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A METHOD OF COMPUTING THE CONSTANT FIELD

OBSTRUCTION TO THE HASSE PRINCIPLE FOR THE

BRAUER GROUPS OF GENUS ONE CURVES

Ilseop Han

Abstract. Let k be a global field of characteristic unequal to two. Let
C: y2 = f(x) be a nonsingular projective curve over k, where f(x) is a
quartic polynomial over k with nonzero discriminant, and K = k(C) be

the function field of C. For each prime spot p on k, let k̂p denote the

corresponding completion of k and k̂p(C) the function field of C ×
k
k̂p.

Consider the map

h : Br(K) −→
∏
p

Br
(
k̂p(C)

)
,

where p ranges over all the prime spots of k. In this paper, we explicitly

describe all the constant classes (coming from Br(k)) lying in the kernel
of the map h, which is an obstruction to the Hasse principle for the
Brauer groups of the curve. The kernel of h can be expressed in terms
of quaternion algebras with their prime spots. We also provide specific
examples over Q, the rationals, for this kernel.

1. Introduction

Let k be a global field with char(k) 6= 2 and let Br(k) denote the Brauer
group of k. Let C be a geometrically irreducible nonsingular projective curve
over k and K = k(C) be the function field of C over k. For the scalar extension
map θ : Br(k) → Br(K) given by [A] 7→ [A⊗k K], a class [B] ∈ Br(K) is called
a constant class in Br(K) if [B] = θ([A]) for some [A] ∈ Br(k). We denote the
relative Brauer group of K over k, i.e., ker(θ), by Br(K/k).

For each prime spot p on k, let ̂kp denote the corresponding completion of

k and ̂kp(C) the function field of C ×k
̂kp. Consider the map

(1) h : Br(K) −→ ∏

p

Br
(

̂kp(C)
)

,
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where p ranges over all the prime spots of k (including real infinite prime
spots). The nontrivial Brauer classes in ker(h) are the obstruction to the Hasse
principle for the Brauer groups of function fields of curves.

Now, let J be the Jacobian of the curve C and let x(J) be the Shafarevich-
Tate group of J . Assume that C has a k-rational point. Recall then the
well-known fact (cf. e.g. [5, p. 561]) that

(2) ker
(

Br(K) → ∏

p

Br(̂kp(C))
) ∼= x(J).

Furthermore, R. Parimala and R. Sujatha showed in [5] that

(3) ker
(

W (K) → ∏

p

W (̂kp(C))
) ∼= 2x(J),

where W (F ) is the Witt group of a field F and 2x(J) is the 2-torsion subgroup
of x(J). (For the isomorphisms in (2) and (3), it turns out that the condition
of C having a k-rational point plays an essential role.) Utilizing this fact, they
studied the correspondence between the obstruction to the Hasse principle for
Witt groups of function fields and elements of 2x(J) when the Jacobian J is
an elliptic curve E. This enabled them to describe the 2-torsion subgroup of
ker(h), where h is the map in (1), for the case of elliptic curves over Q of the
form E : y2 = x3 − ax, given an element of 2x(E). In particular, when E is
the elliptic curve defined by y2 = x3 + px over Q where p ≡ 1 (mod 8) and 2 is
not a quartic residue mod p, they showed in [5, Theorem 3.3] that

2ker(h) =
〈

[(−1, x/Q)], [(2, x/Q)]
〉 ∼= Z/2Z⊕ Z/2Z.

In this paper, we consider the curve over k of the form C: y2 = f(x) where
f(x) is any quartic polynomial with nonzero discriminant. This C is a hy-
perelliptic curve of genus 1. Unlike the work in [5], we do not assume that
C possesses a k-rational point. Thus the isomorphisms in (2) and (3) are not
available here.

The main purpose of the paper is to provide a method of computation so as
to give precise description of all the constant classes existing in the kernel of
the map h in (1). To facilitate calculation, we will investigate the kernel of the

map Br(k) → ∏

p
Br(̂kp(C)) as well as the relative Brauer group Br(K/k), and

then combine these results. Every constant class of ker(h) can be expressed
as the class of a quaternion algebra Q, which is completely determined by the
prime spots where Q doesn’t split. At the end of Sections 3 and 5, we illustrate
how to construct explicit examples over Q.

2. Preliminary

In this section, we introduce notations and definitions, and briefly review
some basic facts which will be needed in later sections.

