J. Korean Math. Soc. ${\bf 53}$ (2016), No. 6, pp. 1431–1443

http://dx.doi.org/10.4134/JKMS.j150572 pISSN: 0304-9914 / eISSN: 2234-3008

A METHOD OF COMPUTING THE CONSTANT FIELD OBSTRUCTION TO THE HASSE PRINCIPLE FOR THE BRAUER GROUPS OF GENUS ONE CURVES

ILSEOP HAN

ABSTRACT. Let k be a global field of characteristic unequal to two. Let $C\colon y^2=f(x)$ be a nonsingular projective curve over k, where f(x) is a quartic polynomial over k with nonzero discriminant, and K=k(C) be the function field of C. For each prime spot $\mathfrak p$ on k, let $\widehat k_{\mathfrak p}$ denote the corresponding completion of k and $\widehat k_{\mathfrak p}(C)$ the function field of $C\times_k\widehat k_{\mathfrak p}$. Consider the map

$$h: \operatorname{Br}(K) \longrightarrow \prod_{\mathfrak{p}} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)),$$

where $\mathfrak p$ ranges over all the prime spots of k. In this paper, we explicitly describe all the constant classes (coming from $\operatorname{Br}(k)$) lying in the kernel of the map h, which is an obstruction to the Hasse principle for the Brauer groups of the curve. The kernel of h can be expressed in terms of quaternion algebras with their prime spots. We also provide specific examples over $\mathbb Q$, the rationals, for this kernel.

1. Introduction

Let k be a global field with $\operatorname{char}(k) \neq 2$ and let $\operatorname{Br}(k)$ denote the Brauer group of k. Let C be a geometrically irreducible nonsingular projective curve over k and K = k(C) be the function field of C over k. For the scalar extension map $\theta: \operatorname{Br}(k) \to \operatorname{Br}(K)$ given by $[A] \mapsto [A \otimes_k K]$, a class $[B] \in \operatorname{Br}(K)$ is called a constant class in $\operatorname{Br}(K)$ if $[B] = \theta([A])$ for some $[A] \in \operatorname{Br}(k)$. We denote the relative Brauer group of K over k, i.e., $\ker(\theta)$, by $\operatorname{Br}(K/k)$.

For each prime spot \mathfrak{p} on k, let $\widehat{k}_{\mathfrak{p}}$ denote the corresponding completion of k and $\widehat{k}_{\mathfrak{p}}(C)$ the function field of $C \times_k \widehat{k}_{\mathfrak{p}}$. Consider the map

(1)
$$h: \operatorname{Br}(K) \longrightarrow \prod_{\mathfrak{p}} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)),$$

Received September 20, 2015; Revised January 4, 2016. 2010 Mathematics Subject Classification. 16K20, 16K50, 14H05, 14H45. Key words and phrases. Brauer groups, Hasse principle, function fields of genus 1.

where p ranges over all the prime spots of k (including real infinite prime spots). The nontrivial Brauer classes in $\ker(h)$ are the obstruction to the Hasse principle for the Brauer groups of function fields of curves.

Now, let J be the Jacobian of the curve C and let $\mathrm{III}(J)$ be the Shafarevich-Tate group of J. Assume that C has a k-rational point. Recall then the well-known fact (cf. e.g. [5, p. 561]) that

(2)
$$\ker(\operatorname{Br}(K) \to \prod_{\mathfrak{p}} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C))) \cong \operatorname{III}(J).$$

Furthermore, R. Parimala and R. Sujatha showed in [5] that

(3)
$$\ker(W(K) \to \prod_{\mathfrak{p}} W(\widehat{k}_{\mathfrak{p}}(C))) \cong {}_{2}\mathrm{III}(J),$$

where W(F) is the Witt group of a field F and $_2\mathrm{III}(J)$ is the 2-torsion subgroup of $\mathrm{III}(J)$. (For the isomorphisms in (2) and (3), it turns out that the condition of C having a k-rational point plays an essential role.) Utilizing this fact, they studied the correspondence between the obstruction to the Hasse principle for Witt groups of function fields and elements of $_2\mathrm{III}(J)$ when the Jacobian J is an elliptic curve E. This enabled them to describe the 2-torsion subgroup of $\ker(h)$, where h is the map in (1), for the case of elliptic curves over $\mathbb Q$ of the form $E:y^2=x^3-ax$, given an element of $_2\mathrm{III}(E)$. In particular, when E is the elliptic curve defined by $y^2=x^3+px$ over $\mathbb Q$ where $p\equiv 1\pmod 8$ and 2 is not a quartic residue mod p, they showed in [5, Theorem 3.3] that

$$_2\ker(h) = \langle [(-1, x/\mathbb{Q})], [(2, x/\mathbb{Q})] \rangle \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$$

In this paper, we consider the curve over k of the form $C: y^2 = f(x)$ where f(x) is any quartic polynomial with nonzero discriminant. This C is a hyperelliptic curve of genus 1. Unlike the work in [5], we do not assume that C possesses a k-rational point. Thus the isomorphisms in (2) and (3) are not available here.

