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STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS
WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES

CHANG IL KIM AND YONG SIK YUN*

ABSTRACT. In this paper, we consider the generalized Hyers-Ulam stabil-
ity for the following additive-quadratic functional equation with involution

flz+2y) = f2z+y)+ f(z+y) + flo(@) +y)+ f(z) —4f(y) — flo(y)) =0

in non-Archimedean spaces.

1. Introduction and Preliminaries

In 1940, Ulam [13] posed the following problem concerning the stability of
functional equations: Let G1 be a group and let Go a meric group with the
metric d(-,-). Given € > 0, does there exist a § > 0 such that if a mapping
h : Gy — G satisfies the inequality d(h(xzy), h(z)h(y)) < § for all z,y € G,
then there exists a homomorphism H : G — Gy with d(h(z), H(z)) < € for
allx € G1 7

In 1941, Hyers [8] answered this problem under the assumption that the
groups are Banach spaces. Aoki [1] and Rassias [10] generalized the result of
Hyers. Rassias [10] solved the generalized Hyers-Ulam stability of the functional
inequality

1f (@ +y) = fz) = F@I < e(ll=]” + llyl”)

for some €(> 0), p(< 1) and for all z,y € X, where f : X — Y is a func-

tion between Banach spaces. The paper of Rassias [10] has provided a lot of

influence in the development of what we call the generalized Hyers-Ulam stabil-

ity or Hyers-Ulam-Rassias stability of functional equations. A generalization of

the Rassias theorem was obtained by Gavruta [7] by replacing the unbounded

Cauchy difference by a general control function in the spirit of Rassis approach.
The functional equation

flx+y) + flz—y) =2f(x) +2f(y) (1)
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is called a quadratic functional equation and a solution of a quadratic functional
equation is called quadratic. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [11] for mappings f : X — Y,
where X is a normed space and Y is a Banach space. Cholewa [4] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [5] proved the generalized Hyers-Ulam stability for the
quadratic functional equation.

For an additive mapping o : X — X with o(o(z)) =z forall z € X, o
is called an involution of X. Let ¢ : X — X be an involution. Then the
functional equation

fl@+y)+ f(x+o(y) =2f(z) (2)

is called an additive functional equation with involution and a solution of (2) is
called an additive mapping with involution. And the functional equation

flz+y) + fle+o(y) =2f(z) +2f(y) 3)

(
is called the quadratic functional equation with involution and a solution of (3)
is called a quadratic mapping with involution. The functional equation (3) has
been studied by Stetkeer [2, 3, 9, 12].

In this paper, using fixed point method, we prove the generalized Hyers-Ulam
stability of the following functional equation with involution

flx+2y) = fRx+y)+ f(x+y)+ flo(x) +y) + f(z) —4f(y) — f(e(y)) = 0. (4)

A waluation is a function | - | from a field K into [0,00) such that for any
r,s € K, the following conditions hold: (i) |r| = 0 if and only if » = 0, (ii)
rsl = [rlls], and (i) |r +s| < [r| + 5]

A field K is called a valued field if K carries a valuation. The usual absolute
values of R and C are examples of valuations. If the triangle inequality is
replaced by |r + s| < max{|r|,|s|} for all r,s € K, then the valuation | - |
is called a mon-Archimedean valuation and the field with a non-Archimedean
valuation is called non-Archimedean field. If |- | is a non-Archimedean valuation
on K, then clearly, |1| = | —1| and |n| <1 for all n € N.

Definition 1. Let X be a vector space over a scalar field K with a non-
Archimedean nontrivial valuation | - |. A function || - || : X — R is called
a non-Archimedean norm if satisfies the following conditions:

(a) ||z|| = 0 if and only if x = 0,

(b) [lrz|| = [r[l|=]l, and

(c) the strong triangle inequality (ultrametric) holds, that is,

llz + Il < mazlzl], [yll}

for all z,y € X and all r € K.
If || - || is @ non-Archimedean norm, then (X, |- ||) is called a non-Archimedean
normed space. Let (X, || -]|) be a non-Archimedean normed space. Let {x,} be
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a sequence in X. Then {x,} is said to be convergent if there exists € X such

that lim, e ||2n — || = 0. In that case, x is called the limit of the sequence
{zn}, and one denotes it by lim,, . z, = z. A sequence {z,} is said to be a
Cauchy sequence if lim,,_,o0 ||€n4p — x| = 0 for all p € N. Since

[2n = 2m|l < maz{|lzjpr -zl | m <j<n—1} (n>m),

a sequence {z,} is Cauchy in (X, || - ||) if and only if {z,4+1 — @, } converges to
zero in (X, || - ||). By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.

