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STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES

Chang Il Kim and Yong Sik Yun∗

Abstract. In this paper, we consider the generalized Hyers-Ulam stabil-

ity for the following additive-quadratic functional equation with involution

f(x+2y)−f(2x+y)+f(x+y)+f(σ(x)+y)+f(x)−4f(y)−f(σ(y)) = 0

in non-Archimedean spaces.

1. Introduction and Preliminaries

In 1940, Ulam [13] posed the following problem concerning the stability of
functional equations: Let G1 be a group and let G2 a meric group with the
metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a mapping
h : G1 −→ G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism H : G1 −→ G2 with d(h(x), H(x)) < ε for
all x ∈ G1?

In 1941, Hyers [8] answered this problem under the assumption that the
groups are Banach spaces. Aoki [1] and Rassias [10] generalized the result of
Hyers. Rassias [10] solved the generalized Hyers-Ulam stability of the functional
inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for some ε(≥ 0), p(< 1) and for all x, y ∈ X, where f : X −→ Y is a func-
tion between Banach spaces. The paper of Rassias [10] has provided a lot of
influence in the development of what we call the generalized Hyers-Ulam stabil-
ity or Hyers-Ulam-Rassias stability of functional equations. A generalization of
the Rassias theorem was obtained by Gǎvruta [7] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassis approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1)
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is called a quadratic functional equation and a solution of a quadratic functional
equation is called quadratic. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [11] for mappings f : X −→ Y ,
where X is a normed space and Y is a Banach space. Cholewa [4] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an
Abelian group. Czerwik [5] proved the generalized Hyers-Ulam stability for the
quadratic functional equation.

For an additive mapping σ : X −→ X with σ(σ(x)) = x for all x ∈ X, σ
is called an involution of X. Let σ : X −→ X be an involution. Then the
functional equation

f(x+ y) + f(x+ σ(y)) = 2f(x) (2)

is called an additive functional equation with involution and a solution of (2) is
called an additive mapping with involution. And the functional equation

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y) (3)

is called the quadratic functional equation with involution and a solution of (3)
is called a quadratic mapping with involution. The functional equation (3) has
been studied by Stetkær [2, 3, 9, 12].

In this paper, using fixed point method, we prove the generalized Hyers-Ulam
stability of the following functional equation with involution

f(x+2y)−f(2x+y)+f(x+y)+f(σ(x)+y)+f(x)−4f(y)−f(σ(y)) = 0. (4)

A valuation is a function | · | from a field K into [0,∞) such that for any
r, s ∈ K, the following conditions hold: (i) |r| = 0 if and only if r = 0, (ii)
|rs| = |r||s|, and (iii) |r + s| ≤ |r|+ |s|.

A field K is called a valued field if K carries a valuation. The usual absolute
values of R and C are examples of valuations. If the triangle inequality is
replaced by |r + s| ≤ max{|r|, |s|} for all r, s ∈ K, then the valuation | · |
is called a non-Archimedean valuation and the field with a non-Archimedean
valuation is called non-Archimedean field. If | · | is a non-Archimedean valuation
on K, then clearly, |1| = | − 1| and |n| ≤ 1 for all n ∈ N.

Definition 1. Let X be a vector space over a scalar field K with a non-
Archimedean nontrivial valuation | · |. A function ‖ · ‖ : X −→ R is called
a non-Archimedean norm if satisfies the following conditions:
(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖rx‖ = |r|‖x‖, and
(c) the strong triangle inequality (ultrametric) holds, that is,

||x+ y|| ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X and all r ∈ K.

If ‖·‖ is a non-Archimedean norm, then (X, ‖·‖) is called a non-Archimedean
normed space. Let (X, ‖ · ‖) be a non-Archimedean normed space. Let {xn} be
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a sequence in X. Then {xn} is said to be convergent if there exists x ∈ X such
that limn→∞ ‖xn − x‖ = 0. In that case, x is called the limit of the sequence
{xn}, and one denotes it by limn→∞ xn = x. A sequence {xn} is said to be a
Cauchy sequence if limn→∞ ‖xn+p − xn‖ = 0 for all p ∈ N. Since

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ | m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy in (X, ‖ · ‖) if and only if {xn+1 − xn} converges to
zero in (X, ‖ · ‖). By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.