The main purpose of the paper is to provide a method of computation so as to give precise description of all the constant classes existing in the kernel of the map h in (1). To facilitate calculation, we will investigate the kernel of the map $\operatorname{Br}(k) \to \prod_{\mathfrak{p}} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C))$ as well as the relative Brauer group $\operatorname{Br}(K/k)$, and then combine these results. Every constant class of $\ker(h)$ can be expressed as the class of a quaternion algebra Q, which is completely determined by the prime spots where Q doesn't split. At the end of Sections 3 and 5, we illustrate how to construct explicit examples over \mathbb{Q} .

2. Preliminary

In this section, we introduce notations and definitions, and briefly review some basic facts which will be needed in later sections.

Let k be a field (with $\operatorname{char}(k) \neq 2$ throughout). Let C be a nonsingular projective curve, or simply a curve, over k and K = k(C) be the function field

of C, which is an algebraic function field in one variable over k where k is algebraically closed in K.

When the curve C possesses a rational point over k, in short, $C(k) \neq \emptyset$, the following lemma is easily deducible from the existence of a specialization map corresponding to the rational point (cf. [4, p. 175]).

Lemma 2.1. Let k be any field. Let K = k(C) be the function field of a curve C over k. If $C(k) \neq \emptyset$, then $Br(K/k) = \{0\}$.

Let k be a global field. By a prime spot on k, we mean an equivalence class of discrete valuations on k or an equivalence class of archimedean absolute values on k. Define

$$P(k) = \{ \mathfrak{p} \mid \mathfrak{p} \text{ is a prime spot of } k \},$$

and for each $\mathfrak{p} \in P(k)$, let $\widehat{k}_{\mathfrak{p}}$ denote the corresponding completion of k. It is obvious that if $C(k) \neq \emptyset$, then $C(\widehat{k}_{\mathfrak{p}}) \neq \emptyset$ for every $\mathfrak{p} \in P(k)$ (but not conversely). Thus, if $C(\widehat{k}_{\mathfrak{p}}) = \emptyset$ for some $\mathfrak{p} \in P(k)$, then $C(k) = \emptyset$.

For $a, b \in k^* = k - \{0\}$, let Q = (a, b/k) denote a quaternion algebra over k with k-base 1, i, j, ij, such that $i^2 = a$, $j^2 = b$, and ij = -ji. When k is a global field, define the support of Q as follows:

$$\operatorname{supp}(Q) = \{ \mathfrak{p} \in P(k) \mid Q \otimes_k \widehat{k}_{\mathfrak{p}} \text{ is nonsplit} \}.$$

We next recall a useful tool especially to represent quaternion algebras over a global field.

Lemma 2.2 (Hilbert's Reciprocity Law). Let k be a global field. For a quaternion algebra Q over k, the set $\operatorname{supp}(Q)$ is finite with even cardinality. Further, given any finite subset $\mathcal N$ of P(k) with even cardinality, there is a unique quaternion algebra Q over k with $\operatorname{supp}(Q) = \mathcal N$.

According to Hilbert's Reciprocity Law, Q is split if and only if $\mathrm{supp}(Q)$ is the empty set. Furthermore, we define

$$Q_{\{\mathfrak{p}_1,\ldots,\mathfrak{p}_{2n}\}}$$

to be the quaternion algebra over k with support $\{\mathfrak{p}_1,\ldots,\mathfrak{p}_{2n}\}\subseteq P(k)$. For example, if 2 is the dyadic prime spot (that is, the characteristic of the corresponding residue field is 2) and ∞ is the real infinite prime spot over \mathbb{Q} , then $Q_{\{2,\infty\}}=(-1,-1/\mathbb{Q})$.

Now, let C_0 be the projective conic curve over a field k defined by the homogeneous equation $ax^2 + by^2 - z^2 = 0$, where $a, b \in k^*$. Plainly, C_0 is nonsingular as $\operatorname{char}(k) \neq 2$. Then the function field $K = k(C_0)$ is the quotient field of $k[x,z]/(ax^2 + b - z^2)$ and so K has the form $k(x, \sqrt{ax^2 + b})$. This K has genus 0.

The following lemma can be verified by a direct computation (or see [4, Proposition 1.3.2]), which will be used in Section 3.

Lemma 2.3. Let k be any field. For Q = (a, b/k) and C_0 as above, the quaternion algebra Q is split if and only if $C_0(k) \neq \emptyset$.

When the genus is zero, the Hasse Principle (or alternatively, Lemma 2.2 together with Lemma 2.3) tells us that $C_0(k) \neq \emptyset$ if and only if $C_0(\widehat{k}_{\mathfrak{p}}) \neq \emptyset$ for every $\mathfrak{p} \in P(k)$.

Finally, when k is a local field, recall that there exists a unique nonsplit quaternion algebra over k. P. Roquette (see [6, Theorem 1]) showed:

Lemma 2.4. Let k be a local field. Let C be a curve over k and K = k(C). If d is the smallest positive integer which is the degree of a divisor of K over k, then

$$Br(K/k) \cong \mathbb{Z}/d\mathbb{Z}$$
.

