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SOLUTION AND STABILITY OF MIXED TYPE
FUNCTIONAL EQUATIONS

Kil-Woung Jun*, Il-Sook Jung**, and Hark-Mahn Kim***

Abstract. In this paper we establish the general solution of the
following functional equation with mixed type of quadratic and ad-
ditive mappings

f(mx + y) + f(mx− y) + 2f(x) = f(x + y) + f(x− y) + 2f(mx),

where m ≥ 2 is a positive integer, and then investigate the general-
ized Hyers–Ulam stability of this equation in quasi-Banach spaces.

1. Introduction and preliminaries

In 1940, S. M. Ulam [13] gave a talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of un-
solved problems. Among these was the following question concerning
the stability of homomorphisms.

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the
metric d(·, ·). Given ε > 0, does there exist δ(ε) > 0 such that if a
mapping h : G1 → G2 satisfies the inequality

d(h(x ∗ y), h(x) � h(y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε

for all x ∈ G1?
In 1941, D.H. Hyers [7] considered the case of approximately additive

mappings f : E → E′, where E and E′ are Banach spaces and f satisfies
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Hyers inequality
‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. In this case there exists a unique additive mapping
L : E → E′, defined by L(x) = limn→∞

f(2nx)
2n , such that

‖f(x)− L(x)‖ ≤ ε

for all x ∈ E. A generalized version of Hyers’ theorem for approximate
additive mappings was given by T. Aoki [1] and D.G. Bourgin [4]. In
1978, Th.M. Rassias [9] introduced the unbounded Cauchy difference
to be controlled by a sum of powers of norms like ‖f(x + y) − f(x) −
f(y)‖ ≤ ε(‖x‖p + ‖y‖p), p < 1 and then provided a generalization of
Hyers’ theorem by allowing the unique additive mapping to be linear.
In 1991, Z. Gajda [6] following the same approach as in Th.M. Rassias
[9], gave an affirmative solution to this question for p > 1. It was proved
by Z. Gajda [6] as well as by Th.M. Rassias and P. Semrl [10] that one
cannot prove the stability theorem when p = 1.

The following functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)(1.1)

is called a quadratic functional equation, and every solution of the equa-
tion (1.1) is said to be a quadratic mapping. A Hyers–Ulam stability
problem for the quadratic functional equation (1.1) was proved by Skof
for functions f : E1 → E2, where E1 is a normed space and E2 is a
Banach space [12]. S. Czerwik [5] and C. Borelli and G.L. Forti [3]
have established the generalized Hyers–Ulam stability of the quadratic
functional equation (1.1).

In this paper, we deal with the next functional equation deriving from
quadratic and additive mappings:

f(mx+ y) + f(mx− y) + 2f(x)(1.2)
= f(x+ y) + f(x− y) + 2f(mx)

where m ≥ 2 is a positive integer. The general solution and generalized
Hyers–Ulam stability for Eq. (1.2) with a special case m = 2 has been
investigated in the reference [8]. It is easy to see that the mapping
Q(x) = B(x, x) for a symmetric bi-additive mapping B and an additive
mapping A are solutions of Eq. (1.2). The main purpose of this paper
is to establish the general solution of Eq. (1.2) and investigate the
generalized Hyers–Ulam stability for Eq. (1.2) in quasi-Banach spaces.

We recall some basic facts concerning quasi-Banach spaces and some
preliminary results.
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Definition 1.1. (See [2, 11].) Let X be a real linear space. A quasi-
norm is a real-valued function on X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.
(iii) There is a constant K ≥ 1 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖) for

all x, y ∈ X.

The pair (X, ‖·‖) is called a quasi-normed space if ‖·‖ is a quasi-norm
on X. The smallest possible K is called the modulus of concavity of ‖·‖.
A quasi-Banach space is a complete quasi-normed space. A quasi-norm
‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach
space.

By the Aoki-Rolewicz theorem [11], each quasi-norm is equivalent
to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

2. Solution of Eq. (1.2)

Throughout this section, X and Y will be real vector spaces. Before
taking up the main subject in this section, we shall need the following
two lemmas.

Lemma 2.1. If an even mapping f : X → Y with f(0) = 0 satisfies
the equation (1.2) for all x, y ∈ X, then f is quadratic.