Let k be a field (with char(k) 6= 2 throughout). Let C be a nonsingular
projective curve, or simply a curve, over k and K = k(C) be the function field
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of C, which is an algebraic function field in one variable over k where k is
algebraically closed in K.

When the curve C possesses a rational point over k, in short, C(k) 6= ∅, the
following lemma is easily deducible from the existence of a specialization map
corresponding to the rational point (cf. [4, p. 175]).

Lemma 2.1. Let k be any field. Let K = k(C) be the function field of a curve

C over k. If C(k) 6= ∅, then Br(K/k) = {0}.

Let k be a global field. By a prime spot on k, we mean an equivalence class
of discrete valuations on k or an equivalence class of archimedean absolute
values on k. Define

P (k) = {p
∣

∣p is a prime spot of k},

and for each p ∈ P (k), let ̂kp denote the corresponding completion of k. It

is obvious that if C(k) 6= ∅, then C(̂kp) 6= ∅ for every p ∈ P (k) (but not

conversely). Thus, if C(̂kp) = ∅ for some p ∈ P (k), then C(k) = ∅.

For a, b ∈ k∗ = k − {0}, let Q = (a, b/k) denote a quaternion algebra over k
with k-base 1, i, j, ij, such that i2 = a, j2 = b, and ij = −ji. When k is a
global field, define the support of Q as follows:

supp(Q) = {p ∈ P (k) | Q⊗k
̂kp is nonsplit}.

We next recall a useful tool especially to represent quaternion algebras over
a global field.

Lemma 2.2 (Hilbert’s Reciprocity Law). Let k be a global field. For a quater-

nion algebra Q over k, the set supp(Q) is finite with even cardinality. Fur-

ther, given any finite subset N of P (k) with even cardinality, there is a unique

quaternion algebra Q over k with supp(Q) = N .

According to Hilbert’s Reciprocity Law, Q is split if and only if supp(Q) is
the empty set. Furthermore, we define

Q{p1,...,p2n}

to be the quaternion algebra over k with support {p1, . . . , p2n} ⊆ P (k). For
example, if 2 is the dyadic prime spot (that is, the characteristic of the corre-
sponding residue field is 2) and ∞ is the real infinite prime spot over Q, then
Q{2,∞} = (−1,−1/Q).

Now, let C0 be the projective conic curve over a field k defined by the
homogeneous equation ax2 + by2 − z2 = 0, where a, b ∈ k∗. Plainly, C0 is
nonsingular as char(k) 6= 2. Then the function field K = k(C0) is the quotient

field of k[x, z]/(ax2 + b − z2) and so K has the form k(x,
√
ax2 + b ). This K

has genus 0.
The following lemma can be verified by a direct computation (or see [4,

Proposition 1.3.2]), which will be used in Section 3.
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Lemma 2.3. Let k be any field. For Q = (a, b/k) and C0 as above, the

quaternion algebra Q is split if and only if C0(k) 6= ∅.

When the genus is zero, the Hasse Principle (or alternatively, Lemma 2.2

together with Lemma 2.3) tells us that C0(k) 6= ∅ if and only if C0(̂kp) 6= ∅
for every p ∈ P (k).

Finally, when k is a local field, recall that there exists a unique nonsplit
quaternion algebra over k. P. Roquette (see [6, Theorem 1]) showed:

Lemma 2.4. Let k be a local field. Let C be a curve over k and K = k(C). If

d is the smallest positive integer which is the degree of a divisor of K over k,
then

Br(K/k) ∼= Z/dZ.

In particular, let C be the curve of the form y2 = f(x), where f(x) ∈ k[x] is
square-free. If C(k) = ∅, then

Br(K/k) = { 0, [D] }

where D is the unique nonsplit quaternion algebra over k.

3. The kernel of the map Br(k) −→

∏

p∈P (k)

Br
(

̂

kp(C)
)

Let k be a global field and f(x) ∈ k[x] be a polynomial of degree n. We
assume that disc(f) 6= 0, so f has no repeated roots in its splitting field.
Consider the curve C: y2 = f(x). This is a nonsingular affine curve but its
projective closure is singular at the point at infinity whenever n ≥ 4. By
blowing up the singular point, we obtain an associated nonsingular projective
curve C′ in which the affine curve C is dense and k(C) = k(C′). Hence,
although we write C, we actually mean C′.

