t2 −2)+(2 cos(s)(cos(t)t−√

2 sin(t)))/(cos(t)2 − sin(t)2 + t2 − 2) + s3(2
√

2t − cos(t) sin(t))/(cos(t)2 −
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sin(t)2 + t2 − 2), 2 sin(s)(−2 sin(t) cos(t) − 2
√

2t)/(cos(t)2 − sin(t)2 + t2 − 2) +
2 cos(s)(− sin(t)t+

√
2 cos(t))/(cos(t)2−sin(t)2+t2−2)+2s3/(cos(t)2−sin(t)2+

t2 − 2)). See Fig. 2.

Figure 2. The surface S2 ∈ R3
1

We obtained surfaces S1 and S2. Drawing these figures allowed us to visu-
alize the applications. We have defined dual transformations in Euclidean and
Lorentzian spaces with the help of homothetic motions. Through these visuals,
we have the opportunity to compare the surfaces drawn with the help of these
motions in both spaces. If we examine the figures in the examples carefully,
we can imagine the figures obtained in Lorentzian space as the more opened
form of that obtained in Euclidean space. In our previous studies (see [20], [18]
and [17]), we compared the images we obtained in Euclidean space and Lorentz
space. We have also captured similar views and considered it appropriate to
include them in this study. Although the spaces are different, we think it is
interesting that the resulting figures resemble each other.

4. Homothetic Motions With Dual Transformations in E4 and E4
1

In this section, we investigate homothetic motions produced by Hamilton
operators with the help of dual transformations. First, we use the orthogonal
matrix representation of a quaternion in 4D space. Afterward, we obtain a
Lorentzian homothetic motion from a Euclidean homothetic motion.

Let us consider the quaternion curve α : I ⊂ R → E4 defined by α(t) =
(α0(t), α1(t), α2(t), α3(t)), for every t ∈ I. We suppose that the curve α(t) is
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a differentiable regular curve of order r. The operator Q, called the Hamilton
operator corresponding to α(t) is determined by the following matrix:

HQ =
[

α0(t) −α1(t) −α2(t) −α3(t)
α1(t) α0(t) −α3(t) α2(t)
α2(t) α3(t) α0(t) −α1(t)
α3(t) −α2(t) α1(t) α0(t)

]
,

where α0(t) ̸= 0. Let α(t) be a unit velocity curve. Since α(t) does not pass
through the origin, we can write the matrix HQ as follows

(11) HQ = h.


α0(t)

h

−α1(t)
h

−
α2(t)

h

−α3(t)
h

α1(t)
h

α0(t)
h

−α3(t)
h

α2(t)
h

α2(t)
h

α3(t)
h

α0(t)
h

−α1(t)
h

α3(t)
h

−α2(t)
h

α1(t)
h

α0(t)
h

 = h.Q,

where
h : I ⊂ R → R,

t 7→ h(t) =∥ α(t) ∥=
√

(α0(t)2 + α1(t)2 + α2(t)2 + α3(t)2).
Here, Q ∈ SO(4).

Hamiltonian motion is generated by the transformation
(12) Y = h.QX + C

with the matrix representation as

(13)
[

Y
1

]
=

[
h.Q C

0 1

]
.

[
X
1

]
,

where h is a homothetic scalar and Q ∈ SO(4). The matrix HQ = h.Q is called
a homothetic matrix and Y , X and C ∈ R4

1. Y and X correspond to the position
vectors of the same point with respect to the rectangular coordinate systems of
the moving space Ro and the fixed space R, respectively. Hamiltonian motion
defined by Eq. 13 in 4D Euclidean space is a homothetic motion, it was shown
in [6].

Theorem 4.1. The derivation operator ḢQ of the Hamilton operator HQ =
hQ is a real orthogonal matrix.

Proof. ḢQ.ḢQ
T = ḢQ

T
.ḢQ = I4 and detḢQ = 1.

See [15].
Theorem 4.2. In E4, the Hamilton motion that is represented by the

matrix HQ is a regular motion and it is independent of h.

Proof. This motion is regular as detḢQ = 1 and the value of detḢQ is
independent of h.

See [15].
We now give the following theorem that presents the transition between

Euclidean and Lorentzian homothetic motions in 4D-spaces.
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Theorem 4.3. Let HQ ∈ E4 determines a homothetic motion given by
(14) HQ = h.Q + C,

where h = h.I4 is a scalar matrix, Q ∈ SO(4) and C ∈ R4
1. fh defines a dual

transformation,
fh : E4 → E4

1

(15) HQ 7→ fh(HQ) = HQL
= h.f(Q) + C,

where f(Q) = QL ∈ SO(3, 1). We can write the matrix HQL
by using fh dual

transformation as follows:

HQL
= h.