Proof. First, we note that the lemma is true for m = 2 in view of [8].
Thus we assume by induction that Lemma 2.1 is true for all 2, · · · ,m.
Now, if we replace y by x+ y in (1.2), we get by the evenness of f

f((m+ 1)x+ y) + f((m− 1)x− y) + 2f(x)(2.1)
= f(2x+ y) + f(y) + 2f(mx)

for all x, y ∈ X. Replacing y by −y in (2.1), we get by the evenness of f

f((m+ 1)x− y) + f((m− 1)x+ y) + 2f(x)(2.2)
= f(2x− y) + f(y) + 2f(mx)
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for all x, y ∈ X. If we add (2.1) to (2.2) and use the inductive argument,
we have

f((m+ 1)x+ y) + f((m+ 1)x− y)(2.3)
= 2f(y) + 4f(mx) + 2f(2x)− 4f(x)− 2f((m− 1)x)

for all x, y ∈ X. Letting y = 0 in (2.3), we get

2f((m+ 1)x) = 4f(mx) + 2f(2x)− 4f(x)− 2f((m− 1)x)

for all x ∈ X. Thus we see from (2.3) that

f(u+ y) + f(u− y) = 2f(u) + 2f(y), u := (m+ 1)x

for all u, y ∈ X. Therefore the mapping f : X → Y is quadratic. �

Corollary 2.2. If an even mapping f : X → Y satisfies the equation
(1.2) for all x, y ∈ X, then g : X → Y is quadratic, where g(x) :=
f(x)− f(0), x ∈ X.

Lemma 2.3. If an odd mapping f : X → Y satisfies (1.2) for all
x, y ∈ X, then f is additive.

Proof. The proof is very similar to that of Lemma 2.1. �

Theorem 2.4. A mapping f : X → Y satisfies the equation (1.2) for
all x, y ∈ X if and only if there exist a symmetric bi-additive mapping
B : X × X → Y and an additive mapping A : X → Y such that
f(x) = B(x, x) +A(x) + f(0) for all x ∈ X.

Proof. If there exist a symmetric bi-additive mapping B : X×X → Y
and an additive mapping A : X → Y such that f(x) = B(x, x)+A(x)+
f(0) for all x ∈ X, then it is easy to see

f(mx+ y) + f(mx− y) = 2m2B(x, x) + 2B(y, y) + 2mA(x) + 2f(0)
= f(x+ y) + f(x− y) + 2f(mx)− 2f(x)

for all x, y ∈ X. Therefore the mapping f : X → Y satisfies (1.2).
Conversely, let f satisfy the equation (1.2). Then if we decompose f

into the even part fe and the odd part fo by putting

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)
2

for all x ∈ X, it is easy to see that the mappings fe and fo satisfy the
equation (1.2). Hence by Corollary 2.2 and Lemma 2.3 we obtain that
the mappings fe − f(0) and fo are quadratic and additive, respectively.
Therefore there exists a symmetric bi-additive mapping B : X×X → Y
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and an additive mapping A : X → Y such that fe(x) = B(x, x) + f(0)
and fo(x) = A(x) for all x ∈ X. So we have

f(x) = fe(x) + fo(x) = B(x, x) +A(x) + f(0)

for all x ∈ X. �

3. Generalized Hyers–Ulam stability of Eq. (1.2)

Throughout this section, assume that X is a quasi-normed space with
quasi-norm ‖ · ‖ and that Y is a p-Banach space with p-norm ‖ · ‖. Let
K ≥ 1 be the modulus of concavity of ‖ · ‖.

In this section, using an idea of direct method we prove the general-
ized stability of Eq. (1.2) in the spirit of Hyers, Ulam and Rassias. For
convenience, we denote the following difference operator Df of a given
mapping f : X → Y as

Df(x, y)
:= f(mx+ y) + f(mx− y) + 2f(x)− f(x+ y)− f(x− y)− 2f(mx)

for all x, y ∈ X, m ≥ 2 is a positive integer. The operator Df is called
the approximate remainder and acts as a perturbation of the equation
(1.2).

First, we are going to prove the generalized Hyers–Ulam stability of
the equation (1.2) for an even function with approximate conditions.

