East Asian Math. J.
Vol. 34 (2018), No. 5, pp. 693-702
YNMS
http://dx.doi.org/10.7858/eamj.2018.048

STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS WITH INVOLUTION IN NON-ARCHIMEDEAN SPACES

Chang Il Kim and Yong Sik Yun*

Abstract

In this paper, we consider the generalized Hyers-Ulam stability for the following additive-quadratic functional equation with involution $f(x+2 y)-f(2 x+y)+f(x+y)+f(\sigma(x)+y)+f(x)-4 f(y)-f(\sigma(y))=0$ in non-Archimedean spaces.

1. Introduction and Preliminaries

In 1940, Ulam [13] posed the following problem concerning the stability of functional equations: Let G_{1} be a group and let G_{2} a meric group with the metric $d(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $a \delta>0$ such that if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \longrightarrow G_{2}$ with $d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$?

In 1941, Hyers [8] answered this problem under the assumption that the groups are Banach spaces. Aoki [1] and Rassias [10] generalized the result of Hyers. Rassias [10] solved the generalized Hyers-Ulam stability of the functional inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for some $\epsilon(\geq 0), p(<1)$ and for all $x, y \in X$, where $f: X \longrightarrow Y$ is a function between Banach spaces. The paper of Rassias [10] has provided a lot of influence in the development of what we call the generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. A generalization of the Rassias theorem was obtained by Gǎvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassis approach.

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1}
\end{equation*}
$$

[^0]is called a quadratic functional equation and a solution of a quadratic functional equation is called quadratic. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [11] for mappings $f: X \longrightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [4] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [5] proved the generalized Hyers-Ulam stability for the quadratic functional equation.

For an additive mapping $\sigma: X \longrightarrow X$ with $\sigma(\sigma(x))=x$ for all $x \in X, \sigma$ is called an involution of X. Let $\sigma: X \longrightarrow X$ be an involution. Then the functional equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x) \tag{2}
\end{equation*}
$$

is called an additive functional equation with involution and a solution of (2) is called an additive mapping with involution. And the functional equation

$$
\begin{equation*}
f(x+y)+f(x+\sigma(y))=2 f(x)+2 f(y) \tag{3}
\end{equation*}
$$

is called the quadratic functional equation with involution and a solution of (3) is called a quadratic mapping with involution. The functional equation (3) has been studied by Stetkær $[2,3,9,12]$.

In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of the following functional equation with involution

$$
\begin{equation*}
f(x+2 y)-f(2 x+y)+f(x+y)+f(\sigma(x)+y)+f(x)-4 f(y)-f(\sigma(y))=0 \tag{4}
\end{equation*}
$$

A valuation is a function $|\cdot|$ from a field K into $[0, \infty)$ such that for any $r, s \in K$, the following conditions hold: (i) $|r|=0$ if and only if $r=0$, (ii) $|r s|=|r||s|$, and (iii) $|r+s| \leq|r|+|s|$.

A field K is called a valued field if K carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations. If the triangle inequality is replaced by $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in K$, then the valuation $|\cdot|$ is called a non-Archimedean valuation and the field with a non-Archimedean valuation is called non-Archimedean field. If $|\cdot|$ is a non-Archimedean valuation on K, then clearly, $|1|=|-1|$ and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Definition 1. Let X be a vector space over a scalar field K with a nonArchimedean nontrivial valuation $|\cdot|$. A function $\|\cdot\|: X \longrightarrow \mathbb{R}$ is called a non-Archimedean norm if satisfies the following conditions:
(a) $\|x\|=0$ if and only if $x=0$,
(b) $\|r x\|=|r|\|x\|$, and
(c) the strong triangle inequality (ultrametric) holds, that is,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$ and all $r \in K$.
If $\|\cdot\|$ is a non-Archimedean norm, then $(X,\|\cdot\|)$ is called a non-Archimedean normed space. Let $(X,\|\cdot\|)$ be a non-Archimedean normed space. Let $\left\{x_{n}\right\}$ be
a sequence in X. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$. In that case, x is called the limit of the sequence $\left\{x_{n}\right\}$, and one denotes it by $\lim _{n \rightarrow \infty} x_{n}=x$. A sequence $\left\{x_{n}\right\}$ is said to be a Cauchy sequence if $\lim _{n \rightarrow \infty}\left\|x_{n+p}-x_{n}\right\|=0$ for all $p \in \mathbb{N}$. Since

