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IDEAL RIGHT-ANGLED PENTAGONS IN

HYPERBOLIC 4-SPACE

Youngju Kim† and Ser Peow Tan

Abstract. An ideal right-angled pentagon in hyperbolic 4-space H
4 is a

sequence of oriented geodesics (L1, . . . , L5) such that Li intersects Li+1,
i = 1, . . . , 4, perpendicularly in H

4 and the initial point of L1 coincides
with the endpoint of L5 in the boundary at infinity ∂H4. We study
the geometry of such pentagons and the various possible augmentations
and prove identities for the associated quaternion half side lengths as
well as other geometrically defined invariants of the configurations. As
applications we look at two-generator groups 〈A,B〉 of isometries acting
on hyperbolic 4-space such that A is parabolic, while B and AB are
loxodromic.

1. Introduction

The main purpose of this paper is to investigate configurations of ideal right-
angled pentagons and their applications to two-generator groups of isometries
acting on hyperbolic 4-space. We define an ideal right-angled pentagon in hy-
perbolic 4-space H

4 to be a sequence of oriented geodesics (L1, . . . , L5) such
that Li intersects Li+1, i = 1, . . . , 4, perpendicularly in H

4 and the initial point
of L1 coincides with the endpoint of L5 in the boundary at infinity ∂H4, see
Figure 1. It can be viewed as a degeneration of a right-angled hexagon, namely,
when one of the sides has (real) length approaching zero, while the adjacent
sides have (real) lengths approaching infinity.

The geometry of right-angled hexagons is one of the fundamental elements
in the study of hyperbolic geometry. For example, in dimension 2, it is used
to study the discreteness of two-generator groups of isometries [4], the collar
lemma [5, 12] and the Fenchel-Nielsen coordinates of Teichmüller space [10].
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We can also see the applications and generalizations of the geometry of right-
angled hexagons in hyperbolic 3-space [19, 20] and complex hyperbolic space
[11,15,17]. An ideal right-angled pentagon naturally appears in the process of
deforming a two-generator group or a geodesic on a surface.

As a generalization of such configurations in hyperbolic 2 and 3-space, right-
angled hexagons in hyperbolic 4-space were studied by Tan, Wong and Zhang
in [21]. In particular, they showed how to augment the alternate sides of the
hexagon with geodesic planes which were perpendicular to the incident sides,
and in this way, defined associated quaternion half lengths for these augmented
hexagons. They then proved generalizations of the Delambre-Gauss formulas
for these half lengths. In this paper, we augment an ideal right-angled pentagon
(L1, . . . , L5) in two different ways and prove various formulas of the quaternion
half lengths associated to the augmented ideal right-angled pentagons.
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Figure 1. An ideal right-angled pentagon

Throughout the paper, we assume that all maps and isometries are orient-
ation-preserving unless otherwise noted. We shall adopt the convention that all
lines and all planes in hyperbolic 4-space are oriented geodesic lines and oriented
geodesic 2-dimensional planes and they are denoted by L and Π respectively.

Firstly, we augment the pentagon (L1, . . . , L5) with two planes Π2 ⊃ L2 and
Π4 ⊃ L4 such that Π2 is perpendicular to L1 and L3, and Π4 is perpendicular
to L3 and L5 (see Figure 3). In this way, we can define complex half lengths
δ2 and δ4 for L2 and L4 respectively, and a quaternion half length δ3 for L3.
Lemma 3.1 gives the relation between δ2, δ3 and δ4.
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The lines L1 and L5 have infinite length, but we can still extract useful
geometric invariants by introducing an oriented horocycle C0, intersecting with
and perpendicular to L1 and L5, and with orientation from L5 to L1. We can
make C0 unique by requiring it to have Euclidean length 1 between L1 and
L5 (see Figure 2). We can also augment C0 with an oriented 2-dimensional
horosphere S0 ⊃ C0 which is perpendicular to both L1 and L5. The choice for
S0 is not canonical, but there is a one-dimensional family of choices.

Let p01 (resp. p50) be the point of intersection between C0 and L1 (resp. C0

and L5). For the chosen S0, we take a geodesic L0 (resp. L6) which is tangent
to C0 at p01 (resp. p50) and a plane Π0 (resp. Π6) which is tangent to S0 and
contains L0 (resp. L6). In this way, we can choose canonically augmented pairs
(L0,Π0) and (L6,Π6) although the choice of S0 is not canonical so that we may
define quaternion half lengths δ1 and δ5 for the sides L1 and L5 (See Figure 4).

This is similar to the lambda length construction of Penner in the two dimen-
sional case. Theorem 3.2 gives the formulas of the half lengths δi, i = 1, . . . , 5.
We will see in Remark 3.3 that Equation (3) gives us the same pentagon formula
(43) in hyperbolic 2-space if the initial ideal right-angled pentagon (L1, . . . , L5)
is embedded in a 2-dimensional geodesic plane of H4. Thus, this is a direct gen-
eralization into H

4 of the pentagon formula in hyperbolic 2-space.

Theorem 3.2. For an augmented ideal right-angled pentagon (L1,Π2, L3,Π4,

L5), the horocyle/horosphere pair C0 ⊂ S0 assigned to the ideal vertex, and

canonically chosen pairs (L0,Π0) and (L6,Π6), let δi, i = 1, . . . , 5 be the asso-

ciated quaternion or complex half lengths of the augmented pentagon. Then we

have the following formulas:

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 = ±e2;(1)

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 exp δ
∗
5(2)

= cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4;

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

(3)

×

(

cosh δ∗4 exp δ
∗
3 sinh δ

∗
2 + sinh δ∗4 exp(−δ3) cosh δ

∗
2

)

= −1;

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4 = 0.(4)

On the other hand, we may also augment the sides L1, L3 and L5 by three
planes Π1 ⊃ L1, Π3 ⊃ L3 and Π5 ⊃ L5 (see Figure 7). The plane Π3 is chosen
to be perpendicular to L2 and L4, and is generically unique. A priori, Π1 and
Π5 are only required to be perpendicular to L2 and L4 respectively, so gener-
ically, there is a one-dimensional family of choices for Π1 and Π5 respectively.
This augmentation now gives quaternion half lengths δ2 and δ4 for L2 and L4
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respectively and a complex half length δ3 for L3. Lemma 3.4 is about the
relation between these lengths.

For the purpose of applications to two-generator groups of isometries acting
on hyperbolic 4-space, we want to consider all possible choices for Π1 and Π5.
On the other hand, from a geometric point of view, there are more canonical
choices which would pin down Π1 and Π5 precisely. We may use the horocycle
C0 defined in the earlier augmentation to do this. Namely, we now require
Π1 and Π5 to be perpendicular to C0 as well as L2 and L4 respectively (see
Figure 8). Generically, this extra condition determines Π1 and Π5 and we
now have complex half lengths δ1 and δ5 for L1 and L5 respectively. We also
have an angle invariant θ0 associated to C0 as generically, the isometry leaving
C0 invariant and mapping the pair (L5,Π5) to (L1,Π1) is a composition of a
parabolic isometry with the half rotation angle θ0 and an involution. Here, the
involution is needed only because of the orientation of L1 and L5. Theorem
3.5 gives the formulas of the half lengths δi, i = 1, . . . , 5 and θ0.