Theorem 3.1. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which an even mapping f : X → Y satisfies the approximate
conditions

‖Df(x, y)‖ ≤ ϕ(x, y),(3.1)

Φ0(x, y) :=
∞∑
i=0

1
4ip

ϕ(2ix, 2iy)p <∞(3.2)

for all x, y ∈ X. Then the limit

Q0(x) := lim
n→∞

f(2nmx)− f(2nx)
4n

exists for all x ∈ X and Q0 : X → Y is a unique quadratic mapping
satisfying the equation (1.2) and the approximation

‖f(x)− f(mx)−Q0(x)‖ ≤
K

4

[
Φ0(x, x) + Φ0(x,mx)

] 1
p(3.3)

for all x ∈ X.
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Proof. If we put g(x) := f(x)− f(0), then g(0) = 0 and the mapping
g : X → Y also satisfies the inequality

‖Dg(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X. So we may assume f(0) = 0 without loss of generality.
By replacing y by x in (3.1), we get

‖f((m+ 1)x) + f((m− 1)x) + 2f(x)− f(2x)− 2f(mx)‖(3.4)
≤ ϕ(x, x)

for all x ∈ X. Replacing y by mx in (3.1), we have

‖f(2mx) + 2f(x)− f((m+ 1)x)− f((m− 1)x)− 2f(mx)‖(3.5)
≤ ϕ(x,mx)

for all x ∈ X. It follows from (3.4) and (3.5) that

‖f(2mx) + 4f(x)− f(2x)− 4f(mx)‖ ≤ K[ϕ(x, x) + ϕ(x,mx)]

for all x ∈ X. Letting g(x) := f(x) − f(mx) and φ(x) := ϕ(x, x) +
ϕ(x,mx), one has the crucial inequality

‖4g(x)− g(2x)‖ ≤ Kφ(x)(3.6)

for all x ∈ X. If we replace x in (3.6) by 2ix and divide both sides of
(3.6) by 4i+1, then we have∥∥∥g(2i+1x)

4i+1
− g(2ix)

4i

∥∥∥ ≤ K

4i+1
φ(2ix)

for all x ∈ X and all nonnegative integers i. Since Y is a p-Banach
space, ∥∥∥g(2lx)

4l
− g(2n+1x)

4n+1

∥∥∥p
≤

n∑
i=l

∥∥∥g(2i+1x)
4i+1

− g(2ix)
4i

∥∥∥p
(3.7)

≤
(
K

4

)p n∑
i=l

φ(2ix)p

4ip

for all nonnegative integers l and n with n ≥ l and x ∈ X. Since 0 <
p ≤ 1, it follows from (3.2) that

φ(x)p ≤ ϕ(x, x)p + ϕ(x,mx)p, and
∞∑
i=0

φ(2ix)p

4ip
<∞

for all x ∈ X. Therefore we conclude from (3.7) that a sequence
{ 1

4n g(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete,
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the sequence { 1
4n g(2nx)} converges for all x ∈ X. So one can define a

mapping Q0 : X → Y by

Q0(x) := lim
n→∞

g(2nx)
4n

= lim
n→∞

f(2nx)− f(2nmx)
4n

for all x ∈ X. Then letting l = 0 and passing the limit n→∞ in (3.7),
we get

‖g(x)−Q0(x)‖p ≤
(
K

4

)p ∞∑
i=0

1
4ip

φ(2ix)p

≤
(
K

4

)p ∞∑
i=0

1
4ip

[
ϕ(2ix, 2ix)p + ϕ(2ix, 2imx)p

]
,

which implies the approximation (3.3) for all x ∈ X.
Now, we show that Q0 is quadratic. It follows from (3.1) and (3.2)

that

‖DQ0(x, y)‖p = lim
n→∞

1
4np

‖Dg(2nx, 2ny)‖p

≤ lim
n→∞

Kp

4np

[
‖Df(2nmx, 2nmy)‖p + ‖Df(2nx, 2ny)‖p

]
≤ lim

n→∞

Kp

4np

[
ϕ(2nmx, 2nmy)p + ϕ(2nx, 2ny)p

]
= 0

for all x, y ∈ X. Therefore the mapping Q0 : X → Y satisfies (1.2).
Since Q0(0) = 0, we see from Lemma 2.1 that the mapping Q0 is qua-
dratic.