Theorem 1.1. [6] Let (X, d) be a complete generalized metric space and let
J : X −→ X be a strictly contractive mapping with some Lipschitz constant L
with 0 < L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point x∗ of J ;
(3) x∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞}
and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

Throughout this paper, we assume that X is a non-Archimedean normed
space and Y is a complete non-Archimedean normed space.

2. The generalized Hyers-Ulam stability for (4)

Using the fixed point methods, we will prove the generalized Hyers-Ulam sta-
bility of the cubic functional equation (4) with involution σ in non-Archimedean
normed spaces.

A mapping f : X −→ Y with involution is called odd(even, resp.) if for
any x ∈ X, f(σ(x)) = −f(x)(f(σ(x)) = f(x), resp.). For a given mapping
f : X −→ Y with involution, we define operators Df , Dof , and Def by

Df(x, y) = f(x+2y)−f(2x+y)+f(x+y)+f(σ(x)+y)+f(x)−4f(y)−f(σ(y)),

Dof(x, y) = f(x+ 2y)− f(2x+ y) + f(x+ y) + f(σ(x) + y) + f(x)− 3f(y),

Def(x, y) = f(x+ 2y)− f(2x+ y) + f(x+ y) + f(σ(x) + y) + f(x)− 5f(y).

Lemma 2.1. Let f : X −→ Y be a mapping. Then we have the following :
(a) Suppose that f is an odd mapping satisfying

Dof(x, y) = 0 (5)

for all x, y ∈ X. Then f is an additive mapping with involution.
(b) Suppose that f is an even mapping satisfying

Def(x, y) = 0 (6)

for all x, y ∈ X. Then f is a quadratic mapping with involution.
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Proof. (a) Interchanging x and y in (5), we have

f(2x+ y)− f(x+ 2y) + f(x+ y)− f(σ(x) + y) + f(y)− 3f(x) = 0 (7)

for all x, y ∈ X and by (5) and (7), we have

f(x+ y) = f(x) + f(y) (8)

for all x, y ∈ X. Letting y = σ(y) in (8), we get

f(x+ σ(y)) = f(x) + f(σ(y)) = f(x)− f(y) (9)

for all x, y ∈ X, By (8) and (9), one has the result.
(b) Similar to (a), we have (b). �

Theorem 2.2. Assume that φ : X2 −→ [0,∞) is a mapping and there exists a
real number L with 0 < L < 1 such that

φ(2x, 2y) ≤ |2|Lφ(x, y), φ(x+ σ(x), y + σ(y)) ≤ |2|Lφ(x, y) (10)

for all x, y ∈ X. Let f : X −→ Y be an odd mapping such that f(0) = 0 and

‖Df(x, y)‖ ≤ φ(x, y) (11)

for all x, y ∈ X. Then there exists a unique additive mapping A : X −→ Y with
involution such that

‖f(x)−A(x)‖ ≤ 1

|2|(1− L)
φ0(x) (12)

for all x ∈ X, where φ0(x) = max
{
φ(x, 0), φ(x, x), 1

|2|Lφ(x+ σ(x), 0)
}

Proof. Since f is an odd mapping, (11) is replaced by

‖Dof(x, y)‖ ≤ φ(x, y) (13)

for all x, y ∈ X. Consider the set S = {g | g : X −→ Y } and the generalized

metric d in S defined by d(g, h) = inf
{
c ∈ [0,∞) | ‖g(x)−h(x)‖ ≤ cφ0(x),∀x ∈

X
}

. Then (S, d) is a complete metric space([9]). Define a mapping J : S −→ S

by Jg(x) =
1

2
{g(2x) + g(x + σ(x))} for all x ∈ X and all g ∈ S. Let g, h ∈ S

and d(g, h) ≤ c for some non-negative real number c. Then by (10), we have

‖Jg(x)− Jh(x)‖ ≤ 1

|2|
max{‖g(2x)− h(2x)‖, ‖g(x+ σ(x))− h(x+ σ(x))‖}

≤ cLmax
{
φ0(x),

1

|2|L
φ0(x+ σ(x))