In particular, let C be the curve of the form $y^2 = f(x)$, where $f(x) \in k[x]$ is square-free. If $C(k) = \emptyset$, then

$$Br(K/k) = \{ 0, [D] \}$$

where D is the unique nonsplit quaternion algebra over k.

3. The kernel of the map
$$\operatorname{Br}(k) \longrightarrow \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C))$$

Let k be a global field and $f(x) \in k[x]$ be a polynomial of degree n. We assume that $\mathrm{disc}(f) \neq 0$, so f has no repeated roots in its splitting field. Consider the curve $C: y^2 = f(x)$. This is a nonsingular affine curve but its projective closure is singular at the point at infinity whenever $n \geq 4$. By blowing up the singular point, we obtain an associated nonsingular projective curve C' in which the affine curve C is dense and k(C) = k(C'). Hence, although we write C, we actually mean C'.

For the curve $C: y^2 = f(x)$ as above, we want to describe in this section the kernel of the map

(4)
$$g: \operatorname{Br}(k) \longrightarrow \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)).$$

We are especially interested in the case where f has degree 4 (so C is a hyperelliptic curve of genus 1). We will also consider the case of degree 2 below (so the associated curve is a conic curve of genus 0) since there is a connection between the two in certain circumstances.

To begin, let us define S_C to be the set of prime spots such that the curve C has no rational point locally over \hat{k}_{p} , that is,

(5)
$$S_C = \{ \mathfrak{p} \in P(k) \, \big| \, C(\widehat{k}_{\mathfrak{p}}) = \varnothing \}.$$

Note that S_C is finite by the Hasse-Weil bound. Then, we have:

Proposition 3.1. Let k be a global field and let $C: y^2 = f(x)$ be a curve over k. Then one has

$$\ker(g) = \left\{ [Q] \middle| \begin{array}{c} Q \text{ is a quaternion algebra} \\ over k \text{ with } \operatorname{supp}(Q) \subseteq \mathcal{S}_C \end{array} \right\},$$

where g is the map in (4). Further, if $S_C = \emptyset$, then $\ker(g)$ is trivial. If $S_C \neq \emptyset$, then $\ker(g)$ has $2^{|S_C|-1}$ elements.

Proof. The map g can be viewed as the composition of the maps

(6)
$$\operatorname{Br}(k) \xrightarrow{i} \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}) \xrightarrow{j} \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)).$$

The map i in (6) is injective by the local-global principle for central simple algebras over global fields and $\ker(j)$ is 2-torsion since each component in the direct product has a 2-torsion kernel. This tells us that $\ker(g)$ is 2-torsion and hence, for each nontrivial class $[Q] \in \ker(g)$, the exponent of Q is 2. Since k is a global field, it follows that $\operatorname{ind}(Q) = \exp(Q)$, which is 2. Therefore $\ker(g)$ consists of classes of quaternion algebras over k. Next, assume that there exists a quaternion algebra Q such that $\sup(Q) \not\subseteq \mathcal{S}_C$. Then, we can take a $\mathfrak{p} \in P(k)$ such that $\mathfrak{p} \in \sup(Q)$ but $\mathfrak{p} \notin \mathcal{S}_C$. For this \mathfrak{p} , note that $C(\widehat{k}_{\mathfrak{p}}) \neq \emptyset$. It follows from Lemma 2.1 that $\operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)/\widehat{k}_{\mathfrak{p}}) = 0$. Hence, $Q \otimes_k \widehat{k}_{\mathfrak{p}}(C)$ is nonsplit and therefore $[Q] \notin \ker(g)$. In other words, if $[Q] \in \ker(g)$, then Q must be a quaternion algebra with $\sup(Q) \subseteq \mathcal{S}_C$.

Conversely, assume that Q is a quaternion algebra with $\operatorname{supp}(Q) \subseteq \mathcal{S}_C$. We show that $[Q] \in \ker(g)$. First, if $\mathfrak{p} \notin \operatorname{supp}(Q)$, then $Q \otimes_k \widehat{k}_{\mathfrak{p}}$ is split and so is $Q \otimes_k \widehat{k}_{\mathfrak{p}}(C)$. Secondly, if $\mathfrak{p} \in \operatorname{supp}(Q)$, then $C(\widehat{k}_{\mathfrak{p}}) = \emptyset$ since $\operatorname{supp}(Q) \subseteq \mathcal{S}_C$. It follows from Lemma 2.4 that $[Q \otimes_k \widehat{k}_{\mathfrak{p}}] \in \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)/\widehat{k}_{\mathfrak{p}})$. This shows that $Q \otimes_k \widehat{k}_{\mathfrak{p}}(C)$ is split for all $\mathfrak{p} \in P(k)$ and hence $[Q] \in \ker(g)$ as claimed.

Counting the cardinality of the kernel of g is immediate by Lemma 2.2. This completes the proof.

Now, for a quartic polynomial f, we want to describe $\ker(g)$ obtained in Proposition 3.1. For efficient calculations, let us first begin with the quadratic polynomials.

- Quadratic Case

Let C_0 be a conic curve over a field k of the form

$$C_0$$
: $y^2 = ax^2 + bx + c = a(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a}$.