Theorem 3.5. Let (Π1, L2,Π3, L4,Π5) be an augmented ideal right-angled

pentagon in H
4 by the horocycle C0 assigned to the ideal vertex and planes

Π1 ⊃ L1, Π3 ⊃ L3 and Π5 ⊃ L5 as above. Let δi, i = 1, . . . , 5 be the associated

quaternion half lengths of the augmented pentagon and θ0 the half rotation angle

associated to C0. Then we have the following formulas:

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 = ±αe2;(5)

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 exp δ
∗
5(6)

= cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4;

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

(7)

×

(

cosh δ∗4 exp δ
∗
3 sinh δ

∗
2 + sinh δ∗4 exp(−δ3) cosh δ

∗
2

)

= −1;

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4 = 0,(8)

where α = cos θ0 + sin θ0e1e2,

If the half rotation angle θ0 is 0, Equation (5) is the same as Equation
(1). We also note that Equations (6), (7) and (8) are the same as (2), (3)
and (4), respectively. This means that the formulas of side lengths of an ideal
right-angled pentagon we induced do not depend on how we augment the given
pentagon. Therefore, we call Equation (3) (or Equation (7)) a generalized

pentagon formula in hyperbolic 4-space.
As mentioned earlier, for the purposes of applications to linked two-generator

groups of isometries acting on hyperbolic 4-space, we want generic planes
Π1 ⊃ L1 and Π5 ⊃ L5. We can see this as follows. Let Isom(Hn) be the
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group of orientation-preserving isometries acting on hyperbolic n-space. Let
〈A,B,C | ABC = I〉 be a linked two-generator subgroup of Isom(H4) such
that A is parabolic and B,C are loxodromic. By the definition of linked, this
means that A = PQ, B = QR and C = RP where P,Q,R are half turns around
planes, say, Π5, Π1 and Π3 respectively. We note that for a plane Π ⊂ H

4, a half
turn around Π is a π-rotation around Π in this paper. Since A = PQ is para-
bolic, Π5∩Π1 is a point p∞ ∈ ∂H4 (where Π denotes Π∪∂Π ⊂ H

4∪∂H4). Since
B and C are loxodromic, Π1 ∩ Π3 = Π3 ∩ Π5 = ∅. Denote by L2 (respectively
L4) the unique line perpendicular to Π1 and Π3 (respectively Π3 and Π5) and
denote by pij the point of intersection of Li with Πj , |j − i| = 1. By construc-
tion, the line L3 passing through p23 and p34 lies in Π3 and is perpendicular to
L2 and L4. The line L1 from p∞ through p12 lies in Π1 and is perpendicular
to L2, similarly, the line L5 through p45 to p∞ lies in Π5 and is perpendicu-
lar to L4. We hence recover the ideal right-angled pentagon (L1, . . . , L5) and
the second augmentation by Π1,Π3,Π5. Conversely, half turns around Π1,
Π3 and Π5 respectively coming from the augmented ideal right-angled penta-
gon (Π1, L2,Π3, L4,Π5) generates a linked two-generator subgroup of Isom(H4)
with a parabolic isometry A. Note that while Π3 is generically well defined, Π1

and Π5 are not. Lemma 4.1 gives us the relations for this general configuration.
If the associated ideal right-angled pentagon (L1, . . . , L5) is embedded in a

2-dimensional plane of H4, the group generated by the three half turns around
Π1, Π3 and Π5 respectively is conjugate to a Fuchsian group by an isometry of
H

4. A deformation of the group in Isom(H4) is said to be type-preserving if A
remains parabolic and B,C loxodromic. We then have the following result.

Theorem 4.3. Let Γ = 〈A,B,C | ABC = 1〉 be a discrete two-generator sub-

group of Isom(H2) where A is parabolic and B,C are loxodromic. Then there

exists a 6-dimensional parameter space P containing the identity representation

in the deformation space D(Γ) which is the set of discrete, faithful and type-

preserving representations of Γ into Isom(H4) up to the conjugation action of

Isom(H4).

2. Preliminaries and notations

In this section we will give definitions and basic facts of hyperbolic 4-space
H

4, Vahlen matrices and geometric configurations. For the basics on hyperbolic
geometry, the reader is referred to [7, 8, 16, 18]; for Vahlen matrices, to [1–3, 9,
13, 14, 21–23]. We will follow the notation and terminology of [21] closely as
many of the basic technical details for our results are worked out there.

2.1. Hyperbolic 4-space and Vahlen matrices

We first describe the setting for hyperbolic 4-space H
4 and its boundary at

infinity ∂H4. An isometry of hyperbolic space can be represented as a 2 × 2
matrix whose entries are the Clifford numbers satisfying some conditions. The
action of the 2×2 matrix is the usual action of Möbius transformations. This is
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a natural generalization of the classical settings, PSL(2,R) and PSL(2,C), via
identifying the real numbers R with the Clifford algebra A0 and the complex
numbers C with the Clifford algebra A1.

The Clifford algebra An is the associative algebra over the real numbers
generated by the elements e1, e2, . . . , en subject to the relations e2i = −1 for all
i = 1, . . . , n and eiej = −eiej for i 6= j. The Clifford algebra A2 is isomorphic
to the quaternions as an algebra, where we identify e1, e2 and e1e2 with i, j
and k respectively. This identification however does not take into account the
grading of A2.

As a graded real algebra with e1, . . . , en all having degree 1, An decomposes

as the direct sum of its degree p vector subspaces A
(p)
n , p = 0, 1, . . . , n, with

A
(0)
n = R, and, every element a ∈ An decomposes as a = a(0)+a(1)+ · · ·+a(n),

where, for p = 0, 1, . . . , n, a(p) ∈ A
(p)
n is the degree p part of a. We identify the

Euclidean space R
n+1 with A

(0)
n + A

(1)
n , denoted by A

(0,1)
n , which is a vector

space with basis {1, e1, . . . , en}.
We set the upper half-space model of the hyperbolic 4-space as

H
4 = {x0 + x1e1 + x2e2 + x3e3 | x0, x1, x2, x3 ∈ R, x3 > 0} ⊂ A

(0,1)
3 .

The boundary at infinity is

∂H4 = R̂3 = A
(0,1)
2 ∪ {∞} = {x0 + x1e1 + x2e2 | x0, x1, x2 ∈ R} ∪ {∞}.

There are three involutions in the Clifford algebra An:

(1) The main involution a 7→ a′ is obtained by replacing each ei with −ei.
Thus, (ab)′ = a′b′ and (a+ b)′ = a′ + b′.

(2) The reversion a 7→ a∗ is obtained by replacing each ev1ev2 · · · evp with
evpevp−1 · · · ev1 . Therefore, (ab)

∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗.
(3) The conjugation a 7→ a is the composition of the main involution and

the reversion, i.e., a = (a′)∗ = (a∗)′.

Every non-zero x ∈ A
(0,1)
n is invertible with its multiplicative inverse x−1 =

x
|x|2 where |x| is the Euclidean norm of A

(0,1)
n ≃ R

n+1. A Clifford group Γn is

a multiplicative group generated by all non-zero elements of A
(0,1)
n . Note that

Γn = An \ {0} is true for only n = 0, 1, 2.

Definition 2.1. A matrix A =
(

a b
c d

)

is said to be a Vahlen matrix if the
following conditions are satisfied:

(1) a, b, c, d ∈ Γn ∪ {0}.
(2) ad∗ − bc∗ = 1.
(3) ab∗, cd∗, c∗a, d∗b ∈ R

n+1.