Theorem 1.1. [6] Let (X,d) be a complete generalized metric space and let
J: X — X be a strictly contractive mapping with some Lipschitz constant L
with 0 < L < 1. Then for each given element x € X, either d(J"x, J" lx) = 0o
for all nonnegative integers n or there exists a positive integer ng such that

(1) d(J™z, J"Tz) < oo for allm > ng ;

(2) the sequence {J™x} converges to a fized point x* of J ;

(3) a* is the unique fized point of J in the set Y = {y € X | d(J™z,y) < oo}
and

1
(4) d(y,y*) < 1L d(y,Jy) for ally €Y.

Throughout this paper, we assume that X is a non-Archimedean normed
space and Y is a complete non-Archimedean normed space.

2. The generalized Hyers-Ulam stability for (4)

Using the fixed point methods, we will prove the generalized Hyers-Ulam sta-
bility of the cubic functional equation (4) with involution ¢ in non-Archimedean
normed spaces.

A mapping f : X — Y with involution is called odd(even, resp.) if for

any x € X, f(o(x)) = —f(z)(f(c(z)) = f(x), resp.). For a given mapping
f: X — Y with involution, we define operators Df, D,f, and D.f by

Df(x,y) = f(z+2y) = fQe+y)+ f(a+y)+ flo(x)+y)+ f(x)=4f(y) - f(o (),
Dof(x,y) = f(+2y) = fRx+y) + f(@+y)+ flo(@) +y) + f(z) = 3f(y),
Def(z,y) = flx+2y) — fRr+y)+ f(z+y) + flo(x) +y) + f(x) = 5f(y).

Lemma 2.1. Let f: X — Y be a mapping. Then we have the following :

(a) Suppose that f is an odd mapping satisfying
Dof(z,y) =0 (5)

for all x,y € X. Then f is an additive mapping with involution.
(b) Suppose that f is an even mapping satisfying

Dcf(z,y) =0 (6)
for all x,y € X. Then f is a quadratic mapping with involution.
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Proof. (a) Interchanging x and y in (5), we have

fQRr+y) = fle+2y) + [z +y) = flo(z) +y) + fly) =3f(x) =0 (7)
for all x,y € X and by (5) and (7), we have

fle+y) = fx)+ fy) (8)
for all z,y € X. Letting y = o(y) in (8), we get
fle+oy) = f@)+ flo(y) = f(z) = fy) (9)
for all x,y € X, By (8) and (9), one has the result.
(b) Similar to (a), we have (b). O

Theorem 2.2. Assume that ¢ : X2 — [0,00) is a mapping and there exists a
real number L with 0 < L < 1 such that

¢(2z,2y) < |2[Lo(x,y), ¢z +0o(x),y+0o(y)) < |2[Lo(z,y) (10)
forallz,y e X. Let f: X — Y be an odd mapping such that f(0) =0 and

IDf(z, y)|| < o, y) (11)

for all x,y € X. Then there exists a unique additive mapping A : X — Y with
involution such that
1

21(1—-L)
for all x € X, where ¢o(x) = max {qb(a:,O), o(z, ), ﬁd)(x +o(x), 0)}

Proof. Since f is an odd mapping, (11) is replaced by

Do f(z,y)ll < é(2,y) (13)
for all z,y € X. Consider the set S = {g | g: X — Y} and the generalized
metric d in S defined by d(g, h) = inf {c € [0,00) | |lg(x) —h(2)|| < cpo(x),Vz €

1f(2) = Al)|| < ¢o(x) (12)

X}. Then (5, d) is a complete metric space([9]). Define a mapping J : § — S

by Jg(z) = %{g(Qm) +g(x+o(x)} forallz € X andall g€ S. Let g,h € S

and d(g, h) < ¢ for some non-negative real number c¢. Then by (10), we have

1 7g(x) — Jh(z)|| < ﬁ max{||g(2x) — h(2z)[|, g(x + o (x)) — h(z + o())[|}

< cL max {(i)g(x), p%%(x + J(x))}
< cLéo(r)

for all x € X. Hence we have d(Jg,Jh) < Ld(g,h) for all g,h € S and so J is
a strictly contractive mapping. Now, putting y = 0 in (13), we get

1f(22) = 2f ()] < ¢(x,0) (14)
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for all z € X and putting y = z in (13), by (14), we get
[f(z + o)) < max{¢(x,0), p(z, )} (15)
for all z € X. By (14) and (15), we have
175@) = )] < 57 max{o(a,0), 6(z.2)} < cr0(a)
for all x € X and we have

a(Jf, f)<@<00 (16)

By Theorem 1.1, there exists a mapping A : X — Y which is a fixed point of
J such that d(J"f, A) — 0 as n — oo.
Now, we claim that the following equality holds:

(@) = 5 @) + (@ - DfE T et o@))  (7)

for all x € X and n € N. It is clear for n = 1. Suppose that (17) holds for some
n(n > 2). Then we get

(7)) =T[5 (@) + (@27 = D o)
= S () + (2" = IS o)

= 2n1+1 {f@2" 1) + F(2" (@ + 0 (2))) +2(2" = 1) f(2"(x + o()))}-

By induction, (17) holds. Since d(J™f, A) — 0 as n — oo, we have

Al) = Tim oo (F(2"0) + (2" = D" (o + o))} (18)
for all z € X.
Since |2" — 1| < 1, by (10) and (13), we get
197 Do f (2, 9)
n |27l | n—1 n—1
< e { 100 (2. 2" | Em 1D, (20 w4 @), 2 -+ o)}
1 n n |2n — 1| n—1 n—1
< mas { 5 0(2"e, 2'), S 02 o (), 2" o ()}
n Ln—l
< max { L6(z,), T0(e + 0(2)).y + o(0)) |

< L"(z,y)
for all z,y € X and n € N. Letting n — oo in the last inequality, we have
D,A(z,y) =0 for all z,y € X and since f is odd, by (18), A is odd. By Lemma

2.1, A is an additive mapping with involution. By (4) in Theorem 1.1 and (16),
we have (12).
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Assume that A; : X — Y is another additive mapping with (12). We know
that A; is a fixed point of J. Due to (3) in Theorem 1.1, we get A = A;. This
proves the uniqueness of A. O

Theorem 2.3. Assume that ¢ : X2 — [0,00) is a mapping and there exists a
real number L with 0 < L < 1 such that

¢(22,2y) < [2°Lo(z,y), ¢(z+0o(x),y+0(y) <2 Lo(z,y)  (19)

for all xz,y € X. Let f : X — Y be an even mapping such that f(0) = 0
and (11). Then there exists a unique quadratic mapping Q : X — Y with
tnvolution such that

@) = Q@I < =gy (@) (20)

(1-10)
for all x € X, where ¢1(r) = max {cﬁ(m,O), o(z, ), ﬁ(b(x + o(z), 0)}

Proof. Since f is an even mapping, (11) is replaced by

[1Def(z,9)|| < o(x,y) (21)
for all z,y € X. Consider the set S = {g | g: X — Y} and the generalized
metric d in S defined by d(g, h) = inf{c € [0,00)]| ||g(z) — h(z)]| < cp1(x), Vx €
X}. Then (S,d) is a complete metric space([9]). Define a mapping 7' : S — S
by

1

Tg(z) = 719(22) +g(z + o(2))}

for all x € X and all g € S. Let g,h € S and d(g, h) < ¢ for some non-negative
real number ¢. Then by (19), we have

[Tg(z) — Th(z)]| < ﬁ max{||g(2z) — h(2z)|, [lg(z + o(x)) — h(z + o(2))[[}
< cL¢1(x)
for all z € X. Hence we have d(T'g,Th) < Ld(g,h) for any g,h € S and so T is
a strictly contractive mapping. Now, putting y = 0 in (13), we get
1f(22) = 4f(z)|| < ¢(,0)
for all z € X and putting y = x in (13), we get

1f(22) + f(z + o(2)) — 4f (2)]| < d(z,z)

for all x € X. Hence we have

[f(z + o (x))l| <max{e(z,0), ¢(z, )}
for all z € X and since [4|L < 1,
1

1
ITf(x) = f(@)] < ] max{¢(z,0), ¢(z, )} < m%(l‘)
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for all x € X. Thus we have

d(Tf, ) < # < . (22)

By Theorem 1.1, there exists a mapping @) : X — Y which is a fixed point of
T such that d(T"f,Q) — 0 as n — oco. Similar to Theorem 2.2, we can show
that

(7)) = 5 2" + (2 = D" (& + ()

for all z € X and n € N. Since d(T"f,Q) — 0 as n — o0,

Q) = lim o {f2"0) + (2"~ DF@ (z+o@)}).  (23)

n—oo 22n
Since [2™ — 1| < 1, by (19) and (21), we get
17" De f (2, y)|

< max{WIIIDef@ z,2"y)|,

|2‘2n

62" o+ 0(2)), 2" (y + o)) |

|Def @ @ + 0(2)), 2"y + o) }

2" — 1]
|2|2n

¢(2"x,2"y),

< max { 22

< i {L0(.1). T 0(o +0()).y + o)}
< L"¢(z,y)

for all z,y € X and n € N. Letting n — oo in the last inequality, we have
D.Q(z,y) = 0 for all ,y € X and since f is even, by (23), Q is even. By
Lemma 2.1, Q is a quadratic mapping with involution. By (4) in Theorem 1.1
and (22), @ satisfies (20).