Put

$$D := b^2 - 4ac \ (= \operatorname{disc}(f))$$

and consider the quaternion algebra $Q=(a,-\frac{D}{4a}/k)$. Notice then that $Q\cong(a,D/k)$ since (a,-4a/k) is split. Hence, the function field $k(C_0)$ is in fact determined by the quaternion algebra (a,D/k). Further, it follows from Lemma 2.3 that (a,D/k) is split if and only if $C_0(k)\neq\varnothing$.

Define the map

(7)
$$g_0: \operatorname{Br}(k) \longrightarrow \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C_0)).$$

Corollary 3.2. Let $C_0: y^2 = ax^2 + bx + c$ be a conic curve over a global field k. Let Q = (a, D/k) where $D = b^2 - 4ac$. For the map g_0 in (7), one has

$$\ker(g_0) = \left\{ \begin{bmatrix} Q' \end{bmatrix} \middle| \begin{array}{l} Q' \text{ is a quaternion algebra over } k \\ \text{with } \operatorname{supp}(Q') \subseteq \operatorname{supp}(Q) \end{array} \right\}.$$

The cardinality of this set is 2^{n-1} where n = |supp(Q)|.

Proof. Observe that $\mathfrak{p} \in \operatorname{supp}(Q)$ if and only if $Q \otimes_k \widehat{k}_{\mathfrak{p}}$ is nonsplit if and only if $C_0(\widehat{k}_{\mathfrak{p}}) = \emptyset$ if and only if $\mathfrak{p} \in \mathcal{S}_{C_0}$. The second 'iff' statement comes from Lemma 2.3. Hence, we have $\mathcal{S}_{C_0} = \operatorname{supp}(Q)$ and apply Proposition 3.1.

Example 3.3. Consider the conic curve

$$C_0: y^2 = -x^2 + 17x - 361$$

over \mathbb{Q} . Then $D=b^2-4ac=-1155=-3\cdot 5\cdot 7\cdot 11$ and thus the corresponding quaternion algebra is $Q=(-1,-1155/\mathbb{Q})$ with $\mathrm{supp}(Q)=\{\,3,7,11,\infty\,\}$. For $p\in\{3,7,11\}$, observe that $(-1,-p/\mathbb{Q})\cong Q_{\{p,\infty\}}$. Hence, by Corollary 3.2, we have

$$\ker(g_{\scriptscriptstyle 0}) \; = \; \left\langle \, [(-1,-3/\mathbb{Q})], [(-1,-7/\mathbb{Q})], [(-1,-11/\mathbb{Q})] \, \right\rangle \; \cong \; \bigoplus_{i=1}^3 \mathbb{Z}/2\mathbb{Z}.$$

- General Quartic Case

We now consider the quartic case: Let $f(x) = \sum_{i=0}^{4} a_i x^i$ be a polynomial of degree 4 (with $\operatorname{disc}(f) \neq 0$). We may assume that $a_3 = 0$ by substituting $(x - \frac{a_3}{4a_4})$ for x. For convenience, let us use different letters for coefficients. For the curve

(8)
$$C: y^2 = f(x) = ax^4 + bx^2 + cx + d,$$

we define

(9)
$$S = \{ \mathfrak{p} \in P(k) \mid C \text{ has a bad reduction at } \mathfrak{p} \} \cup \mathcal{D} \cup \mathcal{R},$$

where \mathcal{D} is the set of all dyadic spots and \mathcal{R} is the set of real infinite prime spots of k.

If Δ represents the discriminant of f in (8), recall that Δ is the resultant of f and its derivative f' divided by the leading coefficient a, that is,

(10)
$$\Delta = \frac{1}{a} \det \begin{pmatrix} a & 0 & b & c & d & 0 & 0 \\ 0 & a & 0 & b & c & d & 0 \\ 0 & 0 & a & 0 & b & c & d \\ 4a & 0 & 2b & c & 0 & 0 & 0 \\ 0 & 4a & 0 & 2b & c & 0 & 0 \\ 0 & 0 & 4a & 0 & 2b & c & 0 \\ 0 & 0 & 0 & 4a & 0 & 2b & c \end{pmatrix}$$

$$= a(-4b^3c^2 - 27ac^4 + 16b^4 d + 144abc^2d - 128ab^2d^2 + 256a^2d^3).$$

For the curve C, we now want to describe the kernel of the map g in (4). According to Proposition 3.1, it suffices to determine the set \mathcal{S}_C in (5). The following proposition allows us to do only a finite amount of computation to determine this \mathcal{S}_C .

Proposition 3.4. Let C be the quartic curve as above over a global field k. For S in (9), if $\mathfrak{p} \notin S$, then $C(\widehat{k}_{\mathfrak{p}}) \neq \varnothing$. In other words, $S_C \subseteq S$.