A Vahlen matrix A has a multiplicative inverse A−1 =
(

d∗ −b∗

−c∗ a∗

)

which is

also a Vahlen matrix. Hence, all Vahlen matrices form a group, denoted by
SL(Γn).
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A Vahlen matrix A =
(

a b
c d

)

∈ SL(Γn) induces a Möbius transformation

of R̂n+1 by Ax = (ax + b)(cx + d)−1 for any vector x = x0 + x1e1 + · · · +
xnen ∈ R

n+1, and ∞ 7→ ∞ if c = 0 and ∞ 7→ ac−1, −c−1d 7→ ∞ if c 6= 0.
Moreover, any orientation-preserving Möbius transformation of R̂n+1 can be
presented as a Vahlen matrix. Replacing x with x + xn+1en+1 ∈ R

n+2, we

can automatically extend the action of A to a Möbius transformation of R̂n+2:
x+xn+1en+1 7→ (a(x+xn+1en+1)+ b)(c(x+xn+1en+1)+d)

−1. The coefficient
of the last generator en+1 of the image is xn+1

|cx+d|2 . This shows that the extension

keeps hyperbolic space H
n+2 invariant. In fact, the group of Vahlen matrices

modulo ±I is isomorphic to the group of orientation-preserving isometries of
H
n+2, denoted by Isom(Hn+2).
From now on, we will only consider the case where n = 2 which corresponds

to hyperbolic 4-space H
4.

Theorem 2.2 ([9]). (1) An isometry
(

λ µ

0 λ∗−1

)

∈ SL(Γ2) is loxodromic if

and only if |λ| 6= 1.

(2) An isometry
(

λ µ
0 λ′

)

∈ SL(Γ2) with |λ| = 1 is











strictly parabolic if λ ∈ R,

screw parabolic if µ /∈ R
3,

elliptic otherwise.

In particular, a parabolic isometry Pθ which fixes ∞, rotates around 〈1〉-axis
by 2θ and sends 0 to 1 is of the form Pθ = ( α α

0 α ) where α = cos θ+ sin θe1e2 ∈
A2, 0 ≤ θ < π. We call θ the half rotation angle of Pθ. Any parabolic isometry
can be conjugate to Pθ by an isometry.

For a loxodromic isometry f ∈ Isom(H4), we denote the axis of f by Axis(f),
which is the geodesic line connecting the two fixed points.

2.2. The quaternion exponential and hyperbolic functions

Following [21], we define the quaternion exponential function exp : A2 → A2

by

expx =

∞
∑

k=0

xk

k!
, x ∈ A2.

In general,

expx exp(−x) = exp(−x) expx = 1,(9)

exp(x∗) = (expx)∗,(10)

expx exp y 6= exp y expx 6= exp(x + y).(11)

The quaternion hyperbolic functions cosh, sinh : A2 → A2 are defined by

coshx =
expx+ exp(−x∗)

2
,(12)
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sinhx =
expx− exp(−x∗)

2
.(13)

We note that

cosh(−x) = coshx∗,(14)

sinh(−x) = − sinhx∗,(15)

coshx+ sinhx = expx,(16)

coshx− sinhx = exp(−x∗),(17)

coshx coshx∗ − sinhx sinh x∗ = 1.(18)

Since the quaternions do not commute in general, we also note that sinhx 6=
∑∞

k=0
x2k+1

(2k+1)! and coshx 6=
∑∞

k=0
x2k

(2k)! .

2.3. Geometric configurations

Here we consider geometric configurations of lines and planes that we will
investigate in what follows.

For distinct points u, v ∈ ∂H4, let L[u,v] denote the oriented geodesic from u

to v. If u, v, x, y are four distinct points in ∂H4 such that L1 := L[u,v] and L2 :=

L[x,y] intersect in H
4, denote the oriented plane spanned by L1 and L2 with

orientation determined by the oriented frame (L1, L2) by L1∨L2 or Π[u,v]∨[x,y].
In particular, L1 ∨ L2 and L2 ∨ L1 are the same planes but with opposite
orientations. A point-line-plane flag configuration (a PLP-configuration for
short) is a triple (p, L,Π) where p ∈ L ⊂ Π ⊂ H

4.

Definition 2.3. An ideal right-angled pentagon in H
4 is a sequence of lines

(L1, . . . , L5) such that Li intersects Li+1, i = 1, . . . , 4, perpendicularly in H
4

and the initial point of L1 coincides with the endpoint of L5 in ∂H4 (see Figure
1).

To the ideal vertex of an ideal right-angled pentagon (L1, . . . , L5) we assign
the horocycle/horosphere pair (C0, S0) as follows. Let ui and vi (i = 1, . . . , 5)
be the starting and ending points of Li in ∂H

4, so Li = L[ui,vi] and u1 = v5.

Denote by pij the point of intersection in H
4 between Li and Li+1, 1 ≤ i ≤ 4.

Let C0 be the horocycle centered at u1 = v5 of height 1 which intersects
with L1 and L5 respectively. We define p01 (respectively p50) to be the point
of intersection between C0 and L1 (respectively L5 and C0). Let S0 be any
horosphere centred at u1 = v5 containing C0. If we normalize (L1, . . . , L5) so
that L1 = L[∞,0] and L5 = L[1,∞] (i.e., u1 = v5 = ∞, v1 = 0 and u5 = 1), then

C0 = {−x+ e3 | x ∈ R},

p01 = e3, p50 = 1 + e3,

S0 = {x+ y(ae1 + be2) + e3 | x, y ∈ R},

(19)

where a, b are fixed real constants. In particular, we often normalize them
further and take a = 1 and b = 0 to define S0 (see Figure 2).
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The horocycle/horosphere pair (C0, S0) assigned to the ideal vertex of (L1,
. . . , L5) determines PLP-configurations at p01 and p50 as follows: The PLP-
configuration at p01 is (p01, L,Π) where L is tangent to C0 at p01 and Π is
tangent to S0 at p01 and similarly for p50. Again if we normalize as before, and
choose a = 1 and b = 0 for S0, then the PLP-configurations at p01 and p50 are

(20)
(

e3, L[1,−1],Π[1,−1]∨[−e1,e1]

)

and
(

1 + e3, L[2,0],Π[2,0]∨[1−e1,1+e1]

)

respectively (see Figure 5). We will measure quaternion half lengths for the
infinite lines L1 and L5 using these PLP-configurations later.

PSfrag replacements

0 1

e3
C0 ⊆ S0

L1 L5

Figure 2. The horocycle/horosphere pair (C0, S0) assigned
to the ideal vertex

2.4. Half side lengths of ideal right-angled pentagons

For a pair of lines L1 and L2 which share a common orthogonal line L in
hyperbolic space, we may define a distance from L1 to L2 along L as a trans-
lation length of a loxodromic isometry which keeps L invariant and maps L1

to L2. Since we consider oriented lines, such a loxodromic isometry might not
exist in the isometries of hyperbolic 2-space. For example, let L1 and L2 be
L[−1,1] and L[4,−4] respectively. Then the isometry which maps L1 to L2 and
keeps the common orthogonal geodesic invariant cannot be a loxodromic isom-

etry, but it is an elliptic isometry
(

0 −2
1
2 0

)

∈ PSL(2,R). However, in contrast

to hyperbolic 2-space, a loxodromic isometry A =
(

2e1 0
0 − 1

2 e1

)

∈ SL(Γ2) maps

L1 to L2 and keeps the common orthogonal line L[0,∞] invariant in hyperbolic
4-space. Hence, we may define a quaternion distance from L1 to L2 along L
as a translation length of A. Yet, such an isometry might not be unique. In

fact, a loxodromic isometry B =
(

2e2 0
0 − 1

2 e2

)

∈ SL(Γ2) also maps L1 to L2 and

keeps L[0,∞] invariant. The quaternion translation length of B is different from
A. It is because a quaternion translation length reflects the rotational action
of a loxodromic isometry. Note that A rotates around the plane 〈1, e2〉 and



1140 Y. KIM AND S. P. TAN

B around 〈1, e1〉. Thus, we need to use flags to define a quaternion distance
between lines.