To prove the uniqueness of Q0, let T : X → Y be another quadratic
mapping satisfying (3.3). We observe that T (2nx) = 4nT (x), n ∈ N,

lim
n→∞

1
4np

∞∑
i=0

1
4ip

ϕ(2n+ix, 2n+iy)p = lim
n→∞

∞∑
i=n

1
4ip

ϕ(2ix, 2iy)p = 0

for all x, y ∈ X and so

lim
n→∞

1
4np

Φ0(2nx, 2ny) = 0

for all x, y ∈ X. Thus it follows from (3.3) and the last relation that

‖Q0(x)− T (x)‖p = lim
n→∞

1
4np

‖g(2nx)− T (2nx)‖p

≤
(
K

4

)p

lim
n→∞

1
4np

[
Φ0(2nx, 2nx) + Φ0(2nx, 2nmx)

]
= 0

for all x ∈ X. The proof is complete. �
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Theorem 3.2. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which an even mapping f : X → Y satisfies the approximate
conditions

‖Df(x, y)‖ ≤ ϕ(x, y),(3.8)

Φ1(x, y) :=
∞∑
i=1

4ipϕ
( x

2i
,
y

2i

)p
<∞(3.9)

for all x, y ∈ X. In this case the limit

Q1(x) := lim
n→∞

4n
[
f

( x

2n

)
− f

(mx
2n

)]
exists for all x ∈ X and Q1 : X → Y is a unique quadratic mapping
satisfying the equation (1.2) and the estimation

‖f(x)− f(mx)−Q1(x)‖ ≤
K

4

[
Φ1(x, x) + Φ1(x,mx)

] 1
p(3.10)

for all x ∈ X.

Proof. If we replace x in (3.6) by x
2i+1 and multiply both sides of (3.6)

by 4i, then we have∥∥∥4i+1g
( x

2i+1

)
− 4ig

( x
2i

)∥∥∥ ≤ 4iKφ
( x

2n+1

)
for all x ∈ X and all nonnegative integers i. Since Y is a p-Banach
space,∥∥∥4n+1g

( x

2n+1

)
− 4lg

( x
2l

)∥∥∥p
≤

n∑
i=l

∥∥∥4ig
( x

2i

)
− 4i+1g

( x

2i+1

)∥∥∥p

≤ Kp
n∑

i=l

4ipφ
( x

2i+1

)p

for all nonnegative integers l and n with n ≥ l and x ∈ X. Since∑∞
i=1 4ipφ

(
x
2i

)p
<∞ for all x ∈ X, it follows that a sequence {4ng

(
x
2n

)
}

is a Cauchy sequence in Y for all x ∈ X. So one can define a mapping
Q1 : X → Y by Q1(x) := limn→∞ 4n

[
f

(
x
2n

)
− f

(
mx
2n

)]
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 3.1. �

Now, we are going to prove the generalized Hyers–Ulam stability of
the equation (1.2) for an odd function with approximate conditions.

Theorem 3.3. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which an odd mapping f : X → Y satisfies the approximate
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conditions

‖Df(x, y)‖ ≤ ϕ(x, y),(3.11)

Ψ0(x, y) :=
∞∑
i=0

1
2ip

ϕ(2ix, 2iy)p <∞(3.12)

for all x, y ∈ X. Then the limit

A0(x) := lim
n→∞

f(2nx)− f(2nmx)
2n

exists for all x ∈ X and A0 : X → Y is a unique additive mapping
satisfying the equation (1.2) and the approximation

‖f(x)− f(mx)−A0(x)‖ ≤
K4

2

[
Ψ0(x)

] 1
p(3.13)

for all x ∈ X, where

Ψ0(x) := Ψ0

(x
2
,
2m+ 1

2
x
)

+ Ψ0

(x
2
,
2m− 1

2
x
)

+Ψ0

(x
2
,
3mx

2

)
+ Ψ0

(x
2
,
mx

2

)
+ Ψ0(x, x), x ∈ X.