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\| \mid m \leq j \leq n-1\right\} \quad(n>m),
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy in $(X,\|\cdot\|)$ if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in $(X,\|\cdot\|)$. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

Theorem 1.1. [6] Let (X, d) be a complete generalized metric space and let $J: X \longrightarrow X$ be a strictly contractive mapping with some Lipschitz constant L with $0<L<1$. Then for each given element $x \in X$, either $d\left(J^{n} x, J^{n+1} x\right)=\infty$ for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point x^{*} of J;
(3) x^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n_{0}} x, y\right)<\infty\right\}$ and
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Throughout this paper, we assume that X is a non-Archimedean normed space and Y is a complete non-Archimedean normed space.

2. The generalized Hyers-Ulam stability for (4)

Using the fixed point methods, we will prove the generalized Hyers-Ulam stability of the cubic functional equation (4) with involution σ in non-Archimedean normed spaces.

A mapping $f: X \longrightarrow Y$ with involution is called odd(even, resp.) if for any $x \in X, f(\sigma(x))=-f(x)(f(\sigma(x))=f(x)$, resp.). For a given mapping $f: X \longrightarrow Y$ with involution, we define operators $D f, D_{o} f$, and $D_{e} f$ by

$$
\begin{gathered}
D f(x, y)=f(x+2 y)-f(2 x+y)+f(x+y)+f(\sigma(x)+y)+f(x)-4 f(y)-f(\sigma(y)), \\
D_{o} f(x, y)=f(x+2 y)-f(2 x+y)+f(x+y)+f(\sigma(x)+y)+f(x)-3 f(y), \\
D_{e} f(x, y)=f(x+2 y)-f(2 x+y)+f(x+y)+f(\sigma(x)+y)+f(x)-5 f(y)
\end{gathered}
$$

Lemma 2.1. Let $f: X \longrightarrow Y$ be a mapping. Then we have the following :
(a) Suppose that f is an odd mapping satisfying

$$
\begin{equation*}
D_{o} f(x, y)=0 \tag{5}
\end{equation*}
$$

for all $x, y \in X$. Then f is an additive mapping with involution.
(b) Suppose that f is an even mapping satisfying

$$
\begin{equation*}
D_{e} f(x, y)=0 \tag{6}
\end{equation*}
$$

for all $x, y \in X$. Then f is a quadratic mapping with involution.

Proof. (a) Interchanging x and y in (5), we have

$$
\begin{equation*}
f(2 x+y)-f(x+2 y)+f(x+y)-f(\sigma(x)+y)+f(y)-3 f(x)=0 \tag{7}
\end{equation*}
$$

for all $x, y \in X$ and by (5) and (7), we have

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{8}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=\sigma(y)$ in (8), we get

$$
\begin{equation*}
f(x+\sigma(y))=f(x)+f(\sigma(y))=f(x)-f(y) \tag{9}
\end{equation*}
$$

for all $x, y \in X, \mathrm{By}(8)$ and (9), one has the result.
(b) Similar to (a), we have (b).

Theorem 2.2. Assume that $\phi: X^{2} \longrightarrow[0, \infty)$ is a mapping and there exists a real number L with $0<L<1$ such that

$$
\begin{equation*}
\phi(2 x, 2 y) \leq|2| L \phi(x, y), \phi(x+\sigma(x), y+\sigma(y)) \leq|2| L \phi(x, y) \tag{10}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \longrightarrow Y$ be an odd mapping such that $f(0)=0$ and

$$
\begin{equation*}
\|D f(x, y)\| \leq \phi(x, y) \tag{11}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \longrightarrow Y$ with involution such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{1}{|2|(1-L)} \phi_{0}(x) \tag{12}
\end{equation*}
$$

for all $x \in X$, where $\phi_{0}(x)=\max \left\{\phi(x, 0), \phi(x, x), \frac{1}{|2| L} \phi(x+\sigma(x), 0)\right\}$
Proof. Since f is an odd mapping, (11) is replaced by

$$
\begin{equation*}
\left\|D_{o} f(x, y)\right\| \leq \phi(x, y) \tag{13}
\end{equation*}
$$

