Browse > Article
http://dx.doi.org/10.5757/ASCT.2015.24.6.245

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices  

Ha, S.-K. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST))
Song, J.D. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST))
Publication Information
Applied Science and Convergence Technology / v.24, no.6, 2015 , pp. 245-249 More about this Journal
Abstract
Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.
Keywords
Quantum dots; Molecular beam epitaxy; InGaAs; photoluminescence; Quantum information processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mork, S. Hofling, C. Schneider, and M. Kamp, Opt. Expr. 22, 8136 (2014).   DOI
2 M. J. Conterio, N. Sköld, D. J. P. Ellis, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 103, 162108 (2013).   DOI
3 E. Koroknay, W. M. Schulz, D. Richter, U. Rengstl, M. Reischle, M. Bommer, C. A. Kessler, R. Rossbach, H. Schweizer, and M. Jetter, Phys. Status Solidi B 249, 737 (2012).   DOI
4 A. Rantamaki, G. S. Sokolovskii, S. A. Blokhin, V. V. Dudelev, K. K. Soboleva, M. A. Bobrov, A. G. Kuzmenkov, A. P. Vasil'ev, A. G. Gladyshev, and N. A. Maleev, Opt. Lett. 40, 3400 (2015).   DOI
5 R. Oulton, A. I. Tartakovskii, A. Ebbens, J. J. Finley, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, Physica E 26, 302 (2005).   DOI
6 M. Scholz, S. B ettner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, and F. Hopfer, Opt. Expr. 15, 9107 (2007).   DOI
7 J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, Nature Photon. 4, 174 (2010).   DOI
8 N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006).   DOI
9 J. D. Song, Y. J. Park, I. K. Han, W. J. Choi, W. J. Cho, J. I. Lee, Y. H. Cho, and J. Y. Lee, Physica E 26, 86 (2005).   DOI
10 S.-P. Ryu, N.-K. Cho, J.-Y. Lim, A.-R. Rim, W.-J. Choi, J.-D. Song, J.-I. Lee, and Y.-T. Lee, Jpn. J. Appl. Phys. 48, 091103 (2009).   DOI
11 J. S. Wang, S. H. Yu, Y. R. Lin, H. H. Lin, C. S. Yang, T. T. Chen, Y. F. Chen, G. W. Shu, J. L. Shen, and R. S. Hsiao, Nanotechnology 18, 015401 (2007).   DOI
12 M. A. Migliorato, L. R. Wilson, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, and M. Hopkinson, J. Appl. Phys. 90, 6374 (2001).   DOI
13 G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris Jr, Phys. Rev. Lett. 76, 952 (1996).   DOI
14 J. Rihani, N. B. Sedrine, V. Sallet, M. Oueslati, and R. Chtourou, Appl. Surf. Sci. 254, 3125 (2008).   DOI
15 M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin- Phillipp, Appl. Phys. Lett. 77, 1789 (2000).   DOI
16 Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995).   DOI