Browse > Article
http://dx.doi.org/10.7858/eamj.2018.048

STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES  

Kim, Chang Il (Department of Mathematics Education, Dankook University)
Yun, Yong Sik (Department of Mathematics and Research Institute for Basic Sciences, Jeju National University)
Publication Information
Abstract
In this paper, we consider the generalized Hyers-Ulam stability for the following additive-quadratic functional equation with involution $f(x+2y)-f(2x+y)+f(x+y)+f({\sigma}(x)+y)+f(x)-4f(y)-f({\sigma}(y))=0$ in non-Archimedean spaces.
Keywords
Fixed point theorem; Hyers-Ulam stability; cubic functional equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2(1950), 64-66.   DOI
2 B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12(2007), 247-262.
3 B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11(2008), 805-818.
4 P.W.Cholewa, Remarkes on the stability of functional equations, Aequationes Math., 27(1984), 76-86.   DOI
5 S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992), 59-64.   DOI
6 J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74(1968), 305309.   DOI
7 P. Gavruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.   DOI
8 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27(1941), 222-224.   DOI
9 S. M. Jung, Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
10 Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72(1978), 297-300.   DOI
11 F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.   DOI
12 H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.   DOI
13 S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.