for all $x, y \in X$. Consider the set $S=\{g \mid g: X \longrightarrow Y\}$ and the generalized metric d in S defined by $d(g, h)=\inf \left\{c \in[0, \infty) \mid\|g(x)-h(x)\| \leq c \phi_{0}(x), \forall x \in\right.$ $X\}$. Then (S, d) is a complete metric space $([9])$. Define a mapping $J: S \longrightarrow S$ by $J g(x)=\frac{1}{2}\{g(2 x)+g(x+\sigma(x))\}$ for all $x \in X$ and all $g \in S$. Let $g, h \in S$ and $d(g, h) \leq c$ for some non-negative real number c. Then by (10), we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| & \leq \frac{1}{|2|} \max \{\|g(2 x)-h(2 x)\|,\|g(x+\sigma(x))-h(x+\sigma(x))\|\} \\
& \leq c L \max \left\{\phi_{0}(x), \frac{1}{|2| L} \phi_{0}(x+\sigma(x))\right\} \\
& \leq c L \phi_{0}(x)
\end{aligned}
$$

for all $x \in X$. Hence we have $d(J g, J h) \leq L d(g, h)$ for all $g, h \in S$ and so J is a strictly contractive mapping. Now, putting $y=0$ in (13), we get

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \phi(x, 0) \tag{14}
\end{equation*}
$$

for all $x \in X$ and putting $y=x$ in (13), by (14), we get

$$
\begin{equation*}
\|f(x+\sigma(x))\| \leq \max \{\phi(x, 0), \phi(x, x)\} \tag{15}
\end{equation*}
$$

for all $x \in X$. By (14) and (15), we have

$$
\|J f(x)-f(x)\| \leq \frac{1}{|2|} \max \{\phi(x, 0), \phi(x, x)\} \leq \frac{1}{|2|} \phi_{0}(x)
$$

for all $x \in X$ and we have

$$
\begin{equation*}
d(J f, f) \leq \frac{1}{|2|}<\infty \tag{16}
\end{equation*}
$$

By Theorem 1.1, there exists a mapping $A: X \longrightarrow Y$ which is a fixed point of J such that $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$.

Now, we claim that the following equality holds:

$$
\begin{equation*}
\left(J^{n} f\right)(x)=\frac{1}{2^{n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1}(x+\sigma(x))\right)\right\} \tag{17}
\end{equation*}
$$

for all $x \in X$ and $n \in \mathbb{N}$. It is clear for $n=1$. Suppose that (17) holds for some $n(n \geq 2)$. Then we get

$$
\begin{aligned}
\left(J^{n+1} f\right)(x) & =J\left[\frac{1}{2^{n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1}(x+\sigma(x))\right)\right\}\right] \\
& =\frac{1}{2^{n}}\left\{J f\left(2^{n} x\right)+\left(2^{n}-1\right) J f\left(2^{n-1}(x+\sigma(x))\right)\right\} \\
& =\frac{1}{2^{n+1}}\left\{f\left(2^{n+1} x\right)+f\left(2^{n}(x+\sigma(x))\right)+2\left(2^{n}-1\right) f\left(2^{n}(x+\sigma(x))\right)\right\}
\end{aligned}
$$

By induction, (17) holds. Since $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$, we have

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1}(x+\sigma(x))\right)\right\} \tag{18}
\end{equation*}
$$

for all $x \in X$.
Since $\left|2^{n}-1\right| \leq 1$, by (10) and (13), we get
$\left\|J^{n} D_{o} f(x, y)\right\|$
$\leq \max \left\{\left.\frac{1}{|2|^{n}} \right\rvert\,\left\|D_{o} f\left(2^{n} x, 2^{n} y\right)\right\|, \frac{\left|2^{n}-1\right|}{|2|^{n}}\left\|D_{o} f\left(2^{n-1}(x+\sigma(x)), 2^{n-1}(y+\sigma(y))\right)\right\|\right\}$
$\leq \max \left\{\frac{1}{|2|^{n}} \phi\left(2^{n} x, 2^{n} y\right), \frac{\left|2^{n}-1\right|}{|2|^{n}} \phi\left(2^{n-1}(x+\sigma(x)), 2^{n-1}(y+\sigma(y))\right)\right\}$
$\left.\left.\leq \max \left\{L^{n} \phi(x, y), \frac{L^{n-1}}{|2|} \phi(x+\sigma(x)), y+\sigma(y)\right)\right)\right\}$
$\leq L^{n} \phi(x, y)$
for all $x, y \in X$ and $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in the last inequality, we have $D_{o} A(x, y)=0$ for all $x, y \in X$ and since f is odd, by (18), A is odd. By Lemma 2.1, A is an additive mapping with involution. By (4) in Theorem 1.1 and (16), we have (12).