We define a flag F = (L,Π) to be an ordered pair of a line L and a plane
Π such that L is contained in Π. In particular, we define the horizontal flag

Fh = (Lh,Πh) and the vertical flag Fv = (Lv,Πv) where

Lh = L[−1,1],

Lv = L[0,∞],

Πh = Π[−1,1]∨[−e1,e1],

Πv = Π[−e2,e2]∨[0,∞].

(21)

The group of isometries Isom(H4) acts transitively on the set of all flags
in H

4. That is to say, for a given flag F = (L,Π) there exists an isometry
which sends L to Lh and Π to Πh. A line L′ is said to be orthogonal to a flag
F = (L,Π) if the line L′ intersects with L orthogonally and is perpendicular
to Π.

Let L1 and L2 be a pair of lines which share a common orthogonal line L in
H

4. For a pair of flags F1 = (L1,Π1) and F2 = (L2,Π2) which are orthogonal
to L, we define a quaternion distance from F1 to F2 along L by a translation
length of a loxodromic isometry which maps F1 to F2 and keeps L invariant.
For a flag F = (L,Π) which is orthogonal to L1 and L2, we define an e2-complex

distance from L1 to L2 along F by a translation length of a loxodromic isometry
which maps L1 to L2 and keeps F invariant. We refer the precise definitions
to [21] and provide here two propositions which we use in what follows.

Proposition 5.12 ([21]). Suppose F1 = (L1,Π1) and F2 = (L2,Π2) are two

flags both orthogonal to a line L in H
4. Let τ ∈ Isom(H4) be such that τ(L) = L

and τ(F1) = F2, and ι ∈ Isom(H4) be such that ι(L) = Lv and ι(F1) = Fh.

Then the isometry ιτι−1 has Vahlen matrices ±
(

exp δ 0
0 exp(−δ∗)

)

where δ =

dL(F1, F2) ∈ A2 is the quaternion half distance from F1 to F2 along L.

Proposition 5.17 ([21]). Suppose L1 and L2 are two lines both orthogonal

to a flag F = (L,Π) in H
4. Let τ ∈ Isom(H4) be such that τ(F ) = F and

τ(L1) = L2, and ι ∈ Isom(H4) be such that ι(F ) = Fh and ι(L1) = Lv. Then

the isometry ιτι−1 has Vahlen matrices ±
(

cosh δ sinh δ
sinh δ cosh δ

)

where δ = dF (L1, L2) ∈
R+ Re2 is the e2-complex half distance from L1 to L2 along F .

We will close this section with a couple of remarks on isometries we use in
the rest of the paper.

Let i = e1+e2
2

(

1 1
1 −1

)

∈ SL(Γ2) be the isometry which maps the PLP-
configuration (e3, Lh, Fh) to (e3, Lv, Fv). Note that i is an involution, i.e.,
i2 = id.

(22) i : L[−1,1] ↔ L[0,∞], L[−e2,e2] ↔ L[−e1,e1].
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For a plane Π ⊂ H
4, we call a π-rotation around Π a half turn around Π.

In particular, let Iv (respectively Ih) be the half turn around Πv (respectively
Πh):

(23) Iv =

(

e1 0
0 −e1

)

, Ih = iIvi
−1 =

(

0 e2
e2 0

)

.

3. Augmented ideal right-angled pentagons

3.1. Augmented pentagons with two planes
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δ3

δ4

(L2,Π2)
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(L4,Π4)
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1
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Figure 3. A normalized augmented ideal right-angled penta-
gon (L1,Π2, L3,Π4, L5)

Here, we augment an ideal right-angled pentagon (L1, . . . , L5) with two
planes Π2 ⊃ L2 and Π4 ⊃ L4 such that Π2 is perpendicular to L1 and L3,
and Π4 is perpendicular to L3 and L5. In this way, we can associate a quater-
nion half length δ3 to L3 and e2-complex half lengths δ2 and δ4 to L2 and L4

respectively.

Lemma 3.1. For an augmented ideal right-angled pentagon (L1,Π2, L3,Π4, L5)
with a quaternion half length δ3 ∈ A2 and e2-complex half lengths δ2, δ4 ∈
R+ Re2, we have the following formula

(24) exp δ3(sinh δ4
−1 cosh δ4) exp δ3

∗ = cosh δ2
−1 sinh δ2.
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Proof. Without loss of generality, we may normalize the configuration so that
(L2,Π2) = (Lh,Πh) and L3 = Lv (see Figure 3). Let ηi (i = 2, 3, 4) be a
loxodromic isometry such that Axis(ηi) = Li and

η2(Π2) = Π2, η2(L1) = L3,

η3(Π2) = Π4, η3(L2) = L4,

η4(Π4) = Π4, η4(L3) = L5.

(25)

Then η2, η3, η4 can be written as

η2 =

(

cosh δ2 sinh δ2
sinh δ2 cosh δ2

)

,

η3 =

(

exp δ3 0
0 exp(−δ∗3)

)

,

η4 = η3

(

cosh δ4 sinh δ4
sinh δ4 cosh δ4

)

η−1
3 .

(26)

Then

η−1
2 (0) = − cosh δ2

−1 sinh δ2,

η4(∞) = exp δ3(− sinh δ4
−1 cosh δ4) exp(−δ

∗
3)

−1.
(27)

Equation (24) comes from the fact that η−1
2 (0) = η4(∞). �
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Figure 4. An augmented ideal right-angled pentagon (L1,
Π2, L3,Π4, L5) with (C0, S0)
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Figure 5. PLP-configurations at p01 and p50

For the augmented ideal right-angled pentagon (L1,Π2, L3,Π4, L5), consider
the horocyle/horosphere pair C0 ⊂ S0 assigned to the ideal vertex. Let p01
(resp. p50) be the point of intersection between C0 and L1 (resp. C0 and L5).
For the chosen S0, we take a geodesic L0 (resp. L6) which is tangent to C0 at
p01 (resp. p50) and a plane Π0 (resp. Π6) which is tangent to S0 and contains
L0 (resp. L6) (see Figure 4). In this way, we can choose canonically augmented
pairs (L0,Π0) and (L6,Π6) although the choice of S0 is not canonical.

Theorem 3.2. For an augmented ideal right-angled pentagon (L1,Π2, L3,Π4,

L5), the horocyle/horosphere pair C0 ⊂ S0 assigned to the ideal vertex, and

canonically chosen pairs (L0,Π0) and (L6,Π6), let δi, i = 1, . . . , 5 be the asso-

ciated quaternion or complex half lengths of the augmented pentagon. Then we

have the following formulas:

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 = ±e2;(28)

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 exp δ
∗
5(29)

= cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4;

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

(30)

×

(

cosh δ∗4 exp δ
∗
3 sinh δ

∗
2 + sinh δ∗4 exp(−δ3) cosh δ

∗
2

)

= −1;

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4 = 0.(31)

Proof. Without loss of generality, we may assume that the common ideal vertex
of L1 and L5 is the point ∞ ∈ ∂H4, L0 = L[1,−1], Π0 = Π[1,−1]∨[−e1,e1],
L1 = L[∞,0] and L5 = L[1,∞] such that the intersection point of L1 and Π0 is

e3 ∈ H
4. Let ηi (i = 1, . . . , 5) be loxodromic isometries such that Axis(ηi) = Li
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and

ηi(Li−1) = Li+1, i = 1, . . . , 5,

ηi(Πi−1) = Πi+1, i = 1, 3, 5,

ηi(Πi) = Πi, i = 2, 4.