α0(t)2 + α3(t)2

h.α0(t)
−α0(t)α1(t) − α2(t)α3(t)

h.α0(t)
−α0(t)α2(t) + α1(t)α3(t)

h.α0(t)
−α3(t)
h.α0(t)

α0(t)α1(t) − α2(t)α3(t)
h.α0(t)

α0(t)2 + α2(t)2

h.α0(t)
−α0(t)α3(t) − α1(t)α2(t)

h.α0(t)
α2(t)

h.α0(t)
α0(t)α2(t) + α1(t)α3(t)

h.α0(t)
α0(t)α3(t) − α1(t)α2(t)

h.α0(t)
α0(t)2 + α1(t)2

h.α0(t)
−α1(t)
h.α0(t)

−α3(t)
h.α0(t)

α2(t)
h.α0(t)

−α1(t)
h.α0(t)

1
h.α0(t)

 .

The matrix HQL
represents the homothetic motion in 4-dimensional Lorentzian

space.

Proof. We show that
f2

h(HQ) = fh(fh(HQ))
= fh(HQL

), f2 = id.

= HQ

=⇒ f2
h = id.

Hence, fh is a dual transformation.

We now give an example of one-parameter homothetic motions produced
by Hamilton operators with the help of dual transformations.

Example 4.4. Let us consider a curve α : I ⊂ R → E4 given by α(t) =
(cos( t√

2
), sin( t√

2
), cos( t√

2
), sin( t√

2
)), for every t ∈ I. α(t) is a differentiable

regular curve of order r. Since α(t) does not pass through the origin, we can
write the matrix HQ(t) as follows:

HQ =
√

2.



cos(
t

√
2

)
√

2

− sin(
t

√
2

)
√

2

− cos(
t

√
2

)
√

2

− sin(
t

√
2

)
√

2

sin(
t

√
2

)
√

2

cos(
t

√
2

)
√

2

− sin(
t

√
2

)
√

2

cos(
t

√
2

)
√

2

cos(
t

√
2

)
√

2

sin(
t

√
2

)
√

2

cos(
t

√
2

)
√

2

− sin(
t

√
2

)
√

2

sin(
t

√
2

)
√

2

− cos(
t

√
2

)
√

2

sin(
t

√
2

)
√

2

cos(
t

√
2

)
√

2


,

=
√

2.Q,
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where h =
√

2, Q ∈ SO(4). Therefore, HQ is a homothetic matrix and it
determines a homothetic motion in E4.

We now obtain the Lorentzian matrix HQL
by using fh as below

HQL
=

√
2.



1
√

2 cos(
t

√
2

)
−

√
2 sin(

t
√

2
)

− cos2(
t

√
2

) + sin2(
t

√
2

)

√
2 cos(

t
√

2
)

− tan(
t

√
2

)

0
√

2 cos(
t

√
2

) −
√

2 sin(
t

√
2

) −1

1
√

2 cos(
t

√
2

)
0

1
√

2 cos(
t

√
2

)
− tan(

t
√

2
)

− tan(
t

√
2

) −1 − tan(
t

√
2

)
√

2

cos(
t

√
2

)


,

where h =
√

2, f(Q) ∈ SO(3, 1). Therefore, HQL
is a homothetic matrix and

it determines a homothetic motion in E4
1 .

5. Dual Homothetic Motions With Dual Transformations

In this section, firstly, we acquire a dual homothetic motion in D3
1 from

a dual homothetic motion in D3 with the help of dual quaternions and dual
transformations. Secondly, we investigate dual homothetic motions produced
by Hamilton operators with the help of dual transformations between D4 and
D4

1.
In D3, we consider the dual motional space R̃o and the dual fixed space R̃,

respectively. This dual motion can be expressed as follows:

(16)
[

Ŷ

1

]
=

[
ĥ.Â Ĉ

0 1

]
.

[
X̂

1

]
,

or equivalently
(17) Ŷ = ĥ.ÂX̂ + Ĉ,

where dual position vectors of any point respectively in R̃o and R̃ are repre-
sented by Ŷ and X̂, and Ĉ represents any dual translation vector.
In D3, the one-parameter dual homothetic motion of a body is generated by
the transformation given in Eq. 17, where ĥ is called the homothetic scalar,
which is a dual scalar matrix, Â ∈ SÔ(3) dual orthogonal matrix, X̂, and Ĉ

are 3 × 1 dual matrices, and Â, Ĉ and ĥ are differentiable functions of Cr class
of a parameter t.

