• 제목/요약/키워드: quadratic-additive functional equation

검색결과 50건 처리시간 0.017초

SOLUTION AND STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • Jun, Kil-Woung;Jung, Il-Sook;Kim, Hark-Mahn
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.815-830
    • /
    • 2009
  • In this paper we establish the general solution of the following functional equation with mixed type of quadratic and additive mappings f(mx+y)+f(mx-y)+2f(x)=f(x+y)+f(x-y)+2f(mx), where $m{\geq}2$ is a positive integer, and then investigate the generalized Hyers-Ulam stability of this equation in quasi-Banach spaces.

  • PDF

STABILITY OF FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES: A FIXED POINT APPROACH

  • Park, Choonkil;Hur, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.413-424
    • /
    • 2008
  • In [21], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\parallel}\frac{1}{n}\sum\limits_{i=1}^{n}x_i{\parallel}^2+\sum\limits_{i=1}^{n}{\parallel}x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j{\parallel}^2=\sum\limits_{i=1}^{n}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\dots},x_n{\in}V$. We consider the functional equation $$nf(\frac{1}{n}\sum\limits^n_{i=1}x_i)+\sum\limits_{i=1}^{n}f(x_i-\frac{1}{n}\sum\limits_{j=1}^{n}x_j)=\sum\limits_{i=1}^nf(x_i)$$ Using fixed point methods, we prove the generalized Hyers-Ulam stability of the functional equation $$(1)\;2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})=f(x)+f(y)$$.

  • PDF

ON THE STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION

  • Lee, Sang-Baek;Park, Won-Gil;Bae, Jae-Hyeong
    • 충청수학회지
    • /
    • 제19권1호
    • /
    • pp.69-77
    • /
    • 2006
  • The generalized Hyers-Ulam stability problems of the mixed type functional equation $$f\({\sum_{i=1}^{4}xi\)+\sum_{1{\leq}i<j{\leq}4}f(x_i+x_j)=\sum_{i=1}^{4}f(x_i)+\sum_{1{\leq}i<j<k{\leq}4}f(x_i+X_j+x_k)$$ is treated under the approximately even(or odd) condition and the behavior of the quadratic mappings and the additive mappings is investigated.

  • PDF

FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Boo, Deok-Hoon;Park, Chun-Gil;Wee, Hee-Jung
    • 충청수학회지
    • /
    • 제17권2호
    • /
    • pp.169-190
    • /
    • 2004
  • Let r, s be nonzero real numbers. Let X, Y be vector spaces. It is shown that if a mapping f : $X{\rightarrow}Y$ satisfies f(0) = 0, and $$sf(\frac{x+y{\pm}z}{r})+f(x)+f(y){\pm}f(z)=sf(\frac{x+y}{r})+sf(\frac{y{\pm}z}{r})+sf(\frac{x{\pm}z}{r})$$, or $$sf(\frac{x+y{\pm}y}{r})+f(x)+f(y){\pm}f(z)=f(x+y)+f(y{\pm}z)+f(x{\pm}z)$$ for all x, y, $z{\in}X$, then there exist an additive mapping A : $X{\rightarrow}Y$ and a quadratic mapping Q : $X{\rightarrow}Y$ such that f(x) = A(x) + Q(x) for all $x{\in}X$. Furthermore, we prove the Cauchy-Rassias stability of the functional equations as given above.

  • PDF

FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

  • Park, Choonkil;Huh, Jae Sung;Min, Won June;Nam, Dong Hoon;Roh, Seung Hyeon
    • 충청수학회지
    • /
    • 제21권4호
    • /
    • pp.455-466
    • /
    • 2008
  • In, [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n{\geq}2$ $$n{\left\|{\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i{\left\|^2+{\sum\limits_{i=1}^{n}}\right\|}{x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}x_j}}\right\|^2}={\sum\limits_{i=1}^{n}}{\parallel}x_i{\parallel}^2$$ holds for all $x_1,{\cdots},x_{n}{\in}V$. Let V,W be real vector spaces. It is shown that if a mapping $f:V{\rightarrow}W$ satisfies $$(0.1){\hspace{10}}nf{\left({\frac{1}{n}}{\sum\limits_{i=1}^{n}}x_i \right)}+{\sum\limits_{i=1}^{n}}f{\left({x_i-{\frac{1}{n}}{\sum\limits_{j=1}^{n}}x_i}\right)}\\{\hspace{140}}={\sum\limits_{i=1}^{n}}f(x_i)$$ for all $x_1$, ${\dots}$, $x_{n}{\in}V$ $$(0.2){\hspace{10}}2f\(\frac{x+y}{2}\)+f\(\frac{x-y}{2} \)+f\(\frac{y}{2}-x\)\\{\hspace{185}}=f(x)+f(y)$$ for all $x,y{\in}V$. Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

  • PDF