Proof. By letting y = 3mx, y = (2m + 1)x and y = (2m − 1)x,
respectively in (3.11), we get the inequalities

‖f(4mx)− f(2mx)− f((3m+ 1)x) + f((3m− 1)x)(3.14)
−2f(mx) + 2f(x)‖ ≤ ϕ(x, 3mx),

‖f((3m+ 1)x)− f((m+ 1)x)− f(2(m+ 1)x) + f(2mx)(3.15)
−2f(mx) + 2f(x)‖ ≤ ϕ(x, (2m+ 1)x),

‖f((3m− 1)x)− f((m− 1)x)− f(2mx) + f(2(m− 1)x)(3.16)
−2f(mx) + 2f(x)‖ ≤ ϕ(x, (2m− 1)x)

for all x ∈ X. It follows from (3.14), (3.15) and (3.16),

‖f(4mx) + f(2mx) + 2f(x)− 2f(mx)− f(2(m+ 1)x)(3.17)
−f(2(m− 1)x)− f((m+ 1)x) + f((m− 1)x)‖

≤ K2[ϕ(x, (2m+ 1)x) + ϕ(x, (2m− 1)x) + ϕ(x, 3mx)]

for all x ∈ X. By letting x := 2x, y := 2x in (3.11), we get the inequality

‖f(2(m+ 1)x) + f(2(m− 1)x)− 4f(x)− 2f(2mx) + 2f(2x)‖(3.18)
≤ ϕ(2x, 2x), x ∈ X.
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By letting y = mx in (3.11), we get the inequality

‖f(2mx)− f((m+ 1)x) + f((m− 1)x)− 2f(mx) + 2f(x)‖(3.19)
≤ ϕ(x,mx), x ∈ X.

It follows from (3.17), (3.18) and (3.19) that

‖f(4mx)− 2f(2mx)− f(4x) + 2f(2x)‖
≤ K4[ϕ(x, (2m+ 1)x) + ϕ(x, (2m− 1)x) + ϕ(x, 3mx)

+ϕ(2x, 2x) + ϕ(x,mx)]

for all x ∈ X. Letting g(x) := f(x) − f(mx), we see that the last
inequality can be written by

‖2g(x)− g(2x)‖ ≤ K4
[
ϕ

(
x

2
,
2m+ 1

2
x

)
+ ϕ

(
x

2
,
2m− 1

2
x

)
(3.20)

+ϕ
(
x

2
,
3mx

2

)
+ ϕ

(x
2
,
mx

2

)
+ ϕ(x, x)

]
for all x ∈ X. For notational convenience, let’s define a mapping ψ as

ψ(x) := ϕ

(
x

2
,
2m+ 1

2
x

)
+ ϕ

(
x

2
,
2m− 1

2
x

)
+ ϕ

(
x

2
,
3mx

2

)
+ϕ

(x
2
,
mx

2

)
+ ϕ(x, x)

for all x ∈ X. Since Y is a p-Banach space, we see from (3.20)∥∥∥∥g(2n+1x)
2n+1

− g(2lx)
2l

∥∥∥∥p

≤
n∑

i=l

∥∥∥∥g(2i+1x)
2i+1

− g(2ix)
2i

∥∥∥∥p

(3.21)

≤ K4p

2p

n∑
i=l

1
2ip

ψ(2ix)p

for all non-negative integers l and n with n ≥ l and x ∈ X. Since

ψ(x)p ≤ ϕ

(
x

2
,
2m+ 1

2
x

)p

+ ϕ

(
x

2
,
2m− 1

2
x

)p

(3.22)

+ϕ
(
x

2
,
3mx

2

)p

+ ϕ
(x

2
,
mx

2

)p
+ ϕ(x, x)p

for all x ∈ X, it follows from (3.12) and (3.22) that the following series∑∞
i=0

1
2ipψ(2ix)p <∞ for all x ∈ X. Therefore we conclude from (3.21)

that a sequence { 1
2n g(2nx)} is a Cauchy sequence for all x ∈ X. Since

Y is complete, the sequence { 1
2n g(2nx)} converges for all x ∈ X. So one
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can define a mapping A0 : X → Y by A0(x) := limn→∞
f(2nx)−f(2nmx)