(32)

In particular, let η6 = Ih◦P where P is a strictly parabolic isometry which
fixes ∞ and translates by −1 and Ih is the half turn around Πh. So

η6(L5) = L1, η6(L6) = L0, η6(Π6) = Π0.

Then η6 has a Vahlen matrix of the form ±
(

0 e2
e2 0

) (

1 −1
0 1

)

. Since the isometry
η6 · · · η2η1 maps not only the PLP-configuration (e3, L0,Π0) onto itself, but
also L1 onto itself, it is the identity map, id.

Define ι0 to be the identity map and for i = 1, . . . , 6,

ιi = (ηi · · · η2η1)
−1,

ψi = ιi−1ηiι
−1
i−1.

(33)

Then

ιi(Li) = L0, i = 1, 3, 5,

ιi : (Li,Πi) 7→ (L0,Π0), i = 2, 4, 5.
(34)

In particular, for i = 1, 3, 5 (respectively i = 2, 4) ψi keeps 0 and ∞ (respec-
tively −1 and 1). Thus, ψi has a Vahlen matrix of the following form:

(35) ψi =























(

exp δi 0

0 exp(−δ∗i )

)

if i = 1, 3, 5,

(

cosh δi sinh δi

sinh δi cosh δi

)

if i = 2, 4.

Therefore,

ψ1ψ2 · · ·ψ6 = η1(ι1η2ι
−1
1 ) · · · (ι5η6ι

−1
5 )

= η1η
−1
1 η2η1(η2η1)

−1η2(η1η1)· · ·(η5· · ·η1)
−1η6(η5· · ·η1)

= η6η5· · ·η1 = id.

(36)

From the fact that ψ6 = η6 and ψ1 · · ·ψ5 = ψ−1
6 , we have

(

exp δ1 0
0 exp(−δ∗1)

)(

cosh δ2 sinh δ2
sinh δ2 cosh δ2

)(

exp δ3 0
0 exp(−δ∗3)

)

(

cosh δ4 sinh δ4
sinh δ4 cosh δ4

)(

exp δ5 0
0 exp(−δ∗5)

)

= ±

(

e2 e2
e2 0

)

.

Therefore, we have

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 = ±e2,

(37)
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exp δ1

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5) = ±e2,

(38)

exp(−δ∗1)

(

sinh δ2 exp δ3 cosh δ4 + cosh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 = ±e2,

(39)

exp(−δ∗1)

(

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5) = 0.

(40)

Equation (37) and (40) give us (28) and (31) respectively. Equation (29) comes
from the fact that the left hand sides of (37) and (38) are the same. Using (38)
and (39), we have Equation (30):

exp δ1

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5)

×

(

exp(−δ∗1)

(

sinh δ2 exp δ3 cosh δ4 + cosh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5

)∗

= e2e
∗
2 = −1. �

Remark 3.3. In the above theorem, if the ideal right-angled pentagon (L1, . . . ,
L5) embeds in a plane inH

4, we recover the pentagon formula (43) in hyperbolic
2-space (see Theorem 7.18.1 of [7]). We may assume that the ideal right-angled
pentagon (L1, . . . , L5) embeds in the plane 〈1, e3〉 under our normalization dur-
ing the proof. Then δi (i = 2, 3, 4) becomes an e2-complex number di +

π
2 e2

for a real number di ∈ R and they commute each other. We recall that for an
e2-complex number d+ π

2 e2 ∈ R+ Re2,

exp(d+
π

2
e2) = e2 exp d,(41)

exp(−d−
π

2
e2) = −e2 exp (−d),

cosh(d+
π

2
e2) = e2 sinh d,

sinh(d+
π

2
e2) = e2 coshd,

(see Propositions 5.18 and 5.19 of [21]). Thus, Equation (30) becomes
(

−e2 sinhd2 expd3 coshd4 + e2 cosh d2 exp(−d3) sinh d4

)

(42)

×

(

−e2 sinh d4 exp d3 coshd2 + e2 coshd4 exp(−d3) sinh d2

)

= −1.

Therefore, we have

2 cosh(2d3) coshd2 sinh d2 coshd4 sinh d4 = sinh2 d2 sinh
2 d4 + cosh2 d2 cosh

2 d4
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which induces the pentagon formula associated to the ideal right-angled pen-
tagon in hyperbolic 2-space (see Figure 6).

(43) sinh 2d2 cosh 2d3 sinh 2d4 = cosh 2d2 cosh 2d4 + 1.

PSfrag replacements

2d2

2d3
2d4

Figure 6. An ideal right-angled pentagon in hyperbolic 2-space

3.2. Augmented pentagons with three planes

Now, we augment an ideal right-angled pentagon (L1, . . . , L5) with three
planes Π1 ⊃ L1, Π3 ⊃ L3 and Π5 ⊃ L5 (See Figure 7). The plane Π3 is chosen
to be perpendicular to L2 and L4, and is generically unique. A priori, Π1 and
Π5 are only required to be perpendicular to L2 and L4 respectively, so gener-
ically, there is a one dimensional family of choices for Π1 and Π5 respectively.
This augmentation gives us quaternion half lengths δ2 and δ4 for L2 and L4

respectively, and an e2-complex half length δ3 for L3. Lemma 3.4 is about the
relation between these three lengths.

Lemma 3.4. For an augmented ideal right-angled pentagon (Π1, L2,Π3, L4,Π5)
with quaternion half lengths δ2, δ4 ∈ A2 and an e2-complex half length δ3 ∈
R+ Re2, we have the following formula

(44)

(

sinh δ3 exp δ4 + cosh δ3 exp(−δ
∗
4)

)

+ exp δ∗2 exp δ2

(

cosh δ3 exp δ4 + sinh δ3 exp(−δ
∗
4)

)

= 0.

Proof. Without loss of generality, we may assume that L2 = L[∞,0], L3 = Lh
and Π3 = Πh (see Figure 7). Let ηi (i = 2, 3, 4) be a loxodromic isometry such
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Figure 7. A normalized augmented pentagon (Π1, L2,Π3, L4,Π5)

that Axis(ηi) = Li and

η2 : (L1,Π1) 7→ (L3,Π3),

η3(L2) = L4, η3(Π3) = Π3,

η4 : (L3,Π3) 7→ (L5,Π5).

(45)

Then η2, η3, η4 can be written as

η2 =

(

exp δ2 0
0 exp(−δ∗2)

)

,

η3 =

(

cosh δ3 sinh δ3
sinh δ3 cosh δ3

)

,

η4 = η3

(

exp δ4 0
0 exp(−δ∗4)

)

η−1
3

=

(

cosh δ3 exp δ4 sinh δ3 exp(−δ∗4)
sinh δ3 exp δ4 cosh δ3 exp(−δ∗4)

)

η−1
3 .