}
≤ cLφ0(x)

for all x ∈ X. Hence we have d(Jg, Jh) ≤ Ld(g, h) for all g, h ∈ S and so J is
a strictly contractive mapping. Now, putting y = 0 in (13), we get

‖f(2x)− 2f(x)‖ ≤ φ(x, 0) (14)
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for all x ∈ X and putting y = x in (13), by (14), we get

‖f(x+ σ(x))‖ ≤ max{φ(x, 0), φ(x, x)} (15)

for all x ∈ X. By (14) and (15), we have

‖Jf(x)− f(x)‖ ≤ 1

|2|
max{φ(x, 0), φ(x, x)} ≤ 1

|2|
φ0(x)

for all x ∈ X and we have

d(Jf, f) ≤ 1

|2|
<∞. (16)

By Theorem 1.1, there exists a mapping A : X −→ Y which is a fixed point of
J such that d(Jnf,A)→ 0 as n→∞.

Now, we claim that the following equality holds:

(Jnf)(x) =
1

2n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))} (17)

for all x ∈ X and n ∈ N. It is clear for n = 1. Suppose that (17) holds for some
n(n ≥ 2). Then we get

(Jn+1f)(x) = J
[ 1

2n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))}

]
=

1

2n
{Jf(2nx) + (2n − 1)Jf(2n−1(x+ σ(x)))}

=
1

2n+1
{f(2n+1x) + f(2n(x+ σ(x))) + 2(2n − 1)f(2n(x+ σ(x)))}.

By induction, (17) holds. Since d(Jnf,A)→ 0 as n→∞, we have

A(x) = lim
n→∞

1

2n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))} (18)

for all x ∈ X.
Since |2n − 1| ≤ 1, by (10) and (13), we get

‖JnDof(x, y)‖

≤ max
{ 1

|2|n
|‖Dof(2nx, 2ny)‖, |2

n − 1|
|2|n

‖Dof(2n−1(x+ σ(x)), 2n−1(y + σ(y)))‖
}

≤ max
{ 1

|2|n
φ(2nx, 2ny),

|2n − 1|
|2|n

φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))
}

≤ max
{
Lnφ(x, y),

Ln−1

|2|
φ(x+ σ(x)), y + σ(y)))

}
≤ Lnφ(x, y)

for all x, y ∈ X and n ∈ N. Letting n → ∞ in the last inequality, we have
DoA(x, y) = 0 for all x, y ∈ X and since f is odd, by (18), A is odd. By Lemma
2.1, A is an additive mapping with involution. By (4) in Theorem 1.1 and (16),
we have (12).
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Assume that A1 : X −→ Y is another additive mapping with (12). We know
that A1 is a fixed point of J . Due to (3) in Theorem 1.1, we get A = A1. This
proves the uniqueness of A. �

Theorem 2.3. Assume that φ : X2 −→ [0,∞) is a mapping and there exists a
real number L with 0 < L < 1 such that

φ(2x, 2y) ≤ |2|2Lφ(x, y), φ(x+ σ(x), y + σ(y)) ≤ |2|2Lφ(x, y) (19)

for all x, y ∈ X. Let f : X −→ Y be an even mapping such that f(0) = 0
and (11). Then there exists a unique quadratic mapping Q : X −→ Y with
involution such that

‖f(x)−Q(x)‖ ≤ 1

|2|2(1− L)
φ1(x) (20)

for all x ∈ X, where φ1(x) = max
{
φ(x, 0), φ(x, x), 1

|4|Lφ(x+ σ(x), 0)
}

Proof. Since f is an even mapping, (11) is replaced by

‖Def(x, y)‖ ≤ φ(x, y) (21)

for all x, y ∈ X. Consider the set S = {g | g : X −→ Y } and the generalized
metric d in S defined by d(g, h) = inf{c ∈ [0,∞)| ‖g(x)−h(x)‖ ≤ cφ1(x), ∀x ∈
X}. Then (S, d) is a complete metric space([9]). Define a mapping T : S −→ S
by

Tg(x) =
1

4
{g(2x) + g(x+ σ(x))}

for all x ∈ X and all g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some non-negative
real number c. Then by (19), we have