2n

for all x ∈ X. Then it follows from (3.12) that

‖DA0(x, y)‖p = lim
n→∞

1
2np

‖Dg(2nx, 2ny)‖p

≤ lim
n→∞

Kp

2np

[
‖Df(2nmx, 2nmy)‖p + ‖Df(2nx, 2ny)‖p

]
≤ lim

n→∞

Kp

2np

[
ϕ(2nmx, 2nmy)p + ϕ(2nx, 2ny)p

]
= 0

for all x, y ∈ X. Therefore the mapping A0 : X → Y satisfies the
equation (1.2). Since f is an odd function, the mapping A0 : X → Y is
odd. Therefore we get from Lemma 2.3 that the mapping A0 : X → Y
is additive. Further, letting l = 0 and passing the limit n→∞ in (3.21),
we get

‖g(x)−A0(x)‖p =
K4p

2p

∞∑
i=0

1
2ip

ψ(2ix)p,

which yields the approximation (3.13).
To prove the uniqueness of A0, let T : X → Y be another additive

mapping satisfying (3.13). Since

lim
n→∞

1
2np

∞∑
i=0

1
2ip

ϕ(2n+ix, 2n+iy)p = lim
n→∞

∞∑
i=n

1
2ip

ϕ(2ix, 2iy)p = 0

for all x ∈ X, one has limn→∞
1

2np Ψo(2nx) = 0 for all x ∈ X. Therefore,
it follows from (3.13) that

‖A0(x)− T (x)‖p = lim
n→∞

1
2np

‖g(2nx)− T (2nx)‖p

≤ K4p

2p
lim

n→∞

1
2np

Ψo(2nx) = 0, x ∈ X,

which proves the uniqueness of A0. This completes the proof. �

Theorem 3.4. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which an odd mapping f : X → Y satisfies the approximate
conditions

‖Df(x, y)‖ ≤ ϕ(x, y),(3.23)

Ψ1(x, y) :=
∞∑
i=1

2ipϕ
( x

2i
,
y

2i

)p
<∞(3.24)
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for all x, y ∈ X. Then the limit

A1(x) := lim
n→∞

2n
[
f(

x

2n
)− f(

mx

2n
)
]

exists for all x ∈ X and A1 : X → Y is a unique additive mapping
satisfying the equation (1.2) and the approximation

‖f(x)− f(mx)−A1(x)‖ ≤
K4

2

[
Ψ1(x)

] 1
p(3.25)

for all x ∈ X, where

Ψ1(x) := Ψ1

(x
2
,
2m+ 1

2
x
)

+ Ψ1

(x
2
,
2m− 1

2
x
)

+Ψ0

(x
2
,
3mx

2

)
+ Ψ1

(x
2
,
mx

2

)
+ Ψ1(x, x), x ∈ X.

Proof. Since Y is a p-Banach space, it is verified by (3.20) that

∥∥∥2n+1g
( x

2n+1

)
− 2lg

( x
2l

)∥∥∥p
≤

n∑
i=l

∥∥∥2ig
( x

2i

)
− 2i+1g

( x

2i+1

)∥∥∥p
(3.26)

≤ K4p

2p

n∑
i=l

2(i+1)pψ
( x

2i+1

)p

for all nonnegative integers l and n with n ≥ l and x ∈ X. Since∑∞
i=1 2ipψ

(
x
2i

)p
< ∞ for all x ∈ X, the condition (3.26) implies that

a sequence {2ng
(

x
2n

)
} is Cauchy for all x ∈ X. Since Y is complete,

the sequence {2ng
(

x
2n

)
} converges for all x ∈ X. So one can define a

mapping A1 : X → Y by A1(x) := limn→∞ 2n
[
f( x

2n )− f(mx
2n )

]
for all

x ∈ X.
The remaining proof goes through by the similar argument to Theo-

rem 3.3. �

Now, we are ready to prove the generalized Hyers–Ulam stability of
the equation (1.2) for a general function with approximate conditions.

Theorem 3.5. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which a mapping f : X → Y satisfies the approximate con-
dition (3.11) on the difference Df and (3.12) for all x, y ∈ X. Then
there exist a quadratic mapping Q : X → Y and an additive mapping
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A : X → Y satisfying (1.2) and

‖f(x)− f(mx)−Q(x)−A(x)‖(3.27)

≤ K3

8

[
Φ0(x, x) + Φ0(x,mx) + Φ0(−x,−x) + Φ0(−x,−mx)

] 1
p

+
K6

4

[
Ψ0(x) + Ψ0(−x)

] 1
p

for all x ∈ X, where Φ0 and Ψ0 are defined as in Theorem 3.1 and
Theorem 3.3, respectively, for all x ∈ X.

