DOI QR코드

DOI QR Code

Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices

  • Ha, S.-K. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Song, J.D. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST))
  • Received : 2015.10.14
  • Accepted : 2015.10.28
  • Published : 2015.11.30

Abstract

Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.

Keywords

References

  1. S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mork, S. Hofling, C. Schneider, and M. Kamp, Opt. Expr. 22, 8136 (2014). https://doi.org/10.1364/OE.22.008136
  2. M. J. Conterio, N. Sköld, D. J. P. Ellis, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 103, 162108 (2013). https://doi.org/10.1063/1.4825208
  3. E. Koroknay, W. M. Schulz, D. Richter, U. Rengstl, M. Reischle, M. Bommer, C. A. Kessler, R. Rossbach, H. Schweizer, and M. Jetter, Phys. Status Solidi B 249, 737 (2012). https://doi.org/10.1002/pssb.201100814
  4. A. Rantamaki, G. S. Sokolovskii, S. A. Blokhin, V. V. Dudelev, K. K. Soboleva, M. A. Bobrov, A. G. Kuzmenkov, A. P. Vasil'ev, A. G. Gladyshev, and N. A. Maleev, Opt. Lett. 40, 3400 (2015). https://doi.org/10.1364/OL.40.003400
  5. R. Oulton, A. I. Tartakovskii, A. Ebbens, J. J. Finley, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, Physica E 26, 302 (2005). https://doi.org/10.1016/j.physe.2004.08.068
  6. M. Scholz, S. B ettner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, and F. Hopfer, Opt. Expr. 15, 9107 (2007). https://doi.org/10.1364/OE.15.009107
  7. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, Nature Photon. 4, 174 (2010). https://doi.org/10.1038/nphoton.2009.287x
  8. N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006). https://doi.org/10.1063/1.2189195
  9. J. D. Song, Y. J. Park, I. K. Han, W. J. Choi, W. J. Cho, J. I. Lee, Y. H. Cho, and J. Y. Lee, Physica E 26, 86 (2005). https://doi.org/10.1016/j.physe.2004.08.029
  10. S.-P. Ryu, N.-K. Cho, J.-Y. Lim, A.-R. Rim, W.-J. Choi, J.-D. Song, J.-I. Lee, and Y.-T. Lee, Jpn. J. Appl. Phys. 48, 091103 (2009). https://doi.org/10.1143/JJAP.48.091103
  11. J. S. Wang, S. H. Yu, Y. R. Lin, H. H. Lin, C. S. Yang, T. T. Chen, Y. F. Chen, G. W. Shu, J. L. Shen, and R. S. Hsiao, Nanotechnology 18, 015401 (2007). https://doi.org/10.1088/0957-4484/18/1/015401
  12. M. A. Migliorato, L. R. Wilson, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, and M. Hopkinson, J. Appl. Phys. 90, 6374 (2001). https://doi.org/10.1063/1.1418003
  13. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris Jr, Phys. Rev. Lett. 76, 952 (1996). https://doi.org/10.1103/PhysRevLett.76.952
  14. J. Rihani, N. B. Sedrine, V. Sallet, M. Oueslati, and R. Chtourou, Appl. Surf. Sci. 254, 3125 (2008). https://doi.org/10.1016/j.apsusc.2007.10.094
  15. M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin- Phillipp, Appl. Phys. Lett. 77, 1789 (2000). https://doi.org/10.1063/1.1311314
  16. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995). https://doi.org/10.1103/PhysRevLett.75.2542