Proof. For each (nondyadic finite) prime spot $\mathfrak{p} \notin \mathcal{S}$, the curve C has good reduction at \mathfrak{p} from the definition of \mathcal{S} . Note then that the reduction of C has a point over the corresponding finite field because any genus 1 curve has at least one point over the finite field by the Hasse-Weil bound. Since this point can be lifted to a \mathfrak{p} -adic point over $\hat{k}_{\mathfrak{p}}$ by Hensel's lemma, we have $C(\hat{k}_{\mathfrak{p}}) \neq \emptyset$. \square

- Special Quartic Case

Next, consider the case in which the coefficient of x in (8) is 0. That is,

$$C: y^2 = ax^4 + bx^2 + c.$$

The discriminant of this quartic polynomial is

$$\Delta = 16ac(b^2 - 4ac)^2.$$

In this case, there is a connection between this genus 1 curve C and the genus 0 curve C_0 : $y^2 = ax^2 + bx + c$, which reduces a certain amount of work for computing S_C in (5).

Proposition 3.5. Let $C: y^2 = ax^4 + bx^2 + c$ be a curve over a global field k. Let Q = (a, D/k) where $D = b^2 - 4ac$. If $\mathfrak{p} \in \operatorname{supp}(Q)$, then $C(\widehat{k}_{\mathfrak{p}}) = \varnothing$. Hence, one has

$$supp(Q) \subseteq \mathcal{S}_C \subseteq \mathcal{S}.$$

Proof. We first note that if the affine piece of $C: y^2 = ax^4 + bx^2 + c$ contains a rational point, say (r, s), over k, then so does $C_0: y^2 = ax^2 + bx + c$ by taking the rational point (r^2, s) over k. On the other hand, if C contains nonsingular k-rational points at infinity, then the leading coefficient a of f must be a square in k (cf. [8, Theorem 2.5.2]). If this is the case, then the quaternion algebra

Q is split and so $C_0(k) \neq \emptyset$ by the arguments right above (7). To sum up, if $C(k) \neq \emptyset$, then $C_0(k) \neq \emptyset$.

Now, if $\mathfrak{p} \in \operatorname{supp}(Q)$, then $Q \otimes_k \widehat{k}_{\mathfrak{p}}$ is nonsplit. This is equivalent to saying that $C_0(\widehat{k}_{\mathfrak{p}}) = \emptyset$ by Lemma 2.3. It follows from the above arguments that $C(\widehat{k}_{\mathfrak{p}}) = \emptyset$. Therefore, we obtain $\operatorname{supp}(Q) (= \mathcal{S}_{C_0}) \subseteq \mathcal{S}_C$. This completes the proof since we already observed that $\mathcal{S}_C \subseteq \mathcal{S}$ by Proposition 3.4.

Remark 3.6. Notice that

$$k(C_0) = k(x, \sqrt{ax^2 + bx + c}) \cong k(x^2, \sqrt{ax^4 + bx^2 + c})$$

 $\subseteq k(x, \sqrt{ax^4 + bx^2 + c}) = k(C).$

This induces a Brauer group map $\operatorname{Br}(k(C_0)) \to \operatorname{Br}(k(C))$. Moreover, when k is a global field, there exists a map $\operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C_0)) \to \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C))$ for each $\mathfrak{p} \in P(k)$. Hence, there is a commutative diagram

$$Br(k) \xrightarrow{g_0} \prod_{\mathfrak{p} \in P(k)} Br(\widehat{k}_{\mathfrak{p}}(C_0))$$

$$\downarrow \qquad \qquad \downarrow$$

$$Br(k(C)) \xrightarrow{\mathfrak{p} \in P(k)} Br(\widehat{k}_{\mathfrak{p}}(C)).$$

From this, it is clear that $ker(g_0)$ is a subset of ker(g).

Before closing this section, we give specific examples of $\ker(g)$ when C is a quartic curve. Example 3.7(a) below should be compared with the associated conic case in Example 3.3.

Example 3.7. (a) Consider the curve

(12)
$$C: y^2 = -x^4 + 17x^2 - 361.$$

Recall then that D=-1155 and the corresponding quaternion algebra is $Q=(-1,-1155/\mathbb{Q})$ with $\mathrm{supp}(Q)=\{\,3,7,11,\infty\,\}$ as shown in Example 3.3. Since the equation of C has discriminant

$$\Delta = 7705328400 = 2^4 \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 19^2,$$

it follows that $S = \{2, 3, 5, 7, 11, 19, \infty\}$. To determine S_C , observe that the equation in (12) has no solution (mod 2^2) and the leading coefficient -1 of f is not a square 2-adically. This tells us $C(\mathbb{Q}_2) = \emptyset$. On the other hand, the reduction of C in (12) contains nonsingular points (0, 2) (mod 5) and (1, 4) (mod 19), which can be lifted to $C(\mathbb{Q}_5)$ and $C(\mathbb{Q}_{19})$ respectively. Using Proposition 3.5, we conclude that $S_C = \{2, 3, 7, 11, \infty\}$ and therefore

$$\ker(g) = \left\langle [Q_{\{2,\infty\}}], [Q_{\{3,\infty\}}], [Q_{\{7,\infty\}}], [Q_{\{11,\infty\}}] \right\rangle \cong \bigoplus_{i=1}^4 \mathbb{Z}/2\mathbb{Z}.$$