‖Tg(x)− Th(x)‖ ≤ 1

|2|2
max{‖g(2x)− h(2x)‖, ‖g(x+ σ(x))− h(x+ σ(x))‖}

≤ cLφ1(x)

for all x ∈ X. Hence we have d(Tg, Th) ≤ Ld(g, h) for any g, h ∈ S and so T is
a strictly contractive mapping. Now, putting y = 0 in (13), we get

‖f(2x)− 4f(x)‖ ≤ φ(x, 0)

for all x ∈ X and putting y = x in (13), we get

‖f(2x) + f(x+ σ(x))− 4f(x)‖ ≤ φ(x, x)

for all x ∈ X. Hence we have

‖f(x+ σ(x))‖ ≤ max{φ(x, 0), φ(x, x)}

for all x ∈ X and since |4|L < 1,

‖Tf(x)− f(x)‖ ≤ 1

|4|
max{φ(x, 0), φ(x, x)} ≤ 1

|4|
φ1(x)



STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS 699

for all x ∈ X. Thus we have

d(Tf, f) ≤ 1

|2|2
<∞. (22)

By Theorem 1.1, there exists a mapping Q : X −→ Y which is a fixed point of
T such that d(Tnf,Q) → 0 as n → ∞. Similar to Theorem 2.2, we can show
that

(Tnf)(x) =
1

22n
{f(2nx) + (2n − 1)f(2n−1(x+ σ(x)))}

for all x ∈ X and n ∈ N. Since d(Tnf,Q)→ 0 as n→∞,

Q(x) = lim
n→∞

1

22n
{f(2nx) + (2n − 1)f(2n−1

(
x+ σ(x)))}. (23)

Since |2n − 1| ≤ 1, by (19) and (21), we get

‖JnDef(x, y)‖

≤ max
{ 1

|2|2n
|‖Def(2nx, 2ny)‖, |2

n − 1|
|2|2n

‖Def(2n−1(x+ σ(x)), 2n−1(y + σ(y)))‖
}

≤ max
{ 1

|2|2n
φ(2nx, 2ny),

|2n − 1|
|2|2n

φ(2n−1(x+ σ(x)), 2n−1(y + σ(y)))
}

≤ max
{
Lnφ(x, y),

Ln−1

|2|2
φ(x+ σ(x)), y + σ(y)))

}
≤ Lnφ(x, y)

for all x, y ∈ X and n ∈ N. Letting n → ∞ in the last inequality, we have
DeQ(x, y) = 0 for all x, y ∈ X and since f is even, by (23), Q is even. By
Lemma 2.1, Q is a quadratic mapping with involution. By (4) in Theorem 1.1
and (22), Q satisfies (20).

Assume that Q1 : X −→ Y is another quadratic mapping with (20). We
know that Q1 is a fixed point of J . Due to (3) in Theorem 1.1, we get Q = Q1.
This proves the uniqueness of Q. �

From now on, for any mapping f : X −→ Y , we deonte

fo(x) =
f(x)− f(σ(x))

2
, fe(x) =

f(x) + f(σ(x))

2
.

Then fo is an odd mapping and fe is an even mapping. Hence by Theorem 2.2
and Theorem 2.3, we have the following theorem.

Theorem 2.4. Assume that φ : X2 −→ [0,∞) is a mapping with (19). Let
f : X −→ Y be a mapping satisfying (11) and f(0) = 0. Then there exists a
unique additive-quadratic mapping F : X −→ Y with involution such that

‖f(x)− F (x)‖ ≤ 1

|2|3(1− L)
Φ(x) (24)
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for all x ∈ X, where

Φ(x) = max
{
φ(x, 0), φ(σ(x), 0), φ(x, x), φ(σ(x), σ(x)),

1

|4|L
φ(x+ σ(x), 0)

}
.