For the curve C: y2 = f(x) as above, we want to describe in this section the
kernel of the map

(4) g : Br(k) −→ ∏

p∈P (k)

Br
(

̂kp(C)
)

.

We are especially interested in the case where f has degree 4 (so C is a hy-
perelliptic curve of genus 1). We will also consider the case of degree 2 below
(so the associated curve is a conic curve of genus 0) since there is a connection
between the two in certain circumstances.

To begin, let us define SC to be the set of prime spots such that the curve

C has no rational point locally over ̂kp, that is,

(5) SC = {p ∈ P (k)
∣

∣C(̂kp) = ∅}.

Note that SC is finite by the Hasse-Weil bound. Then, we have:
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Proposition 3.1. Let k be a global field and let C: y2 = f(x) be a curve over

k. Then one has

ker(g) =

{

[Q]

∣

∣

∣

∣

∣

Q is a quaternion algebra

over k with supp(Q) ⊆ SC

}

,

where g is the map in (4). Further, if SC = ∅, then ker(g) is trivial. If SC 6= ∅,

then ker(g) has 2|SC|−1 elements.

Proof. The map g can be viewed as the composition of the maps

(6) Br(k)
i−→ ∏

p∈P (k)

Br(̂kp)
j−→ ∏

p∈P (k)

Br
(

̂kp(C)
)

.

The map i in (6) is injective by the local-global principle for central simple
algebras over global fields and ker(j) is 2-torsion since each component in the
direct product has a 2-torsion kernel. This tells us that ker(g) is 2-torsion and
hence, for each nontrivial class [Q] ∈ ker(g), the exponent of Q is 2. Since k
is a global field, it follows that ind(Q) = exp(Q), which is 2. Therefore ker(g)
consists of classes of quaternion algebras over k. Next, assume that there exists
a quaternion algebra Q such that supp(Q) 6⊆ SC . Then, we can take a p ∈ P (k)

such that p ∈ supp(Q) but p 6∈ SC . For this p, note that C(̂kp) 6= ∅. It follows

from Lemma 2.1 that Br(̂kp(C)/̂kp) = 0. Hence, Q ⊗k
̂kp(C) is nonsplit and

therefore [Q] 6∈ ker(g). In other words, if [Q] ∈ ker(g), then Q must be a
quaternion algebra with supp(Q) ⊆ SC .

Conversely, assume that Q is a quaternion algebra with supp(Q) ⊆ SC . We

show that [Q] ∈ ker(g). First, if p 6∈ supp(Q), then Q ⊗k
̂kp is split and so is

Q ⊗k
̂kp(C). Secondly, if p ∈ supp(Q), then C(̂kp) = ∅ since supp(Q) ⊆ SC .

It follows from Lemma 2.4 that [Q ⊗k
̂kp] ∈ Br(̂kp(C)/̂kp). This shows that

Q⊗k
̂kp(C) is split for all p ∈ P (k) and hence [Q] ∈ ker(g) as claimed.

Counting the cardinality of the kernel of g is immediate by Lemma 2.2. This
completes the proof. �

Now, for a quartic polynomial f , we want to describe ker(g) obtained in
Proposition 3.1. For efficient calculations, let us first begin with the quadratic
polynomials.

- Quadratic Case

Let C0 be a conic curve over a field k of the form

C0: y
2 = ax2 + bx+ c = a(x + b

2a )
2 − b2−4ac

4a .

Put
D := b2 − 4ac (= disc(f))

and consider the quaternion algebra Q = (a,− D
4a/k). Notice then that Q ∼=

(a,D/k) since (a,−4a/k) is split. Hence, the function field k(C0) is in fact
determined by the quaternion algebra (a,D/k). Further, it follows from Lemma
2.3 that (a,D/k) is split if and only if C0(k) 6= ∅.
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Define the map

(7) g
0
: Br(k) −→ ∏

p∈P (k)

Br
(

̂kp(C0)
)

.

Corollary 3.2. Let C0 : y2 = ax2 + bx+ c be a conic curve over a global field

k. Let Q = (a,D/k) where D = b2 − 4ac. For the map g
0
in (7), one has

ker(g
0
) =

{

[Q′]

∣

∣

∣

∣

∣

Q′ is a quaternion algebra over k

with supp(Q′) ⊆ supp(Q)

}

.

The cardinality of this set is 2n−1 where n =
∣

∣supp(Q)
∣

∣.