(b) (General case) Consider the curve

(13)
$$C: y^2 = -3x^4 - 4x^2 + x - 4.$$

Since the equation of C has discriminant

$$\Delta = 216333 = 3^2 \cdot 13 \cdot 43^2$$

it follows that $S = \{2, 3, 13, 43, \infty\}$. To determine S_C , observe that the equation in (13) has no solution (mod 3^2) and -3 is not a square 3-adically. This tells us $C(\mathbb{Q}_3) = \emptyset$. On the other hand, it can be shown that the reduction of C in (13) contains nonsingular points (1,0) (mod 2), (0,3) (mod 13), and (3,8) (mod 43), which can be lifted to $C(\mathbb{Q}_2)$, $C(\mathbb{Q}_{13})$ and $C(\mathbb{Q}_{43})$ respectively. Finally, since $-3x^4 - 4x^2 + x - 4 < 0$ for all $x \in \mathbb{R}$ and the leading coefficient of f is negative, we conclude that $S_C = \{3, \infty\}$ and therefore

$$\ker(g) = \langle [Q_{\{3,\infty\}}] \rangle \cong \mathbb{Z}/2\mathbb{Z}.$$

4. Relative Brauer groups of genus one curves

Let $C: y^2 = f(x)$, where f is a quartic polynomial, be a nonsingular projective curve over a field k. In this section, we briefly review recent results on the relative Brauer group Br(k(C)/k). (See [3] and [1] for details.)

- General Quartic Case

Let $C: y^2 = f(x)$, where

(14)
$$f(x) = ax^4 + bx^2 + cx + d$$

is a quartic polynomial with $\mathrm{disc}(f) \neq 0$. Then the Jacobian E of C has the form

(15)
$$E: y^2 = x^3 - 2bx^2 + (b^2 - 4ad)x + ac^2.$$

Note here that (0,0) is a k-rational point on E if and only if c=0 in (15) since $a \neq 0$. This special case will be covered separately in a more detailed setting later.

If E(k) denotes the group of rational points over k, then there exists a surjective homomorphism (cf. [1, Propositions 9 and 11])

$$E(k) \longrightarrow \operatorname{Br}(k(C)/k) \text{ given by}$$

$$O \mapsto 0$$

$$(0,0) \mapsto [(a,b^2 - 4ad/k)]$$

$$(0,s) \mapsto 0 \text{ if } s \neq 0$$

$$(r,s) \mapsto [(a,r/k)] \text{ if } r \neq 0.$$

If $c \neq 0$, notice that (0, s), $s \neq 0$, is a k-rational point if and only if $a \in k^{*2}$. If this happens, the relative Brauer group Br(k(C)/k) is trivial. Hence, we have:

Proposition 4.1. Let $C: y^2 = ax^4 + bx^2 + cx + d$ be a quartic curve over a field k. Then one has

$$Br(k(C)/k) = \{ [(a, r/k)] \mid (r, s) \in E(k) \} \cup \{0\}.$$

In order to provide specific examples with $k = \mathbb{Q}$ when $c \neq 0$, we utilize SAGE (Software for Algebra and Geometry Experimentation; see [7]) as there seems to be no reasonable ways of finding generators of $E(\mathbb{Q})$ by hand. SAGE can compute the ranks of elliptic curves over \mathbb{Q} together with generators of infinite order. This allows us to describe the relative Brauer group $\operatorname{Br}(K/\mathbb{Q})$.

- Special Quartic Case

We now consider the case of (14) in which the coefficient of x becomes zero. That is, let $C: y^2 = f(x)$, where $f(x) = ax^4 + bx^2 + c$. Then the Jacobian E of C has the form

(17)
$$E: y^2 = x^3 - 2bx^2 + Dx,$$

where $D = b^2 - 4ac$. Notice that $D \neq 0$ since Δ in (11) is assumed to be nonzero. Then there exists a group homomorphism (cf. [8, p. 302])

(18)
$$\alpha \colon E(k) \to k^*/k^{*2}$$

defined by

$$\alpha(P) = \left\{ \begin{array}{ll} 1 \pmod{k^{*2}} & \text{if } P = O, \text{ the point at infinity,} \\ D \pmod{k^{*2}} & \text{if } P = (0,0), \\ r \pmod{k^{*2}} & \text{if } P = (r,s) \text{ with } r \neq 0. \end{array} \right.$$

For convenience, if we write \overline{t} for $t \pmod{k^{*2}}$, then Proposition 4.1 above can be rewritten as below:

Corollary 4.2. Let $C: y^2 = ax^4 + bx^2 + c$ be a quartic curve over k. Then one has

(19)
$$\operatorname{Br}(k(C)/k) = \{ [(a, t/k)] \mid \overline{t} \in \operatorname{im}(\alpha) \},$$

where α is the map in (18).