In order not to encounter the case of affine transformation we suppose that
ĥ = h(t) + ϵh∗(t) ̸= cons., h(t) ̸= 0, and to avoid the cases of pure rotation
and pure translation we also suppose that d

dt
(ĥÂ) ̸= 0,

d

dt
(Ĉ) ̸= 0.

Let us consider the following parametrized dual curve:
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α̂ : I ⊂ R → D4 defined by α̂(t) = (α̂0(t), α̂1(t), α̂2(t), α̂3(t)), for every
t ∈ I. α̂(t) = −→α (t)+ϵ−→α ∗(t), where −→α (t) = (α0(t), α1(t), α2(t), α3(t)), −→α ∗(t) =
(α∗

0(t), α∗
1(t), α∗

2(t), α∗
3(t)) are curves in R4. We suppose that the curve α̂(t) is

a differentiable regular curve of order r which does not pass through the origin.
Let us write the dual matrix B̂ as follows:

(18)

B̂ =

̂α0(t)2 + α̂1(t)2 − α̂2(t)2 − α̂3(t)2 −2α̂0(t)α̂3(t) + 2α̂1(t)α̂2(t) 2α̂0(t)α̂2(t) + 2α̂1(t)α̂3(t)

2α̂1(t)α̂2(t) + 2α̂3(t)α̂0(t) α̂0(t)2 − α̂1(t)2 + α̂2(t)2 − α̂3(t)2 2α̂2(t)α̂3(t) − 2α̂1(t)α̂0(t)

2α̂1(t)α̂3(t) − 2α̂2(t)α̂0(t) 2α̂1(t)α̂0(t) + 2α̂2(t)α̂3(t) α̂0(t)2 − α̂1(t)2 − α̂2(t)2 + α̂3(t)2

 .

We can represent the matrix B̂ as

(19) B̂ = ĥ.Â,

where Â ∈ SÔ(3), B̂ is a homothetic matrix and Eq.16 determines a homothetic
motion. Here,

ĥ : I ⊂ R → D,

t 7→ ĥ(t) =∥ α̂(t) ∥= (α̂0(t)2 + α̂1(t)2 + α̂2(t)2 + α̂3(t)2).

Theorem 5.1. Let ¯̂
B ∈ D3 determines a dual homothetic motion of a rigid

body given by

(20) ¯̂
B = ĥ.Â + Ĉ,

where ĥ is a homothetic scalar, Â ∈ SÔ(3) and Ĉ is a 3 × 1 dual matrix.
fh defines a dual transformation between dual Euclidean and dual Lorentzian
homothetic motion matrices in dual 3D-spaces.

fh : D3 → D3
1

(21) ¯̂
B 7→ fh( ¯̂

B) = ĥ.f(Â) + Ĉ,

where f is the dual transformation given in Eq.5, f(Â) ∈ SÔ(2, 1). Eq.21
determines a dual homothetic motion of a rigid body in dual 3D Lorentzian
space.

We have denoted ĥ.Â as a dual homothetic matrix B̂ ∈ D3 in Eq. 18. Then,
we now denote ĥ.f(Â) as B̂L since it is a dual homothetic matrix in D3

1.

Proof. We observe that
f2

h( ¯̂
B) = fh(fh( ¯̂

B))

= fh( ¯̂
BL), f2 = id.

= ¯̂
B

=⇒ f2
h = id.

Thus, fh is a dual transformation.
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We now investigate dual homothetic motions produced by Hamilton oper-
ators with the help of dual transformations. First, we use the dual orthogonal
matrix representation of a dual quaternion in dual 4D space. Afterward, we
obtain a dual Lorentzian homothetic motion from a dual Euclidean homothetic
motion.

Let us consider the dual quaternion curve α̂ : I ⊂ R → D4 defined by α̂(t) =
(α̂0(t), α̂1(t), α̂2(t), α̂3(t)), for every t ∈ I. We suppose that the dual curve α̂(t)
is a differentiable regular dual curve of order r. The operator Q̂, called the
Hamilton operator corresponding to α̂(t) is determined by the following dual
matrix:

ĤQ =

 α̂0(t) −α̂1(t) −α̂2(t) −α̂3(t)
α̂1(t) α̂0(t) −α̂3(t) α̂2(t)
α̂2(t) α̂3(t) α̂0(t) −α̂1(t)
α̂3(t) −α̂2(t) α̂1(t) α̂0(t)

,

where α̂0(t) ̸= 0.
Let α̂(t) be a unit velocity dual curve. Since α̂(t) does not pass through the

origin, we can write the dual matrix ĤQ as follows

(22) ĤQ = ĥ.