Proof. Observe that p ∈ supp(Q) if and only if Q⊗k
̂kp is nonsplit if and only

if C0(̂kp) = ∅ if and only if p ∈ SC0
. The second ‘iff’ statement comes from

Lemma 2.3. Hence, we have SC0
= supp(Q) and apply Proposition 3.1. �

Example 3.3. Consider the conic curve

C0 : y2 = −x2 + 17x− 361

over Q. Then D = b2 − 4ac = −1155 = −3·5·7·11 and thus the corresponding
quaternion algebra is Q = (−1,−1155/Q) with supp(Q) = { 3, 7, 11,∞}. For
p ∈ {3, 7, 11}, observe that (−1,−p/Q) ∼= Q{p,∞}. Hence, by Corollary 3.2, we
have

ker(g
0
) =

〈

[(−1,−3/Q)], [(−1,−7/Q)], [(−1,−11/Q)]
〉 ∼=

3
⊕

i=1

Z/2Z.

- General Quartic Case

We now consider the quartic case: Let f(x) =
4
∑

i=0

aix
i be a polynomial of

degree 4 (with disc(f) 6= 0). We may assume that a3 = 0 by substituting
(x− a3

4a4
) for x. For convenience, let us use different letters for coefficients. For

the curve

(8) C: y2 = f(x) = ax4 + bx2 + cx+ d,

we define

(9) S = { p ∈ P (k) |C has a bad reduction at p } ∪ D ∪R,

where D is the set of all dyadic spots and R is the set of real infinite prime
spots of k.
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If ∆ represents the discriminant of f in (8), recall that ∆ is the resultant of
f and its derivative f ′ divided by the leading coefficient a, that is,

(10)
∆ = 1

a
det





















a 0 b c d 0 0
0 a 0 b c d 0
0 0 a 0 b c d
4a 0 2b c 0 0 0
0 4a 0 2b c 0 0
0 0 4a 0 2b c 0
0 0 0 4a 0 2b c





















= a(−4b3c2 − 27ac4 + 16b4 d+ 144abc2d− 128ab2d2 + 256a2d3).

For the curve C, we now want to describe the kernel of the map g in (4).
According to Proposition 3.1, it suffices to determine the set SC in (5). The
following proposition allows us to do only a finite amount of computation to
determine this SC .

Proposition 3.4. Let C be the quartic curve as above over a global field k.

For S in (9), if p 6∈ S, then C(̂kp) 6= ∅. In other words, SC ⊆ S.
Proof. For each (nondyadic finite) prime spot p 6∈ S, the curve C has good
reduction at p from the definition of S. Note then that the reduction of C has
a point over the corresponding finite field because any genus 1 curve has at least
one point over the finite field by the Hasse-Weil bound. Since this point can

be lifted to a p-adic point over ̂kp by Hensel’s lemma, we have C(̂kp) 6= ∅. �

- Special Quartic Case

Next, consider the case in which the coefficient of x in (8) is 0. That is,

C: y2 = ax4 + bx2 + c.

The discriminant of this quartic polynomial is

(11) ∆ = 16ac(b2 − 4ac)2.

In this case, there is a connection between this genus 1 curve C and the genus
0 curve C0: y

2 = ax2 + bx + c, which reduces a certain amount of work for
computing SC in (5).

Proposition 3.5. Let C: y2 = ax4 + bx2 + c be a curve over a global field k.

Let Q = (a,D/k) where D = b2 − 4ac. If p ∈ supp(Q), then C(̂kp) = ∅.

Hence, one has

supp(Q) ⊆ SC ⊆ S.
Proof. We first note that if the affine piece of C: y2 = ax4 + bx2 + c contains a
rational point, say (r, s), over k, then so does C0: y

2 = ax2 + bx+ c by taking
the rational point (r2, s) over k. On the other hand, if C contains nonsingular
k-rational points at infinity, then the leading coefficient a of f must be a square
in k (cf. [8, Theorem 2.5.2]). If this is the case, then the quaternion algebra
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Q is split and so C0(k) 6= ∅ by the arguments right above (7). To sum up, if
C(k) 6= ∅, then C0(k) 6= ∅.