Assume that $A_{1}: X \longrightarrow Y$ is another additive mapping with (12). We know that A_{1} is a fixed point of J. Due to (3) in Theorem 1.1, we get $A=A_{1}$. This proves the uniqueness of A.

Theorem 2.3. Assume that $\phi: X^{2} \longrightarrow[0, \infty)$ is a mapping and there exists a real number L with $0<L<1$ such that

$$
\begin{equation*}
\phi(2 x, 2 y) \leq|2|^{2} L \phi(x, y), \phi(x+\sigma(x), y+\sigma(y)) \leq|2|^{2} L \phi(x, y) \tag{19}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \longrightarrow Y$ be an even mapping such that $f(0)=0$ and (11). Then there exists a unique quadratic mapping $Q: X \longrightarrow Y$ with involution such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{|2|^{2}(1-L)} \phi_{1}(x) \tag{20}
\end{equation*}
$$

for all $x \in X$, where $\phi_{1}(x)=\max \left\{\phi(x, 0), \phi(x, x), \frac{1}{|4| L} \phi(x+\sigma(x), 0)\right\}$
Proof. Since f is an even mapping, (11) is replaced by

$$
\begin{equation*}
\left\|D_{e} f(x, y)\right\| \leq \phi(x, y) \tag{21}
\end{equation*}
$$

for all $x, y \in X$. Consider the set $S=\{g \mid g: X \longrightarrow Y\}$ and the generalized metric d in S defined by $d(g, h)=\inf \left\{c \in[0, \infty) \mid\|g(x)-h(x)\| \leq c \phi_{1}(x), \forall x \in\right.$ $X\}$. Then (S, d) is a complete metric space([9]). Define a mapping $T: S \longrightarrow S$ by

$$
T g(x)=\frac{1}{4}\{g(2 x)+g(x+\sigma(x))\}
$$

for all $x \in X$ and all $g \in S$. Let $g, h \in S$ and $d(g, h) \leq c$ for some non-negative real number c. Then by (19), we have

$$
\begin{aligned}
\|T g(x)-T h(x)\| & \leq \frac{1}{|2|^{2}} \max \{\|g(2 x)-h(2 x)\|,\|g(x+\sigma(x))-h(x+\sigma(x))\|\} \\
& \leq c L \phi_{1}(x)
\end{aligned}
$$

for all $x \in X$. Hence we have $d(T g, T h) \leq L d(g, h)$ for any $g, h \in S$ and so T is a strictly contractive mapping. Now, putting $y=0$ in (13), we get

$$
\|f(2 x)-4 f(x)\| \leq \phi(x, 0)
$$

for all $x \in X$ and putting $y=x$ in (13), we get

$$
\|f(2 x)+f(x+\sigma(x))-4 f(x)\| \leq \phi(x, x)
$$

for all $x \in X$. Hence we have

$$
\|f(x+\sigma(x))\| \leq \max \{\phi(x, 0), \phi(x, x)\}
$$

for all $x \in X$ and since $|4| L<1$,

$$
\|T f(x)-f(x)\| \leq \frac{1}{|4|} \max \{\phi(x, 0), \phi(x, x)\} \leq \frac{1}{|4|} \phi_{1}(x)
$$

for all $x \in X$. Thus we have

$$
\begin{equation*}
d(T f, f) \leq \frac{1}{|2|^{2}}<\infty \tag{22}
\end{equation*}
$$

By Theorem 1.1, there exists a mapping $Q: X \longrightarrow Y$ which is a fixed point of T such that $d\left(T^{n} f, Q\right) \rightarrow 0$ as $n \rightarrow \infty$. Similar to Theorem 2.2, we can show that

$$
\left(T^{n} f\right)(x)=\frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1}(x+\sigma(x))\right)\right\}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Since $d\left(T^{n} f, Q\right) \rightarrow 0$ as $n \rightarrow \infty$,

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{2 n}}\left\{f\left(2^{n} x\right)+\left(2^{n}-1\right) f\left(2^{n-1}(x+\sigma(x))\right)\right\} . \tag{23}
\end{equation*}
$$