(46)

Since η−1
2 (−1) = η4(1),

− exp(−δ2) exp(−δ
∗
2) =

(

cosh δ3 exp δ4 + sinh δ3 exp(−δ
∗
4)

)

(47)
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(

sinh δ3 exp δ4 + cosh δ3 exp(−δ
∗
4)

)−1

which implies Equation (44). �
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Figure 8. An augmented ideal right-angled pentagon with
three planes and a horocycle

Now we may assume that the common ideal vertex of L1 and L5 is the point

∞ ∈ R̂
3 and will consider a horocycle C0 based at the ideal vertex ∞ so that

we choose planes Π1 and Π5 uniquely as follows (See Figure 8). Let C0 be
the horocycle based at the ideal vertex ∞ with height 1 after normalization
and intersect with L1 and L5. We call the intersection points C0 ∩ L1 and
C0 ∩ L5 by p01 and p50 respectively. Let L0 (respectively L6) be the geodesic
passing through p01 (respectively p50) and be tangent to the horocycle C0 at
p01 (respectively p50). Then, we choose uniquely a plane Π1 (respectively Π5)
which is perpendicular L2 and L0 (respectively L4 and L6) and contains L1

(respectively L5). We consider an isometry which maps a PLP-configuration
(p50, L5,Π5) to a PLP-configuration (p01, L1,Π1) and keeps C0 invariant. In
particular, this isometry can be seen as a composition of a parabolic isometry
which fixes∞ and a half-turn around Π1. Using this isometry, we assign an
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angle invariant θ0 associated to C0 as the rotation angle of the parabolic isom-
etry. Theorem 3.5 gives the relations between the half lengths δi, i = 1, . . . , 5
and θ0.

Theorem 3.5. Let (Π1, L2,Π3, L4,Π5) be an augmented ideal right-angled pen-

tagon in H
4 by the horocycle C0 assigned to the ideal vertex and planes Π1 ⊃ L1,

Π3 ⊃ L3 and Π5 ⊃ L5 as above. Let δi, i = 1, . . . , 5 be the associated quaternion

half lengths of the augmented pentagon and θ0 the half rotation angle associated

to C0. Then we have the following formulas:

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5(48)

= ± αe2;
(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5 exp δ
∗
5(49)

= cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4;

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

(50)

×

(

cosh δ∗4 exp δ
∗
3 sinh δ

∗
2 + sinh δ∗4 exp(−δ3) cosh δ

∗
2

)

= −1;

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4 = 0,(51)

where α = cos θ0 + sin θ0e1e2.

Remark 3.6. If the half rotation angle θ0 is 0, Equation (48) is the same as
Equation (28). We also note that Equations (49), (50) and (51) are the same
as (29), (30) and (31), respectively.

Proof. Without loss of generality, we may assume that the common ideal vertex
of L1 and L5 is ∞, L1 = L[∞,0], L5 = L[1,∞], C0 = {−x0 + e3 : x0 ∈ R},
L0 = L[1,−1], p01 = e3, L6 = L[2,0], p50 = 1 + e3 and Π1 = Π[∞,0]∨[−e2,e2] (see
Figure 8).

Let ηi (i = 1, . . . , 5) be an isometry such that Axis(ηi) = Li and

ηi(Li−1) = Li+1, i = 1, . . . , 5,

ηi(Πi) = Πi, i = 1, 3, 5,

ηi(Πi−1) = Πi+1, i = 2, 4.

(52)

Let η6 = Ih◦P where P is a screw parabolic isometry which maps a PLP-
configuration (1 + e3, [1,∞],Π5) to a PLP-configuration (e3, [0,∞],Π1). Note

that P has a Vahlen matrix of the form±
(

α∗ −α∗

0 α∗

)

where α = cos θ0+sin θ0e1e2
for some real number θ0 ∈ R. Then, the isometry η6 · · · η2η1 maps the PLP-
configuration (e3, L1,Π1) onto itself. In addition, since η6 · · · η2η1 maps L0

onto itself, it is the identity map id.
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Define ι0 = id and for i = 1, . . . , 6,

ιi = (ηi · · · η2η1)
−1,

ψi = ιi−1ηiι
−1
i−1.

(53)

Then

ιi(Li) = L0, i = 1, 3, 5,

ιi : (Li+1,Πi+1) 7→ (L1,Π1), i = 2, 4.
(54)

In particular, ψi(i = 1, 3, 5) fixes 0 and ∞, and ψi(i = 2, 4) fixes 1 and −1. So,
their Vahlen matrices are of the form

(55) ψi =























(

exp δi 0

0 exp(−δ∗i )

)

if i = 1, 3, 5,

(

cosh δi sinh δi

sinh δi cosh δi

)

if i = 2, 4.

Then

ψ1ψ2 · · ·ψ6 = η1(ι1η2ι
−1
1 ) . . . (ι5η6ι

−1
5 )

= η6 · · · η2η1 = id
(56)

and ψ6 = η6. Since ψ1 · · ·ψ5 = ψ−1
6 ,

(

exp δ1 0
0 exp(−δ∗1)

)(

cosh δ2 sinh δ2
sinh δ2 cosh δ2

)(

exp δ3 0
0 exp(−δ∗3)

)

(

cosh δ4 sinh δ4
sinh δ4 cosh δ4

)(

exp δ5 0
0 exp(−δ∗5)

)

= ±P−1I−1
h = ±

(

αe2 αe2
αe2 0

)

=

(

exp δ1 cosh δ2 exp δ3 exp δ1 sinh δ2 exp(−δ∗3)
exp(−δ∗1) sinh δ2 exp δ3 exp(−δ∗1) cosh δ2 exp(−δ

∗
3)

)

(

cosh δ4 exp δ5 sinh δ4 exp(−δ∗5)
sinh δ4 exp δ5 cosh δ4 exp(−δ

∗
5)

)

.

Thus, we have

exp δ1

(

cosh δ2 exp δ3 cosh δ4 + sinh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5(57)

= ± αe2,

exp δ1

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5)(58)

= ± αe2,

exp(−δ∗1)

(

sinh δ2 exp δ3 cosh δ4 + cosh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5(59)

= ± αe2,
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exp(−δ∗1)

(

sinh δ2 exp δ3 sinh δ4 + cosh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5)(60)

= 0.

Equation (57) and (60) give us Equation (48) and (51) respectively. Equation
(49) comes from that fact that the left hand sides of (57) and (58) are the same.
Using(58) and (59), we have (50):

exp δ1

(

cosh δ2 exp δ3 sinh δ4 + sinh δ2 exp(−δ
∗
3) cosh δ4

)

exp(−δ∗5)

×

(

exp(−δ∗1)

(

sinh δ2 exp δ3 cosh δ4 + cosh δ2 exp(−δ
∗
3) sinh δ4

)

exp δ5

)∗

= (αe2)(e2α
∗) = −1.

�

4. Two-generator subgroups of Isom(H4)

A group 〈A,B,C | ABC = 1〉 is said to be a linked two-generator group if
there exist three involutions P,Q,R so that A = PQ, B = QR and C =
RP . Depending on the dimension of hyperbolic space where the isometries
act, involutions may be orientation-reversing. A reflection in a geodesic in
hyperbolic 2-space is an orientation-reversing involution. A π-rotation around a
geodesic in hyperbolic 3-space is an orientation-preserving involution. Finally, a
π-rotation around a plane in hyperbolic 4-space is also an orientation-preserving
involution which is called as a half turn in this paper.

Throughout this section, we consider an augmented ideal right-angled pen-
tagon (Π1, L2,Π3, L4,Π5). That is, we augment an ideal right-angled pentagon
(L1, . . . , L5) with three planes Π1 ⊃ L1, Π3 ⊃ L3 and Π5 ⊃ L5 in H

4 such that
Π1 and Π5 are only required to be perpendicular to L2 and L4 respectively, and
Π3 is generically uniquely chosen to be perpendicular to L2 and L4 (see Figure
7). This gives us a linked two-generator subgroup of Isom(H4) as follows.