If k is a global field, recall then that E(k) is a finitely generated abelian group by the Mordell-Weil Theorem. Since k^*/k^{*2} is 2-torsion, it follows that $\operatorname{im}(\alpha)$ is finite and so is $\operatorname{Br}(k(C)/k)$. Furthermore, with the isogenous curve

(20)
$$E': y^2 = x^3 + bx^2 + acx,$$

we can also consider the map

$$\alpha' \colon E'(k) \to k^*/k^{*2}$$

analogous to α for E over k. (The map α' , likewise α , is in fact the connecting homomorphism $H^0(k,E) \to H^1(k,\mu_2)$ arising from an exact sequence $0 \to \infty$

 $\mu_2 \to E \to E' \to 0$.) If \mathfrak{r} denotes the rank of E(k), then we utilize a well-known formula (cf. [9, p. 91], or see [2, Lemma 5.1] for a more general formula):

(21)
$$\frac{|\mathrm{im}(\alpha)| \cdot |\mathrm{im}(\alpha')|}{4} = 2^{\mathfrak{r}}$$

to facilitate computation of $\operatorname{im}(\alpha)$ and therefore of $\operatorname{Br}(k(C)/k)$.

5. Obstructions to the Hasse principle for the Brauer groups

Let K = k(C) be a function field of a curve C over a global field k. For the scalar extension map $\theta : \operatorname{Br}(k) \to \operatorname{Br}(K)$, a class $[B] \in \operatorname{Br}(K)$ is said to be a constant class in $\operatorname{Br}(K)$ if $[B] = \theta([A])$ for some $[A] \in \operatorname{Br}(k)$. As in (1), for the map

$$h: \operatorname{Br}(K) \longrightarrow \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)),$$

let $\ker_c(h)$ denote the set of all constant classes in the $\ker(h)$. The nontrivial $\ker_c(h)$ is the obstruction to the Hasse principle for the Brauer groups of function fields of curves. In this section, we determine all the constant classes that are in $\ker(h)$ when the curve C has genus 1 and provide examples.

Proposition 5.1. Let k be a global field and let C: $y^2 = f(x)$ where f is a quartic polynomial over k. Then one has

$$\ker_c(h) = \left\{ [Q \otimes_k K] \middle| \begin{array}{c} Q \text{ is a quaternion algebra} \\ over k \text{ with } \operatorname{supp}(Q) \subseteq \mathcal{S}_C \end{array} \right\},$$

where S_C is the set in (5). Furthermore, for the map g in (4), Br(K/k) is a subgroup of ker(g) and

$$\left|\ker_c(h)\right| = \frac{\left|\ker(g)\right|}{\left|\operatorname{Br}(K/k)\right|}.$$

Proof. There is a commutative diagram with the maps as before

$$\begin{array}{ccc}
\operatorname{Br}(k) & \longrightarrow & \operatorname{Br}(K) \\
\downarrow i & & \downarrow h \\
\prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}) & \stackrel{j}{\longrightarrow} & \prod_{\mathfrak{p} \in P(k)} \operatorname{Br}(\widehat{k}_{\mathfrak{p}}(C)).
\end{array}$$

Since the map g is the composition of the maps i and j, we first notice that $\operatorname{Br}(K/k)$ is a subgroup of $\ker(g)$. Now, let $[B] \in \ker_c(h)$. Then, by definition, there exists $[A] \in \operatorname{Br}(k)$ such that $[A \otimes_k K] = [B]$. From the commutative diagram, it is apparent that $[A] \in \ker(g)$. By Proposition 3.1, [A] is the class of a quaternion algebra over k with $\operatorname{supp}(A) \subseteq \mathcal{S}_C$. Finally, it is obvious that $\ker(g)$ is finite and $|\ker(g)| = |\operatorname{Br}(K/k)| |\ker_c(h)|$.

It follows immediately from Proposition 5.1 that if $|\mathcal{S}_C| \leq 1$, then $\ker(g)$ is trivial and so are $\operatorname{Br}(K/k) = 0$ and $\ker_c(h) = 0$.

Corollary 5.2. If $|S_C| \leq 1$, then $\ker_c(h) = 0$.

Corollary 5.3. If C has a rational point over k, then $\ker_c(h) = 0$.

As pointed out earlier in the introduction, the examples of [5] have no non-trivial constant classes in the kernel since the curve C there has a k-rational point.

Remark 5.4. If $C: y^2 = f(x)$ is an elliptic curve (so $\deg(f) = 3$), then C has a nonsingular rational point at infinity. Moreover, if f(x) has odd degree ≥ 5 , then the curve C contains one nonsingular rational point at infinity after realizing C as a projective curve covered by two affine pieces $y^2 = f(x)$ and $v^2 = u^{2g+2}f(\frac{1}{u})$ where g is the genus of the curve C. Accordingly, if $\deg(f)$ is odd, then C always contains a nonsingular rational point over k and therefore $\ker_C(h)$ is trivial by Corollary 5.3.

We finally provide explicit examples of $\ker_c(h)$ when $k = \mathbb{Q}$. The examples below are immediate consequences of Examples 3.8 together with Proposition 4.1, Corollary 4.2, and Proposition 5.1. Although it is possible to derive by a direct calculation, we instead use SAGE to speed up our computations.