Now, if p ∈ supp(Q), then Q ⊗k
̂kp is nonsplit. This is equivalent to saying

that C0(̂kp) = ∅ by Lemma 2.3. It follows from the above arguments that

C(̂kp) = ∅. Therefore, we obtain supp(Q) (= SC0
) ⊆ SC . This completes the

proof since we already observed that SC ⊆ S by Proposition 3.4. �

Remark 3.6. Notice that

k(C0) = k(x,
√

ax2 + bx+ c) ∼= k(x2,
√

ax4 + bx2 + c)

⊆ k(x,
√

ax4 + bx2 + c) = k(C).

This induces a Brauer group map Br(k(C0)) → Br(k(C)). Moreover, when k is

a global field, there exists a map Br(̂kp(C0)) → Br(̂kp(C)) for each p ∈ P (k).
Hence, there is a commutative diagram

Br(k)
g
0−−−−→ ∏

p∈P (k)

Br(̂kp(C0))





y





y

Br(k(C)) −−−−→
∏

p∈P (k)

Br(̂kp(C)).

From this, it is clear that ker(g
0
) is a subset of ker(g).

Before closing this section, we give specific examples of ker(g) when C is a
quartic curve. Example 3.7(a) below should be compared with the associated
conic case in Example 3.3.

Example 3.7. (a) Consider the curve

(12) C: y2 = −x4 + 17x2 − 361.

Recall then that D = −1155 and the corresponding quaternion algebra is Q =
(−1,−1155/Q) with supp(Q) = { 3, 7, 11,∞} as shown in Example 3.3. Since
the equation of C has discriminant

∆ = 7705328400 = 24 ·32 ·52 ·72 ·112 ·192,

it follows that S = { 2, 3, 5, 7, 11, 19,∞}. To determine SC , observe that the
equation in (12) has no solution (mod 22) and the leading coefficient −1 of f is
not a square 2-adically. This tells us C(Q2) = ∅. On the other hand, the reduc-
tion of C in (12) contains nonsingular points (0, 2) (mod 5) and (1, 4) (mod 19),
which can be lifted to C(Q5) and C(Q19) respectively. Using Proposition 3.5,
we conclude that SC = { 2, 3, 7, 11,∞} and therefore

ker(g) =
〈

[Q{2,∞}], [Q{3,∞}], [Q{7,∞}], [Q{11,∞}]
〉 ∼=

4
⊕

i=1

Z/2Z.



A METHOD OF COMPUTING THE CONSTANT FIELD OBSTRUCTION 1439

(b) (General case) Consider the curve

(13) C: y2 = −3x4 − 4x2 + x− 4.

Since the equation of C has discriminant

∆ = 216333 = 32 ·13·432,
it follows that S = { 2, 3, 13, 43,∞}. To determine SC , observe that the equa-
tion in (13) has no solution (mod 32) and −3 is not a square 3-adically. This
tells us C(Q3) = ∅. On the other hand, it can be shown that the reduction
of C in (13) contains nonsingular points (1, 0) (mod 2), (0, 3) (mod 13), and
(3, 8) (mod 43), which can be lifted to C(Q2), C(Q13) and C(Q43) respectively.
Finally, since −3x4 − 4x2 + x − 4 < 0 for all x ∈ R and the leading coefficient
of f is negative, we conclude that SC = { 3,∞} and therefore

ker(g) =
〈

[Q{3,∞}]
〉 ∼= Z/2Z.

4. Relative Brauer groups of genus one curves

Let C: y2 = f(x), where f is a quartic polynomial, be a nonsingular projec-
tive curve over a field k. In this section, we briefly review recent results on the
relative Brauer group Br(k(C)/k). (See [3] and [1] for details.)

- General Quartic Case

Let C: y2 = f(x), where

(14) f(x) = ax4 + bx2 + cx+ d

is a quartic polynomial with disc(f) 6= 0. Then the Jacobian E of C has the
form

(15) E: y2 = x3 − 2bx2 + (b2 − 4ad)x+ ac2.

Note here that (0, 0) is a k-rational point on E if and only if c = 0 in (15) since
a 6= 0. This special case will be covered separately in a more detailed setting
later.

If E(k) denotes the group of rational points over k, then there exists a
surjective homomorphism (cf. [1, Propositions 9 and 11])

(16)

E(k) −→ Br(k(C)/k) given by

O 7→ 0

(0, 0) 7→ [(a, b2 − 4ad/k)]

(0, s) 7→ 0 if s 6= 0

(r, s) 7→ [(a, r/k)] if r 6= 0.