Proof. By (11), we have

‖Dfo(x, y)‖ ≤ 1

|2|
max{φ(x, y), φ(σ(x), σ(y))}.

and since |2|2 ≤ |2|, by (19), max{φ(x, y), φ(σ(x), σ(y))} satisfies (10). By The-
orem 2.2, there exists a unique additive mapping A : X −→ Y with involution
such that

‖fo(x)−A(x)‖ ≤ 1

|2|2(1− L)
Ψ(x) (25)

for all x ∈ X, where

Ψ(x) = max
{
φ(x, 0), φ(σ(x), 0), φ(x, x), φ(σ(x), σ(x)),

1

|2|L
φ(x+ σ(x), 0)

}
.

By (11), we have

‖Dfe(x, y)‖ ≤ 1

|2|
max{φ(x, y), φ(σ(x), σ(y))}

Then by Theorem 2.3, there exists a unique quadratic mapping Q : X −→ Y
with involution such that

‖fe(x)−Q(x)‖ ≤ 1

|2|3(1− L)
Φ(x) (26)

for all x ∈ X. Let F = A+Q. Then F is an additive-quadratic mapping with
involution and by (25) and (26), we have

‖F (x)− f(x)‖ ≤ max{‖A(x)− fo(x)‖, ‖Q(x)− fe(x)‖}

for all x ∈ X. Thus F satisfies (24).
Assume that G : X −→ Y is another additive-quadratic mapping with (24).

Then fo and Go are additive mappings such that

‖fo(x)−Go(x)‖ ≤ 1

|2|
max{‖f(x)−G(x)‖, ‖f(σ(x))−G(σ(x))‖}

≤ 1

|2|4(1− L)
max{Φ(x),Φ(σ(x))}

=
1

|2|4(1− L)
Φ(x)

Due to (3) in Theorem 1.1, we have Fo = A = Go.
Similarly, Fe = Q = Ge. Hence G = Go +Ge = A+Q = F and this proves

the uniqueness of F . �

Using Theorem 2.4, we obtain the following corollary concerning the stability
of (4).
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Corollary 2.5. Let θ ≥ 0 and p be a positive real number with p > 2. Let
f : X −→ Y be a mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p) (27)

for all x, y ∈ X. Suppose that ‖x + σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there
exists a unique mapping F : X −→ Y with involution such that F is a solution
of the functional equation (4) and the inequality

||f(x)− F (x)|| ≤
max

{
2, 1
|2|2

}
|2|(|2|2 − |2|p)

θ||x||p (28)

holds for all x ∈ X.

Proof. Let φ(x, y) = θ(‖x‖p+‖y‖p). Then φ satisfies (19) and since ‖x+σ(x)‖ ≤
|2|‖x‖, ‖σ(x)‖ ≤ ‖x‖ for all x ∈ X, we have the results. �

By Theorem 2.4, we obtain the following corollary concerning the stability
of (4).

Corollary 2.6. Let αi : [0,∞) −→ [0,∞) (i = 1, 2, 3) be increasing mappings
satisfying

(i) αi(0) = 0 and 0 < M = max{(α1(|2|))2, α2(|2|), α3(|2|)} < |2|2,
(ii) αi(|2|t) ≤ αi(|2|)αi(t) for all t ≥ 0.

Let f : X −→ Y be a mapping such that for some θ ≥ 0

‖Df(x, y)‖ ≤ θ[α1(‖x‖)α1(‖y‖) + α2(‖x‖) + α3(‖y‖)] (29)

for all x, y ∈ X. Suppose that ‖x + σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there
exists a unique additive-quadratic mapping F : X −→ Y with involution such
that

||f(x)− F (x)|| ≤ θ

|2|2(|2|2 −M)
(α1(‖x‖)2 + α2(‖x‖) + α3(‖x‖))

for all x ∈ X.

From Corollary 2.6, we can take α1(t) = tp, α2(t) = α3(t) = t2p for all t ≥ 0.
Then we have the following example.

Example 1. Let θ ≥ 0 and p a positive real number with p > 1. Let f : X −→ Y
be a mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p) (30)

for all x, y ∈ X. Suppose that ‖x + σ(x)‖ ≤ |2|‖x‖ for all x ∈ X. Then there
exists a unique additive-quadratic mapping F : X −→ Y with involution such
that

||f(x)− F (x)|| ≤ 3θ

|2|2(|2|2 − |2|2p)
||x||2p

for all x ∈ X.
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