Proof. Let fe(x) = f(x)+f(−x)
2 be the even part of f and fo(x) =

f(x)−f(−x)
2 the odd part of f . Then it follows from (3.11) that

‖Dfe(x, y)‖ ≤
K

2
[ϕ(x, y) + ϕ(−x,−y)],(3.28)

‖Dfo(x, y)‖ ≤
K

2
[ϕ(x, y) + ϕ(−x,−y)](3.29)

for all x, y ∈ X. Hence, in view of (3.28) and Theorem 3.1, we see that
there exists a unique quadratic mapping Q : X → Y satisfying

‖fe(x)− fe(mx)−Q(x)‖(3.30)

≤ K2

8

[
Φ0(x, x) + Φ0(x,mx) + Φ0(−x,−x) + Φ0(−x,−mx)

] 1
p

for all x ∈ X.
From (3.29) and Theorem 3.3, it follows that there exists a unique

additive mapping A : X → Y satisfying

‖fo(x)− fo(mx)−A(x)‖ ≤ K5

4

[
Ψ0(x) + Ψ0(−x)

] 1
p(3.31)

for all x ∈ X. Thus it follows from (3.30) and (3.31) that

‖f(x)− f(mx)−Q(x)−A(x)‖
≤ K‖fe(x)− fe(mx)−Q(x)‖+K‖fo(x)− fo(mx)−A(x)‖

≤ K3

8

[
Φ0(x, x) + Φ0(x,mx) + Φ0(−x,−x) + Φ0(−x,−mx)

] 1
p

+
K6

4

[
Ψ0(x) + Ψ0(−x)

] 1
p

for all x ∈ X. �

Theorem 3.6. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which a mapping f : X → Y satisfies the approximate con-
dition (3.8) on the difference Df and (3.9) for all x, y ∈ X. Then
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there exist a quadratic mapping Q : X → Y and an additive mapping
A : X → Y satisfying (1.2) and

‖f(x)− f(mx)−Q(x)−A(x)‖(3.32)

≤ K3

8

[
Φ1(x, x) + Φ1(x,mx) + Φ1(−x,−x) + Φ1(−x,−mx)

] 1
p

+
K6

4

[
Ψ1(x) + Ψ1(−x)

] 1
p

for all x ∈ X, where Φ1 and Ψ1 are defined as in Theorem 3.2 and
Theorem 3.4, respectively, for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.5. �

Theorem 3.7. Suppose that there exists a mapping ϕ : X × X →
[0,∞) for which a mapping f : X → Y satisfies the approximate condi-
tion (3.1) on the difference Df and ϕ satisfies both condition (3.2) and
condition (3.24) for all x, y ∈ X. Then there exist a quadratic mapping
Q : X → Y and an additive mapping A : X → Y satisfying (1.2) and

‖f(x)− f(mx)−Q(x)−A(x)‖(3.33)

≤ K3

8

[
Φ0(x, x) + Φ0(x,mx) + Φ0(−x,−x) + Φ0(−x,−mx)

] 1
p

+
K6

4

[
Ψ1(x) + Ψ1(−x)

] 1
p

for all x ∈ X, where Φ0 and Ψ1 are defined as in Theorem 3.1 and
Theorem 3.4, respectively, for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.5. �

The following corollary is an immediate result from Theorem 3.1.

Corollary 3.8. Suppose that there exists a constant ε ≥ 0 for which
a mapping f : X → Y satisfies the approximate condition

‖Df(x, y)‖ ≤ ε

for all x, y ∈ X. Then there exist a quadratic mapping Q : X → Y and
an additive mapping A : X → Y satisfying (1.2) and

‖f(x)− f(mx)−Q(x)−A(x)‖ ≤
p
√

4K3ε

2 p
√

4p − 1
+

p
√

10K6ε

2 p
√

2p − 1

for all x ∈ X.
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