1 |
T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2(1950), 64-66.
DOI
|
2 |
B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12(2007), 247-262.
|
3 |
B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11(2008), 805-818.
|
4 |
P.W.Cholewa, Remarkes on the stability of functional equations, Aequationes Math., 27(1984), 76-86.
DOI
|
5 |
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992), 59-64.
DOI
|
6 |
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74(1968), 305309.
DOI
|
7 |
P. Gavruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
DOI
|
8 |
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27(1941), 222-224.
DOI
|
9 |
S. M. Jung, Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
|
10 |
Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72(1978), 297-300.
DOI
|
11 |
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
DOI
|
12 |
H. Stetkaer, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.
DOI
|
13 |
S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
|