• 제목/요약/키워드: quantum effects

검색결과 388건 처리시간 0.025초

Analysis of Quantum Effects Concerning Ultra-thin Gate-all-around Nanowire FET for Sub 14nm Technology

  • 이한결;김성연;박재혁
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.357-364
    • /
    • 2015
  • In this work, we investigate the quantum effects exhibited from ultra-thin GAA(gate-all-around) Nanowire FETs for Sub 14nm Technology. We face designing challenges particularly short channel effects (SCE). However traditional MOSFET SCE models become invalid due to unexpected quantum effects. In this paper, we investigated various performance factors of the GAA Nanowire FET structure, which is promising future device. We observe a variety of quantum effects that are not seen when large scale. Such are source drain tunneling due to short channel lengths, drastic threshold voltage increase caused by quantum confinement for small channel area, leakage current through thin gate oxide by tunneling, induced source barrier lowering by fringing field from drain enhanced by high k dielectric, and lastly the I-V characteristic dependence on channel materials and transport orientations owing to quantum confinement and valley splitting. Understanding these quantum phenomena will guide to reducing SCEs for future sub 14nm devices.

  • PDF

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT

  • Verma, Neha;Gupta, Mridula;Gupta, R.S.;Jogi, Jyotika
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.342-354
    • /
    • 2013
  • The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are modelled by a density gradient model or quantum moments model. The simulated results obtained from the quantum moments model are compared with the available experimental results to show the accuracy and also with a semi-classical model to show the need for quantum modeling. Quantum modeling shows major variation in electron concentration profiles and affects the device characteristics. The two triangular quantum wells predicted by the semi-classical model seem to vanish in the quantum model as bulk inversion takes place. The quantum effects thus become essential to incorporate in nanoscale heterostructure device modeling.

Quantum Mechanical Effects on Dynamical Behavior of Simple Liquids

  • Kim, Tae-Jun;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2233-2236
    • /
    • 2011
  • We evaluate quantum-mechanical velocity autocorrelation functions from classical molecular dynamics simulations using quantum correction approaches. We apply recently developed approaches to supercritical argon and liquid neon. The results show that the methods provide a solution more efficient than previous methods to investigate quantum-mechanical dynamic behavior in condensed phases. Our numerical results are found to be in excellent agreement with the previous quantum-mechanical results.

Optical Properties of a ZnO-MgZnO Quantum-Well

  • Ahn, Do-Yeol;Park, Seoung-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.125-130
    • /
    • 2006
  • The optical gain and the luminescence of a ZnO quantum well with MgZnO barriers is studied theoretically. We calculated the non-Markovian optical gain and the luminescence for the strained-layer wurtzite quantum well taking into account of the excitonic effects. It is predicted that both optical gain and luminescence are enhanced for the ZnO quantum well when compared with those of InGaN-AlGaN quantum well structure due to the significant reduction of the piezoelectric effects in the ZnO-MgZnO systems.

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

A Compact Model of Gate-Voltage-Dependent Quantum Effects in Short-Channel Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

  • Kim, Ji-Hyun;Sun, Woo-Kyung;Park, Seung-Hye;Lim, Hye-In;Shin, Hyung-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.278-286
    • /
    • 2011
  • In this paper, we present a compact model of gate-voltage-dependent quantum effects in short-channel surrounding-gate (SG) metal-oxide-semiconductor field-effect transistors (MOSFETs). We based the model on a two-dimensional (2-D) analytical solution of Poisson's equation using cylindrical coordinates. We used the model to investigate the electrostatic potential and current sensitivities of various gate lengths ($L_g$) and radii (R). Schr$\ddot{o}$dinger's equation was solved analytically for a one-dimensional (1-D) quantum well to include quantum effects in the model. The model takes into account quantum effects in the inversion region of the SG MOSFET using a triangular well. We show that the new model is in excellent agreement with the device simulation results in all regions of operation.

Stress Profile Dependence of the Optical Properties in Strained Quantum Wire Arrays

  • Yi, Jong-Chang;Ji, Jeong-Beom
    • Journal of the Optical Society of Korea
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 2003
  • The effects of strain distribution in quantum wire arrays have been analyzed using a finite-element method including both the hydrostatic and shear strain components. Their effects on the optical properties of the quantum wire arrays are assessed for various types of stress profiles by calculating the optical gain and the polarization dependence. The results show unique polarization dependency, which can be exploited either for the single polarization or the polarization-independent operation in quantum wire photonic devices.

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K.;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.245-249
    • /
    • 2015
  • Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

미중 기술패권 경쟁과 양자컴퓨팅 정책 동향 (United States-China Competition for Technological Supremacy in Quantum Computing and Policy Trends)

  • 이선재;정선화;조병선
    • 전자통신동향분석
    • /
    • 제38권4호
    • /
    • pp.47-57
    • /
    • 2023
  • The competition for technological supremacy is unfolding in the high-tech field, and quantum computing can be determinant for economic and security ripple effects. The United States and China, leaders in quantum computing, have developed this field through adequate policies. The United States has fostered quantum computing through government policies and competition among private companies, while China has secured world-class technology through large-scale government investment and attracting foreign talent. In quantum computing, securing talented people is essential to guarantee independent technology development regarding academic attributes and security. We analyze quantum computing policies in the United States and China on a timeline and determine their policy trends. In addition, the policies for securing talent in these countries are reviewed, and the policy effects are compared based on literature analysis. Through the analysis of policy cases between the United States and China, bilateral policy implications for Korea are delineated.

Analysis of Short Channel Effects Using Analytical Transport Model For Double Gate MOSFET

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.45-49
    • /
    • 2007
  • The analytical transport model in subthreshold regime for double gate MOSFET has been presented to analyze the short channel effects such as subthreshold swing, threshold voltage roll-off and drain induced barrier lowering. The present approach includes the quantum tunneling of carriers through the source-drain barrier. Poisson equation is used for modeling thermionic emission current, and Wentzel-Kramers-Brillouin approximations are applied for modeling quantum tunneling current. This model has been used to investigate the subthreshold operations of double gate MOSFET having the gate length of the nanometer range with ultra thin gate oxide and channel thickness under sub-20nm. Compared with results of two dimensional numerical simulations, the results in this study show good agreements with those for subthreshold swing and threshold voltage roll-off. Note the short channel effects degrade due to quantum tunneling, especially in the gate length of below 10nm, and DGMOSFETs have to be very strictly designed in the regime of below 10nm gate length since quantum tunneling becomes the main transport mechanism in the subthreshold region.