Browse > Article
http://dx.doi.org/10.12989/aas.2022.9.5.433

Lunar ascent and orbit injection via locally-flat near-optimal guidance and nonlinear reduced-attitude control  

Mauro, Pontani (Department of Astronautical, Electrical, and Energy Engineering, Sapienza Universita di Roma)
Publication Information
Advances in aircraft and spacecraft science / v.9, no.5, 2022 , pp. 433-447 More about this Journal
Abstract
This work deals with an explicit guidance and control architecture for autonomous lunar ascent and orbit injection, i.e., the locally-flat near-optimal guidance, accompanied by nonlinear reduced-attitude control. This is a new explicit guidance scheme, based on the local projection of the position and velocity variables, in conjunction with the real-time solution of the associated minimum-time problem. A recently-introduced quaternion-based reduced-attitude control algorithm, which enjoys quasi-global stability properties, is employed to drive the longitudinal axis of the ascent vehicle toward the desired direction. Actuation, based on thrust vectoring, is modeled as well. Extensive Monte Carlo simulations prove the effectiveness of the guidance, control, and actuation architecture proposed in this study for precise lunar orbit insertion, in the presence of nonnominal flight conditions.
Keywords
explicit guidance; lunar ascent; orbit injection; reduced-attitude control;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hull, D.G. (2003), Optimal Control Theory for Applications, Springer, New York.
2 Hull, D.G. and Nowak, M.J. (1993), "Neighboring suboptimal control for vehicle guidance", AAS/AIAA Space Flight Conference, Pasadena, CA.
3 Lu, P. (1991), "Optimal feedback control laws using nonlinear programming", J. Optim. Theory Appl., 71(3), 599-611. https://doi.org/10.1007/BF00941406.   DOI
4 Napoli, I. and Pontani, M. (2021), "A new guidance and control architecture for orbit docking using feedback linearization", Proceedings of the 72nd International Astronautical Congress, Dubai, UAE.
5 Perkins, F.M (1966), "Explicit tangent-steering guidance for multi-stage boosters", Astronaut. Acta, 12, 212-223.
6 Pong C.M. and Miller D.W. (2015), "Reduced-attitude boresight guidance and control on spacecraft for pointing, tracking, and searching", J. Guid. Control Dyn., 38(6), 1027-1035. https://doi.org/10.2514/1.G000264.   DOI
7 Pontani, M. and Celani, F. (2019), "Neighboring optimal guidance and constrained attitude control applied to three-dimensional lunar ascent and orbit injection", Acta Astronaut., 156, 78-91. https://doi.org/10.1016/j.actaastro.2018.08.039.   DOI
8 Pontani, M., Cecchetti, G. and Teofilatto, P. (2015), "Variable-time-domain neighboring optimal guidance applied to space trajectories", Acta Astronaut., 115, 102-120. https://doi.org/10.1016/j.actaastro.2015.05.020.   DOI
9 Pontani, M., Celani, F. and Carletta, S. (2022), "Lunar descent and landing via two-phase explicit guidance and pulse-modulated reduced attitude control", AIAA Scitech 2022, San Diego, CA & Virtual.
10 Seywald, H. and Cliff, E.M. (1994), "Neighboring optimal control based feedback law for the advanced launch system", J. Guid. Control Dyn., 17(3), 1154-1162. https://doi.org/10.2514/3.21327.   DOI
11 Shao, X., Hu, Q., Zhu, Z.H. and Zhang, Y. (2022), "Fault-tolerant reduced-attitude control for spacecraft constrained boresight reorientation", J. Guid. Control Dyn., 1-15. https://doi.org/10.2514/1.G006651.   DOI
12 Smith, I.E. (1966), "General formulation of the iterative guidance mode", NASA TM X-53414.
13 Teofilatto, P. and De Pasquale, E. (1999), "A non-linear adaptive guidance algorithm for last-stage launcher control", Proc. Inst. Mech. Eng., Part G, J. Aerosp. Eng., 213, 45-55. https://doi.org/10.1243/0954410991532837.   DOI
14 Wang, H., Zhang, H., Wang, Z. and Wang, Z. (2022). "Downrange estimation based on powered explicit guidance for pinpoint lunar landing", J. Aerosp. Eng., 35(2), 04021129. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001383.   DOI
15 Weiss, H. (1993), "Quaternion-based rate/attitude tracking system with application to gimbal attitude control", J. Guid. Control Dyn., 16(4), 609-616. https://doi.org/10.2514/3.21057.   DOI
16 Yan, H., Fahroo, F. and Ross, I.M. (2002), "Real-time computation of neighboring optimal control laws", AIAA Guidance, Navigation and Control Conference and Exhibit, Monterey, CA. https://doi.org/10.2514/6.2002-4657.   DOI
17 Yang, Y. (2014), "Attitude control in spacecraft orbit-raising using a reduced quaternion model", Adv. Aircraft Spacecraft Sci., 1(4), 427-441. https://doi.org/10.12989/aas.2014.1.4.427.     DOI
18 Calise, A.J., Melamed, N. and Lee, S. (1998), "Design and evaluation of a three-dimensional optimal ascent guidance algorithm", J. Guid. Control Dyn., 21(6), 867-875. https://doi.org/10.2514/2.4350.   DOI
19 Charalambous, C.B., Naidu, S.N. and Hibey, J.L. (1995), "Neighboring optimal trajectories for aeroassisted orbital transfer under uncertainties", J. Guid. Control Dynam. 18(3), 478-485. https://doi.org/10.2514/3.21412.   DOI
20 Chaturvedi, N.A., Sanyal, A.K. and McClamroch, N.H. (2011), "Rigid-body attitude control", IEEE Control Syst. Mag., 31(3), 30-51. httpds://doi.org/10.1109/MCS.2011.940459.   DOI
21 Greensite, A.L. (1970), Analysis and Design of Space Vehicle Flight Control Systems. Control Theory: Volume II, Spartan Books, New York.
22 Hu, Q., Chi, B. and Akella, M.R. (2019), "Reduced attitude control for boresight alignment with dynamic pointing constraints", IEEE/ASME Trans. Mechatr., 24(6), 2942-2952. https://doi.org/10.1109/TMECH.2019.2944431.   DOI
23 Hughes, P.C. (2004), Spacecraft Attitude Dynamics, Dover Publications, Inc., Mineola.