Example 5.5. (a) Let

$$K = \mathbb{Q}(C) = \mathbb{Q}(x, \sqrt{-x^4 + 17x^2 - 361}).$$

Then the corresponding quaternion algebra is $Q = (-1, -1155/\mathbb{Q})$ with $\mathrm{supp}(Q) = \{3, 7, 11, \infty\}$. It can be checked that the Jacobian E of C has form

$$E: y^2 = x^3 - 2 \cdot 17x^2 - 3 \cdot 5 \cdot 7 \cdot 11x$$

with rational points (0,0), (-21,0), (55,0). Applying (20), we obtain the isogenous curve of the form $E': y^2 = x^3 + 17x^2 + 361x$, which obviously contains a rational point (0,0). This is sufficient to determine $\operatorname{Br}(K/\mathbb{Q})$. Thus, we have

$$\overline{-3\cdot5\cdot7\cdot11}, \overline{-3\cdot7}, \overline{5\cdot11} \in \operatorname{im}(\alpha) \text{ and } \overline{361} (= \overline{19^2}) \in \operatorname{im}(\alpha').$$

Moreover, computer calculation shows that $E(\mathbb{Q})$ has rank 0. Applying formula (21), we have $\operatorname{im}(\alpha) = \langle \overline{-3\cdot7}, \overline{5\cdot11} \rangle$. Hence, it follows from (19) that

$$\operatorname{Br}(K/\mathbb{Q}) = \left\langle [Q_{\{2,3,7,\infty\}}], [Q_{\{2,11\}}] \right\rangle \cong \bigoplus_{i=1}^{2} \mathbb{Z}/2\mathbb{Z},$$

since supp $(-1, -21/\mathbb{Q}) = \{2, 3, 7, \infty\}$ and supp $(-1, 55/\mathbb{Q}) = \{2, 11\}$. By Example 3.7(a), we see

$$\ker(g) = \langle [Q_{\{2,\infty\}}], [Q_{\{3,\infty\}}], [Q_{\{7,\infty\}}], [Q_{\{11,\infty\}}] \rangle \cong \bigoplus_{i=1}^{4} \mathbb{Z}/2\mathbb{Z},$$

and therefore by Proposition 5.1, we conclude that

$$\ker_c(h) = \left\langle [Q_{\{2,\infty\}} \otimes_{\mathbb{Q}} K], [Q_{\{3,\infty\}} \otimes_{\mathbb{Q}} K] \right\rangle \cong \bigoplus_{i=1}^2 \mathbb{Z}/2\mathbb{Z}.$$

(b) (General case) Let

$$K = \mathbb{Q}(C) = \mathbb{Q}(x, \sqrt{-3x^4 - 4x^2 + x - 4}).$$

Then the Jacobian of C has the form

$$E: y^2 = x^3 + 8x^2 - 32x - 3.$$

Using SAGE, we see that the curve E has rank 1 with a generator of infinite order (-1,6). To find rational points of finite order, it can be checked that $\widetilde{E}(\mathbb{F}_5) = 6$ and $\widetilde{E}(\mathbb{F}_{17}) = 20$. This tells us that there exists at most one rational point of finite order (with order 2) other than the point at infinity. Since the y-coordinate of a rational point of order 2 is 0, we see that (3,0) is the rational point of order 2. So we have $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Now, observe that $(-3,3/\mathbb{Q})$ is split but $(-3,-1/\mathbb{Q})$ is nonsplit with $\mathrm{supp}(-3,-1/\mathbb{Q}) = \{3,\infty\}$. Hence, we have

$$\operatorname{Br}(K/\mathbb{Q}) = \langle [Q_{\{3,\infty\}}] \rangle \cong \mathbb{Z}/2\mathbb{Z}.$$

By Example 3.7(b), we see

$$\ker(g) = \langle [Q_{\{3,\infty\}}] \rangle \cong \mathbb{Z}/2\mathbb{Z}$$

and therefore by Proposition 5.1

$$\ker_c(h) = 0.$$

Acknowledgment. The author would like to thank Prof. A. R. Wadsworth for reviewing and contributing to this paper.

References

- D. Haile, and I. Han, On an algebra determined by a quartic curve of genus one, J. Algebra 313 (2007), no. 2, 811–823
- [2] D. Haile, I. Han, and A. R. Wadsworth, Curves C that are cyclic twists of $Y^3 = X^3 + c$ and the relative Brauer groups $\operatorname{Br}(k(\mathcal{C})/k)$, Trans. Amer. Math. Soc. **364** (2012), no. 9, 4875–4908.
- [3] I. Han, Relative Brauer Groups of Function Fields of Curves of Genus One, Comm. Algebra 31 (2003), no. 9, 4301–4328.
- [4] P. Gille and T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge University Press, Cambridge, 2006.
- [5] R. Parimala and R. Sujatha, Hasse principle for Witt groups of function fields with special reference to elliptic curves, Duke Math. J. 85 (1996), no. 3, 555–582.
- [6] P. Roquette, Splitting of algebras by function fields of one variable, Nagoya Math. J. 27 (1966), 625-642.
- [7] SAGE Mathematical Software, Version 2.6, http://www.sagemath.org.
- [8] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
- [9] J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, New York, 1992.

Ilseop Han

DEPARTMENT OF MATHEMATICS

CALIFORNIA STATE UNIVERSITY, SAN BERNARDINO

San Bernardino, CA 92407, USA

 $E ext{-}mail\ address: ihan@csusb.edu}$