If c 6= 0, notice that (0, s), s 6= 0, is a k-rational point if and only if a ∈ k∗2. If
this happens, the relative Brauer group Br(k(C)/k) is trivial. Hence, we have:
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Proposition 4.1. Let C: y2 = ax4 + bx2 + cx + d be a quartic curve over a

field k. Then one has

Br(k(C)/k) = { [(a, r/k)]
∣

∣ (r, s) ∈ E(k) } ∪ {0}.

In order to provide specific examples with k = Q when c 6= 0, we utilize
SAGE (Software for Algebra and Geometry Experimentation; see [7]) as there
seems to be no reasonable ways of finding generators of E(Q) by hand. SAGE
can compute the ranks of elliptic curves over Q together with generators of
infinite order. This allows us to describe the relative Brauer group Br(K/Q).

- Special Quartic Case

We now consider the case of (14) in which the coefficient of x becomes zero.
That is, let C: y2 = f(x), where f(x) = ax4 + bx2 + c. Then the Jacobian E
of C has the form

(17) E: y2 = x3 − 2bx2 +Dx,

where D = b2 − 4ac. Notice that D 6= 0 since ∆ in (11) is assumed to be
nonzero. Then there exists a group homomorphism (cf. [8, p. 302])

(18) α: E(k) → k∗/k∗2

defined by

α(P ) =











1 (mod k∗2) if P = O, the point at infinity,

D (mod k∗2) if P = (0, 0),

r (mod k∗2) if P = (r, s) with r 6= 0.

For convenience, if we write t for t (mod k∗2), then Proposition 4.1 above
can be rewritten as below:

Corollary 4.2. Let C: y2 = ax4 + bx2 + c be a quartic curve over k. Then

one has

(19) Br(k(C)/k) = { [(a, t/k)]
∣

∣ t ∈ im(α)},
where α is the map in (18).

If k is a global field, recall then that E(k) is a finitely generated abelian
group by the Mordell-Weil Theorem. Since k∗/k∗2 is 2-torsion, it follows that
im(α) is finite and so is Br(k(C)/k). Furthermore, with the isogenous curve

(20) E′: y2 = x3 + bx2 + acx,

we can also consider the map

α′: E′(k) → k∗/k∗2

analogous to α for E over k. (The map α′, likewise α, is in fact the connecting
homomorphism H0(k,E) → H1(k, µ2) arising from an exact sequence 0 →



A METHOD OF COMPUTING THE CONSTANT FIELD OBSTRUCTION 1441

µ2 → E → E′ → 0.) If r denotes the rank of E(k), then we utilize a well-known
formula (cf. [9, p. 91], or see [2, Lemma 5.1] for a more general formula):

(21)
|im(α)|·|im(α′)|

4
= 2r

to facilitate computation of im(α) and therefore of Br(k(C)/k).

5. Obstructions to the Hasse principle for the Brauer groups

Let K = k(C) be a function field of a curve C over a global field k. For the
scalar extension map θ : Br(k) → Br(K), a class [B] ∈ Br(K) is said to be a
constant class in Br(K) if [B] = θ([A]) for some [A] ∈ Br(k). As in (1), for the
map

h : Br(K) −→ ∏

p∈P (k)

Br
(

̂kp(C)
)

,

let kerc(h) denote the set of all constant classes in the ker(h). The nontrivial
kerc(h) is the obstruction to the Hasse principle for the Brauer groups of func-
tion fields of curves. In this section, we determine all the constant classes that
are in ker(h) when the curve C has genus 1 and provide examples.

Proposition 5.1. Let k be a global field and let C: y2 = f(x) where f is a

quartic polynomial over k. Then one has

kerc(h) =

{

[Q⊗k K]

∣

∣

∣

∣

∣

Q is a quaternion algebra

over k with supp(Q) ⊆ SC

}

,

where SC is the set in (5). Furthermore, for the map g in (4), Br(K/k) is a

subgroup of ker(g) and
∣

∣kerc(h)
∣

∣ =

∣

∣ker(g)
∣

∣

∣

∣Br(K/k)
∣

∣

.

Proof. There is a commutative diagram with the maps as before

Br(k) −−−−→ Br(K)

i





y





y
h

∏

p∈P (k)

Br(̂kp)
j−−−−→ ∏

p∈P (k)

Br(̂kp(C)).