Since $\left|2^{n}-1\right| \leq 1$, by (19) and (21), we get

$$
\begin{aligned}
& \left\|J^{n} D_{e} f(x, y)\right\| \\
\leq & \max \left\{\left.\frac{1}{|2|^{2 n}} \right\rvert\,\left\|D_{e} f\left(2^{n} x, 2^{n} y\right)\right\|, \frac{\left|2^{n}-1\right|}{|2|^{2 n}}\left\|D_{e} f\left(2^{n-1}(x+\sigma(x)), 2^{n-1}(y+\sigma(y))\right)\right\|\right\} \\
\leq & \max \left\{\frac{1}{|2|^{2 n}} \phi\left(2^{n} x, 2^{n} y\right), \frac{\left|2^{n}-1\right|}{|2|^{2 n}} \phi\left(2^{n-1}(x+\sigma(x)), 2^{n-1}(y+\sigma(y))\right)\right\} \\
\leq & \left.\left.\max \left\{L^{n} \phi(x, y), \frac{L^{n-1}}{|2|^{2}} \phi(x+\sigma(x)), y+\sigma(y)\right)\right)\right\} \\
\leq & L^{n} \phi(x, y)
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. Letting $n \rightarrow \infty$ in the last inequality, we have $D_{e} Q(x, y)=0$ for all $x, y \in X$ and since f is even, by (23), Q is even. By Lemma 2.1, Q is a quadratic mapping with involution. By (4) in Theorem 1.1 and (22), Q satisfies (20).

Assume that $Q_{1}: X \longrightarrow Y$ is another quadratic mapping with (20). We know that Q_{1} is a fixed point of J. Due to (3) in Theorem 1.1, we get $Q=Q_{1}$. This proves the uniqueness of Q.

From now on, for any mapping $f: X \longrightarrow Y$, we deonte

$$
f_{o}(x)=\frac{f(x)-f(\sigma(x))}{2}, f_{e}(x)=\frac{f(x)+f(\sigma(x))}{2} .
$$

Then f_{o} is an odd mapping and f_{e} is an even mapping. Hence by Theorem 2.2 and Theorem 2.3, we have the following theorem.

Theorem 2.4. Assume that $\phi: X^{2} \longrightarrow[0, \infty)$ is a mapping with (19). Let $f: X \longrightarrow Y$ be a mapping satisfying (11) and $f(0)=0$. Then there exists a unique additive-quadratic mapping $F: X \longrightarrow Y$ with involution such that

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{1}{|2|^{3}(1-L)} \Phi(x) \tag{24}
\end{equation*}
$$

for all $x \in X$, where

$$
\Phi(x)=\max \left\{\phi(x, 0), \phi(\sigma(x), 0), \phi(x, x), \phi(\sigma(x), \sigma(x)), \frac{1}{|4| L} \phi(x+\sigma(x), 0)\right\} .
$$

Proof. By (11), we have

$$
\left\|D f_{o}(x, y)\right\| \leq \frac{1}{|2|} \max \{\phi(x, y), \phi(\sigma(x), \sigma(y))\}
$$

and since $|2|^{2} \leq|2|$, by (19), $\max \{\phi(x, y), \phi(\sigma(x), \sigma(y))\}$ satisfies (10). By Theorem 2.2, there exists a unique additive mapping $A: X \longrightarrow Y$ with involution such that

$$
\begin{equation*}
\left\|f_{o}(x)-A(x)\right\| \leq \frac{1}{|2|^{2}(1-L)} \Psi(x) \tag{25}
\end{equation*}
$$

for all $x \in X$, where

$$
\Psi(x)=\max \left\{\phi(x, 0), \phi(\sigma(x), 0), \phi(x, x), \phi(\sigma(x), \sigma(x)), \frac{1}{|2| L} \phi(x+\sigma(x), 0)\right\}
$$

By (11), we have

$$
\left\|D f_{e}(x, y)\right\| \leq \frac{1}{|2|} \max \{\phi(x, y), \phi(\sigma(x), \sigma(y))\}
$$

Then by Theorem 2.3, there exists a unique quadratic mapping $Q: X \longrightarrow Y$ with involution such that

$$
\begin{equation*}
\left\|f_{e}(x)-Q(x)\right\| \leq \frac{1}{|2|^{3}(1-L)} \Phi(x) \tag{26}
\end{equation*}
$$

for all $x \in X$. Let $F=A+Q$. Then F is an additive-quadratic mapping with involution and by (25) and (26), we have

$$
\|F(x)-f(x)\| \leq \max \left\{\left\|A(x)-f_{o}(x)\right\|,\left\|Q(x)-f_{e}(x)\right\|\right\}
$$

for all $x \in X$. Thus F satisfies (24).
Assume that $G: X \longrightarrow Y$ is another additive-quadratic mapping with (24). Then f_{o} and G_{o} are additive mappings such that

$$
\begin{aligned}
\left\|f_{o}(x)-G_{o}(x)\right\| & \leq \frac{1}{|2|} \max \{\|f(x)-G(x)\|,\|f(\sigma(x))-G(\sigma(x))\|\} \\
& \leq \frac{1}{|2|^{4}(1-L)} \max \{\Phi(x), \Phi(\sigma(x))\} \\
& =\frac{1}{|2|^{4}(1-L)} \Phi(x)
\end{aligned}
$$