Lemma 4.1. For an augmented ideal right-angled pentagon (Π1, L2,Π3, L4,

Π5), let Ii (i = 1, 3, 5) be a half turn around Πi in H
4 and A = I5I1, B = I1I3,

C = I3I5. Then 〈A,B,C〉 is a two-generator subgroup of Isom(H4) such that

A is parabolic and B,C are loxodromic.

The proof is a straightforward application of the following Propositions.

Proposition 4.1 ([6]). Let I1 and I2 be involutions with fixed point sets P1

and P2 in H
4 respectively and let f = I2I1. Then f is elliptic if and only

if P1 ∩ P2 6= ∅; f is parabolic if and only if P1 ∩ P2 = ∅ and the hyperbolic

distance d(P1, P2) = 0; f is loxodromic if and only if the hyperbolic distance

d(P1, P2) > 0.

Applying the above proposition to the boundary at infinity ∂H4, we have:
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Proposition 4.2. Let Pi (i = 1, 2) be a circle or a line in R̂
3 and Ii be a half

turn around Pi. Then the isometry f = I2I1 is

(1) elliptic if P1 and P2 are disjoint and linked (i.e., a unique fixed point

in H
4),

(2) loxodromic if P1 and P2 are disjoint and non-linked,

(3) parabolic if P1 and P2 intersect at a single point of R̂3,

(4) elliptic if P1 and P2 intersect at two points of R̂3 (i.e., an element in

SO(2)).

Proof. To show (1), suppose that P1 and P2 are disjoint and linked. Without
loss of generality, we map assume ∞ ∈ P2. Applying a dilation, a rotation

or a translation to P1 and P2 in R̂
3 if necessary, we may normalize so that

P1 is a unit circle belonging to 〈1, e1〉 and centered at the origin, and P2 is a
line. Since P1 and P2 are disjoint and linked, P2 must intersect the open unit
2-dimensional disk whose boundary is P1 in 〈1, e1〉. Let Q be the intersection
point in ∂H4. Then there exist x0, y0 ∈ R such that x20 + y20 < 1 and Q =
x0 + y0e1. Thus, we can write P1 = {x+ ye1 ∈ R

3 : x, y ∈ R, x2 + y2 = 1} and
P2 = {t(v0 + v1e1 + v2e2) + x0 + y0e1 ∈ R

3 : t ∈ R} ∪ {∞} for a unit vector
v0 + v1e1 + v2e2. In H

4, let HPi (i = 1, 2) be the plane whose boundary at
infinity is Pi :

HP1 = {x+ ye1 + ue3 ∈ H
4 | x, y, u ∈ R, x2 + y2 + u2 = 1, u > 0},

HP2 = {t(v0 + v1e1 + v2e2) + x0 + y0e1 + se3 ∈ H
4 | t, s ∈ R, s > 0}.

We see that HP1 and HP2 intersect at a point E = x0 + y0e1 + s0e3 ∈ H
4

where s0 =
√

1− x20 − y20 > 0. Then E ∈ H
4 is the fixed point of the isometry

f , so f is elliptic.
To show (2), now suppose that P1 and P2 are disjoint and non-linked. As we

did before, we may normalize P1 and P2 by isometries so that P1 is the same
unit circle belonging to 〈1, e1〉 and centered at the origin, and P2 is a line.
Only this time, because of the condition that P1 and P2 are not linked, P2 does
not intersect with the open unit disk in 〈1, e1〉. This implies that the planes

HP1 and HP2 are disjoint in H4, and hence they have a non-zero hyperbolic
distance. Applying Proposition 4.1 of [6], the isometry f is loxodromic.

Items (3) and (4) come directly from Proposition 4.1 of [6]. �

Therefore, we obtain a linked two-generator subgroup of Isom(H4) from an
augmented ideal right-angled pentagon (Π1, L2,Π3, L4,Π5). However, Lemma
4.1 does not say anything about the discreteness of the group which is our goal
in what follows.

Suppose that Γ = 〈A,B,C | ABC = 1〉 is a discrete two-generator subgroup
of Isom(H2) such that A is parabolic and B,C are loxodromic. All non-
elementary discrete two-generator groups are linked in H

2. That is, we can
write A = I5I1, B = I1I3 and C = I3I5 where Ii (i = 1, 3, 5) is a reflection in a
geodesic Li in H

2. Here, L1 and L5 have a common boundary point at infinity
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which is the fixed point of the parabolic isometry A. L1 and L3 (respectively,
L3 and L5) are disjoint and hence they have a unique common orthogonal ge-
odesic, called L2 (respectively, L4) in H

2. In this way, we associate an ideal
right-angled pentagon (L1, L2, L3, L4, L5) to the group Γ in H

2.
The domain D bounded by L1, L3 and L5 is the fundamental domain for the

action of the group generated by three reflections, 〈I1, I3, I5〉 which is isomor-
phic to Z2 × Z2 × Z2. Since the group Γ = 〈A,B,C : ABC = 1〉 is an index 2
subgroup of 〈I1, I3, I5〉, we can obtain a fundamental domain of Γ by doubling
D.

Let T (Γ) be the Teichmüller space of Γ :

{ρ : Γ → Isom(H2) : discrete, faithful and type-preserving}/Isom(H2)

which is the set of discrete, faithful and type-preserving representations into
Isom(H2) up to the conjugation action of Isom(H2). It has dimension 2. So,
we can parameterize it by a pair of two positive numbers (d2, d4) where d2
(respectively, d4) is the hyperbolic distance between L1 and L3 (respectively,
between L3 and L5). Applying isometries if necessary, we may normalize the
configuration so that L1 = L[∞,0], L3 = L[1,s] and L5 = L[t,∞] for some
1 < s < t. Hence, we may also parameterize T (Γ) by the pair of two boundary
points (s, t) (1 < s < t) (see Figure 9).

PSfrag replacements

L1

L3

L5

s t

d2 d4

0 1

Figure 9. An ideal right-angled pentagon associated to a
linked two-generator group in H

2

In hyperbolic 4-space, we define the deformation space D(Γ) of Γ by the set
of all discrete, faithful and type-preserving representation of Γ into Isom(H4)
up to the conjugation action of Isom(H4). That is,

D(Γ) = {ρ : Γ → Isom(H4) : discrete, faithful and type-preserving}/Isom(H4).

By assigning an augmented ideal right-angled pentagon (Π1, L2,Π3, L4,Π5)
to Γ, we may consider Γ itself as an image of the identity representation into
Isom(H4) as follows. Without loss of generality, we may assume that the ideal
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right-angled pentagon (L1, L2, L3, L4, L5) associated to Γ is embedded in the
plane 〈1, e3〉 ⊂ H

4 = {x0 + x1e1 + x2e2 + x3e3 | x0, x1, x2, x3 ∈ R, x3 > 0}.
As we see in Figure 9, we may normalize it so that L1 = L[∞,0], L3 = L[1,s]

and L5 = L[t,∞] for some 1 < s < t. We augment the ideal right-angled
pentagon with three planes Πi (i = 1, 3, 5). In particular, we choose Π1 and
Π5, on the boundary at infinity, to be a line parallel to 〈e1〉. Note that Π1

(respectively Π5) passes through 0 and ∞ (respectively t and ∞). Let Π3 be a
1-dimensional circle embedded in 〈1, e1〉 and having the segment between 1 and

s a diameter on R̂
3. Now, we extend Ii (i = 1, 3, 5) as a half turn around Πi in

H
4. By construction, the group 〈I1, I3, I5〉 keeps the plane 〈1, e3〉 invariant, so

does Γ. On the plane 〈1, e3〉, the action of group 〈I1, I3, I5〉 is the same as the
original Fuchsian group. This shows how we extend the group Γ into a discrete
subgroup of Isom(H4).