Assume that @ : X — Y is another quadratic mapping with (20). We
know that @ is a fixed point of J. Due to (3) in Theorem 1.1, we get Q@ = Q1.
This proves the uniqueness of Q. O

From now on, for any mapping f : X — Y, we deonte

f(x) — flo(x flx)+ flo(x
fw_ TE = fol) o f@) ¢ fole)
2 2
Then f, is an odd mapping and f. is an even mapping. Hence by Theorem 2.2
and Theorem 2.3, we have the following theorem.

Theorem 2.4. Assume that ¢ : X? — [0,00) is a mapping with (19). Let
f: X — Y be a mapping satisfying (11) and f(0) = 0. Then there exists a
unique additive-quadratic mapping F : X — Y with involution such that

@)~ F@) < =50 (24)
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for all x € X, where
D(z) = max {6(z,0), 6(0(2),0), 6(. 7). d(o (x), o (x)) ﬁqﬁ(m to().0)}.

Proof. By (11), we have
1D, )| < ﬁmax{qs(x,y),o:(a(x),o(y»}.

and since [2|? < |2|, by (19), max{¢(z,y), d(o(x),o(y))} satisfies (10). By The-
orem 2.2, there exists a unique additive mapping A : X — Y with involution

such that )

[ fo(x) — A(z)|| < m‘l’(ﬂf) (25)

for all x € X, where
¥(a) = max {4(2.0). 6(0 (2).0). 6(z.2). 6(0(x). o (2). G0l + 0(x).0) .

By (11), we have
1
D fe(z,y)|l < 7l max{¢(z,y), ¢(o(z),0(y))}
Then by Theorem 2.3, there exists a unique quadratic mapping @ : X — Y
with involution such that
1

for all x € X. Let FF = A+ Q. Then F is an additive-quadratic mapping with
involution and by (25) and (26), we have

[1F(z) = f(2)|| < max{[|A(z) = fo(2)], |Q(x) — fe(x)][}

for all x € X. Thus F satisfies (24).
Assume that G : X — Y is another additive-quadratic mapping with (24).
Then f, and G, are additive mappings such that

®(z) (26)

[ fo(z) = Go(2)|| < émax{\\f(w) = G|, [|f(e(z)) — G(o ()}
1
< g =gy e @), o)}
1
“pra-nt™

Due to (3) in Theorem 1.1, we have F, = A = G,.
Similarly, F. = Q = G.. Hence G = G, + G. = A+ @Q = F and this proves
the uniqueness of F'. O

Using Theorem 2.4, we obtain the following corollary concerning the stability
of (4).
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Corollary 2.5. Let 8 > 0 and p be a positive real number with p > 2. Let
f: X —Y be a mapping satisfying

1D f (@ y)l| < Olz(” + [ly[”) (27)

for all z,y € X. Suppose that |z + o(z)|| < |2|||z| for all z € X. Then there
exists a unique mapping F : X — Y with involution such that F' is a solution
of the functional equation (4) and the inequality

max{Z,ﬁ} .
@) = F@)ll € sy ollal (28)

holds for all x € X.

Proof. Let ¢(x,y) = 0(||x||P+|ly||P). Then ¢ satisfies (19) and since ||z+o(x)| <
12|||lz]], [lo(x)|| < ||z|| for all x € X, we have the results. O

By Theorem 2.4, we obtain the following corollary concerning the stability
of (4).

Corollary 2.6. Let «; : [0,00) — [0,00) (i = 1,2,3) be increasing mappings
satisfying

(i) @i(0) =0 and 0<M =max{(a1(]2]))* e=2(|2), as(12))} < |2/,

(i) o (|12]t) < a;(]2]) e (t) for all t > 0.
Let f: X — Y be a mapping such that for some 6 > 0

1D f (@ y)|| < Olar(llz)arllyll) + ez(ll2]]) + as((lyl)] (29)

for all z,y € X. Suppose that |z + o(z)|| < |2|||z| for all z € X. Then there
exists a unique additive-quadratic mapping F : X — Y with involution such
that

IIf(z) = F(z)|| < (er([lz])? + az(ll]) + as(|lz[]))

forallx € X.

6
212(12> — M)

From Corollary 2.6, we can take a1 (t) = tP, aa(t) = as(t) = t?° for all t > 0.
Then we have the following example.

Example 1. Let 0 > 0 and p a positive real number withp > 1. Let f : X — Y
be a mapping satisfying

IDf (@)l < OClllPllyl” + Il + yll**) (30)

for all z,y € X. Suppose that |z + o(z)|| < |2|||z| for all z € X. Then there
exists a unique additive-quadratic mapping F : X — Y with involution such

that 20
| f(z) = F(z)]] < WWH%

forallx € X.
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