Since the map g is the composition of the maps i and j, we first notice that
Br(K/k) is a subgroup of ker(g). Now, let [B] ∈ kerc(h). Then, by definition,
there exists [A] ∈ Br(k) such that [A ⊗k K] = [B]. From the commutative
diagram, it is apparent that [A] ∈ ker(g). By Proposition 3.1, [A] is the class
of a quaternion algebra over k with supp(A) ⊆ SC . Finally, it is obvious that
ker(g) is finite and |ker(g)| = |Br(K/k)||kerc(h)|. �

It follows immediately from Proposition 5.1 that if |SC | ≤ 1, then ker(g) is
trivial and so are Br(K/k) = 0 and kerc(h) = 0.
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Corollary 5.2. If |SC | ≤ 1, then kerc(h) = 0.

Corollary 5.3. If C has a rational point over k, then kerc(h) = 0.

As pointed out earlier in the introduction, the examples of [5] have no non-
trivial constant classes in the kernel since the curve C there has a k-rational
point.

Remark 5.4. If C: y2 = f(x) is an elliptic curve (so deg(f) = 3), then C
has a nonsingular rational point at infinity. Moreover, if f(x) has odd degree
≥ 5, then the curve C contains one nonsingular rational point at infinity after
realizing C as a projective curve covered by two affine pieces y2 = f(x) and
v2 = u2g+2f( 1

u
) where g is the genus of the curve C. Accordingly, if deg(f) is

odd, then C always contains a nonsingular rational point over k and therefore
kerc(h) is trivial by Corollary 5.3.

We finally provide explicit examples of kerc(h) when k = Q. The examples
below are immediate consequences of Examples 3.8 together with Proposition
4.1, Corollary 4.2, and Proposition 5.1. Although it is possible to derive by a
direct calculation, we instead use SAGE to speed up our computations.

Example 5.5. (a) Let

K = Q(C) = Q(x,
√

−x4 + 17x2 − 361 ).

Then the corresponding quaternion algebra is Q=(−1,−1155/Q) with supp(Q)
= { 3, 7, 11,∞}. It can be checked that the Jacobian E of C has form

E: y2 = x3 − 2·17x2 − 3·5·7·11x
with rational points (0, 0), (−21, 0), (55, 0). Applying (20), we obtain the
isogenous curve of the form E′ : y2 = x3 + 17x2 + 361x, which obviously
contains a rational point (0, 0). This is sufficient to determine Br(K/Q). Thus,
we have

−3·5·7·11,−3·7, 5·11 ∈ im(α) and 361(= 192) ∈ im(α′).

Moreover, computer calculation shows that E(Q) has rank 0. Applying formula
(21), we have im(α) = 〈−3·7, 5·11〉. Hence, it follows from (19) that

Br(K/Q) =
〈

[Q{2,3,7,∞}], [Q{2,11}]
〉 ∼=

2
⊕

i=1

Z/2Z,

since supp(−1,−21/Q) = {2, 3, 7,∞} and supp(−1, 55/Q) = {2, 11}.
By Example 3.7(a), we see

ker(g) =
〈

[Q{2,∞}], [Q{3,∞}], [Q{7,∞}], [Q{11,∞}]
〉 ∼=

4
⊕

i=1

Z/2Z,

and therefore by Proposition 5.1, we conclude that

kerc(h) =
〈

[Q{2,∞} ⊗Q K], [Q{3,∞} ⊗Q K]
〉 ∼=

2
⊕

i=1

Z/2Z.
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(b) (General case) Let

K = Q(C) = Q(x,
√

−3x4 − 4x2 + x− 4 ).

Then the Jacobian of C has the form

E: y2 = x3 + 8x2 − 32x− 3.

Using SAGE, we see that the curve E has rank 1 with a generator of infinite
order (−1, 6). To find rational points of finite order, it can be checked that
˜E(F5) = 6 and ˜E(F17) = 20. This tells us that there exists at most one
rational point of finite order (with order 2) other than the point at infinity.
Since the y-coordinate of a rational point of order 2 is 0, we see that (3, 0) is
the rational point of order 2. So we have E(Q) ∼= Z⊕Z/2Z. Now, observe that
(−3, 3/Q) is split but (−3,−1/Q) is nonsplit with supp(−3,−1/Q) = {3,∞}.
Hence, we have

Br(K/Q) =
〈

[Q{3,∞}]
〉 ∼= Z/2Z.

By Example 3.7(b), we see

ker(g) =
〈

[Q{3,∞}]
〉 ∼= Z/2Z

and therefore by Proposition 5.1

kerc(h) = 0.
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