For the augmented ideal right-angled pentagon (Π1, L2,Π3, L4,Π5) in H
4,

we have associated half turns to each plane and the group generated by these
half turns. Hence, deforming the augmented ideal right-angled pentagon may
give us a new point in the deformation space D(Γ). To obtain a new point
in D(Γ), we will consider a configuration which is deformed continuously from
the initial augmented pentagon and impose a condition that Π1 passes through
0,∞, Π3 through 1, s and Π5 through t,∞. In other words, we fix the initial
three geodesics L1 = L[∞,0], L3 = L[1,s] and L5 = L[t,∞]. Since there are
2-dimensional family of choices for each Πi (i = 1, 3, 5), we have 6-dimensional
family of choices for (Π1,Π3,Π5) in total. However, we have to consider the ac-
tion of a rotation around 〈1〉 in ∂H4 since it fixes 0, 1, s, t and ∞. Suppose that
one configuration is an image of another configuration under a rotation around
〈1〉 in ∂H4. Then the two configurations might be different, but the two groups
associated to each configurations are conjugate to each other by the rotation.
Therefore, we have a 5-dimensional parameter space for the configurations of
(Π1,Π3,Π5) up to the conjugation action of Isom(H4). Now, considering the
parameter s and t we have a 7-dimensional parameter space for the deformation
space D(Γ). An arbitrary group constructed in this way might not be discrete.
So, we deform the pentagon in a special way to obtain discrete groups in the
next theorem.

Theorem 4.3. Let Γ = 〈A,B,C | ABC = 1〉 be a discrete two-generator sub-

group of Isom(H2) where A is parabolic and B,C are loxodromic. Then there

exists a 6-dimensional parameter space P containing the identity representation

in the deformation space.

Proof. We identify the group Γ with the image of the identity representation
and consider its associated augmented ideal right-angled pentagon (Π1, L2,Π3,
L4,Π5) as above: Let L1 = L[∞,0], L3 = L[1,s0], L5 = L[t0,∞] for some 1 < s0 <
t0 and L2 (respectively L5) be a line perpendicular to L1 and L3 (respectively,

L3 and L5). In the boundary at infinity ∂H4 = R̂3, Π1 (respectively Π5) is a
line parallel to 〈e1〉 and passes through 0 and ∞ (respectively t and ∞), Π3 is a
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Figure 10. D: the boundary of the fundamental domain of
〈I1, I3, I5〉 in ∂H4

1-dimensional circle embedded in 〈1, e1〉 and having the segment between 1 and
s a diameter, Ii (i = 1, 3, 5) is a half-turn around Πi, and A = I5I1, B = I1I3
and C = I3I5. Let L2 (respectively, L4) be the unique geodesic orthogonal
to L1 and L3 (respectively L3 and L5). Here, the pentagon (L1, . . . , L5) is
embedded into 〈1, e3〉 ⊂ H

4 and the group action of Γ keeps 〈1, e3〉 invariant.
First, we will construct the fundamental domain for the action of 〈I1, I3, I5〉.

In the boundary R̂3, let W1 be the 2-dimensional subspace 〈e1, e2〉, W5 the
subspace t0 +W1 and W3 the 2-dimensional sphere having Π3 a great circle.

Let D be the domain bounded byW1, W3 and W5 in R̂3. Since the half turn Ii
(i = 1, 3, 5) mapsWi to itself and Ii(D)∩D = ∅, D is the fundamental domain
of the group 〈I1, I3, I5〉 (See Figure 10).

Now we will deform the domain D together with the pentagon to obtain
a new point in D(Γ) (See Figure 11). Recall that we identify R

3 with the
vector space {x0 + x1e1 + x2e2 | x0, x1, x2 ∈ R}. We denote a unit vector
in R

3 by n(φ, ψ) = (cosφ cosψ, cosφ sinψ, sinφ) for some real numbers φ, ψ.
For a unit vector n(φ, ψ) ∈ R

3, there is an element ξφ,ψ ∈ SO(3) such that
ξφ,ψ(1) = n(φ, ψ). Note that ξ0,0(1) = 1. Let

W ′
1 = 〈ξφ,ψ(e1), ξφ,ψ(e2)〉 = 〈n(φ, ψ)〉⊥,

Π′
1 = 〈ξφ,ψ(e1)〉 ,

W ′
5 = t0 +W ′

1,

Π′
5 = t0 + 〈cos θξφ,ψ(e1) + sin θξφ,ψ(e2)〉 ,
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Figure 11. The fundamental domain D′ in R
3

where 0 ≤ θ < π. Then Π′
i ⊆ W ′

i (i = 1, 5) and W ′
1 and W ′

5 are parallel in
R

3. Let W ′
3 be the sphere centered at 1

2 (s0 + 1) + ce1 for c ∈ R and passing
through 1, s0, and Π′

3 be the great circle of W ′
3 passing through 1 and s0. Note

that Π′
i ⊂ W ′

i for i = 1, 3, 5. Since 1 < s0 < t0, there are small positive
numbers ǫ0, δ0 such that W ′

1, W
′
3 and W ′

5 are mutually disjoint in R
3 for any

−ǫ0 < φ,ψ < ǫ0 and −δ0 < c < δ0.

Let D′ be the domain bounded byW ′
1,W

′
3 andW ′

5 in R̂3 for −ǫ0 < φ,ψ < ǫ0
and −δ0 < c < δ0 and associate the half turns I ′i around Π′

i to each side W ′
i .

Then, the domain D′ is the fundamental domain for the action of the group
〈I ′1, I

′
3, I

′
5〉. Since W ′

i and Π′
i(i = 1, 3, 5) depend on φ, ψ, c and θ, let P be the

4-dimensional parameter space,

P = {(φ, ψ, c, θ) ∈ R
4 | − ǫ0 < φ,ψ < ǫ0, −δ0 < c < δ0, 0 ≤ θ < π}.

Note that the group associated (0, 0, 0, 0) ∈ P is the initial group Γ in H
4.

We will show that two points in P give us two distinct groups in D(Γ).
Suppose pk = (φk, ψk, ck, θk), k = 1, 2 are two points in P . For k = 1, 2, let Dk

be the fundamental domain associated to pk with W k
i (i = 1, 3, 5), and Gk be

the group generated by three half turns Iki (i = 1, 3, 5) around Πki associated
to each sides of Dk. If G1 is conjugate to G2 by an isometry f , then D1 is the
image of D2 under the isometry f . In particular, f(Π1

i ) = Π2
i for i = 1, 3, 5.

Since we impose the condition that Πk1 passes through 0,∞, Πk3 through 1, s0
and Πk5 through t0,∞ during the deformation, f fixes 0, 1, s0, t0 and ∞. So, f
is a rotation around 〈1〉 by some angle α. However, since Πk3 ⊂ 〈1, e1〉 during
the deformation, f keeps the 2-dimensional subspace 〈1, e1〉 invariant. Thus,
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α should be 0 which implies that f is the identity map. This proves that each
point in P gives us a distinct point in the deformation space D(Γ).

Since 1 < s0 < t0 were arbitrary, this locally gives us a 6-dimensional
parameter space P = {(s, t) : 1 < s < t} × P for the deformation space
D(Γ). �
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[22] M. Wada, Conjugacy invariants of Möbius transformations, Complex Variables Theory
Appl. 15 (1990), no. 2, 125–133.
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