α̂0(t)

ĥ

−α̂1(t)

ĥ
−

α̂2(t)

ĥ

−α̂3(t)

ĥ

α̂1(t)
h

α̂0(t)

ĥ

−α̂3(t)

ĥ

α̂2(t)

ĥ

α̂2(t)

ĥ

α̂3(t)

ĥ

α̂0(t)

ĥ

−α̂1(t)

ĥ

α̂3(t)

ĥ

−α̂2(t)

ĥ

α̂1(t)

ĥ

α̂0(t)

ĥ


= ĥ.Q̂,

where
ĥ : I ⊂ R → D,

t 7→ ĥ(t) =∥ α̂(t) ∥=
√

(α̂0(t)2 + α̂1(t)2 + α̂2(t)2 + α̂3(t)2).
Here, Q̂ ∈ SÔ(4).
Hamiltonian dual motion is generated by the transformation
(23) Ŷ = ĥ.Q̂X̂ + Ĉ

with the dual matrix representation as

(24)
[

Ŷ
1

]
=

[
ĥ.Q̂ Ĉ

0 1

]
.

[
X̂
1

]
,

where ĥ is a homothetic scalar and Q̂ ∈ SÔ(4). The matrix ĤQ = ĥ.Q̂ is
called a dual homothetic matrix and Ŷ , X̂ and Ĉ is a 4 × 1 dual matrix. Ŷ

and X̂ correspond to the position vectors of the same point with respect to the
rectangular coordinate systems of the moving space R̃o and the fixed space R̃,
respectively.

Theorem 5.2. The derivation operator ˙̂
HQ of dual homothetic matrix

ĤQ = ĥQ̂ is a dual orthogonal matrix.
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Proof. ˙̂
HQ.

˙̂
HQ

T

= ˙̂
HQ

T

.
˙̂

HQ = I4 and det
˙̂

HQ = 1.

Theorem 5.3. In D4, the Hamiltonian dual motion that is represented by
the dual matrix ĤQ is a regular motion and it is independent of ĥ.

Proof. This dual motion is regular as det
˙̂

HQ = 1 and the value of det
˙̂

HQ is
independent of ĥ.

We now give the following theorem that presents the transition between
dual Euclidean and dual Lorentzian homothetic motions in dual 4D-spaces.

Theorem 5.4. Let ĤQ ∈ D4 determines a homothetic motion given by

(25) ĤQ = ĥ.Q̂ + Ĉ,

where ĥ is a homothetic scalar, Q̂ ∈ SÔ(4) and Ĉ is a 4 × 1 dual matrix. fh

defines a dual transformation,
fh : D4 → D4

1

(26) ĤQ 7→ fh(ĤQ) = ĤQL
= h.f(Q̂) + Ĉ,

where f(Q̂) = Q̂L ∈ SÔ(3, 1). We can write the dual matrix ĤQL
by using fh

dual transformation as follows:

ĤQL
= ĥ.



α̂0(t)2 + α̂3(t)2

ĥ.α̂0(t)

−α̂0(t)α̂1(t) − α̂2(t)α̂3(t)

ĥ.α̂0(t)

−α̂0(t)α̂2(t) + α̂1(t)α̂3(t)

ĥ.α̂0(t)

−α̂3(t)

ĥ.α̂0(t)

α̂0(t)α̂1(t) − α̂2(t)α̂3(t)

ĥ.α̂0(t)

α̂0(t)2 + α̂2(t)2

ĥ.α̂0(t)

−α̂0(t)α̂3(t) − α̂1(t)α̂2(t)

ĥα̂0(t)

α̂2(t)

ĥ.α̂0(t)

α̂0(t)α̂2(t) + α̂1(t)α̂3(t)

ĥ.α̂0(t)

α̂0(t)α̂3(t) − α̂1(t)α̂2(t)

ĥ.α̂0(t)

α̂0(t)2 + α̂1(t)2

ĥ.α̂0(t)

−α̂1(t)

ĥ.α̂0(t)

−α̂3(t)

ĥ.α̂0(t)

α̂2(t)

ĥ.α̂0(t)

−α̂1(t)

ĥ.α̂0(t)

1

ĥ.α̂0(t)


.

The dual matrix ĤQL
represents the dual homothetic motion in dual 4-dimensional

Lorentzian space.

Proof. We show that
f2

h(ĤQ) = fh(fh(ĤQ))

= fh(ĤQL
), f2 = id.

= ĤQ

=⇒ f2
h = id.

Hence, fh is a dual transformation.
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