Due to (3) in Theorem 1.1, we have $F_{o}=A=G_{o}$.
Similarly, $F_{e}=Q=G_{e}$. Hence $G=G_{o}+G_{e}=A+Q=F$ and this proves the uniqueness of F.

Using Theorem 2.4, we obtain the following corollary concerning the stability of (4).

Corollary 2.5. Let $\theta \geq 0$ and p be a positive real number with $p>2$. Let $f: X \longrightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{27}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $\|x+\sigma(x)\| \leq|2|\|x\|$ for all $x \in X$. Then there exists a unique mapping $F: X \longrightarrow Y$ with involution such that F is a solution of the functional equation (4) and the inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{\max \left\{2, \frac{1}{|2|^{2}}\right\}}{|2|\left(|2|^{2}-|2|^{p}\right)} \theta\|x\|^{p} \tag{28}
\end{equation*}
$$

holds for all $x \in X$.
Proof. Let $\phi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$. Then ϕ satisfies (19) and since $\|x+\sigma(x)\| \leq$ $|2|\|x\|,\|\sigma(x)\| \leq\|x\|$ for all $x \in X$, we have the results.

By Theorem 2.4, we obtain the following corollary concerning the stability of (4).

Corollary 2.6. Let $\alpha_{i}:[0, \infty) \longrightarrow[0, \infty)(i=1,2,3)$ be increasing mappings satisfying
(i) $\alpha_{i}(0)=0$ and $0<M=\max \left\{\left(\alpha_{1}(|2|)\right)^{2}, \alpha_{2}(|2|), \alpha_{3}(|2|)\right\}<|2|^{2}$,
(ii) $\alpha_{i}(|2| t) \leq \alpha_{i}(|2|) \alpha_{i}(t)$ for all $t \geq 0$.

Let $f: X \longrightarrow Y$ be a mapping such that for some $\theta \geq 0$

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left[\alpha_{1}(\|x\|) \alpha_{1}(\|y\|)+\alpha_{2}(\|x\|)+\alpha_{3}(\|y\|)\right] \tag{29}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $\|x+\sigma(x)\| \leq|2|\|x\|$ for all $x \in X$. Then there exists a unique additive-quadratic mapping $F: X \longrightarrow Y$ with involution such that

$$
\|f(x)-F(x)\| \leq \frac{\theta}{|2|^{2}\left(|2|^{2}-M\right)}\left(\alpha_{1}(\|x\|)^{2}+\alpha_{2}(\|x\|)+\alpha_{3}(\|x\|)\right)
$$

for all $x \in X$.
From Corollary 2.6, we can take $\alpha_{1}(t)=t^{p}, \alpha_{2}(t)=\alpha_{3}(t)=t^{2 p}$ for all $t \geq 0$. Then we have the following example.

Example 1. Let $\theta \geq 0$ and p a positive real number with $p>1$. Let $f: X \longrightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}\|y\|^{p}+\|x\|^{2 p}+\|y\|^{2 p}\right) \tag{30}
\end{equation*}
$$

for all $x, y \in X$. Suppose that $\|x+\sigma(x)\| \leq|2|\|x\|$ for all $x \in X$. Then there exists a unique additive-quadratic mapping $F: X \longrightarrow Y$ with involution such that

$$
\|f(x)-F(x)\| \leq \frac{3 \theta}{|2|^{2}\left(|2|^{2}-|2|^{2 p}\right)}\|x\|^{2 p}
$$

for all $x \in X$.

References

[1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan. 2(1950), 64-66.
[2] B. Boukhalene, E. Elqorachi, and Th. M. Rassias, On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution, Nonlinear Funct. Anal. Appl. 12(2007), 247-262.
[3] , On the Hyers-Ulam stability of approximately pexider mappings, Math. Ineqal. Appl. 11(2008), 805-818.
[4] P.W.Cholewa, Remarkes on the stability of functional equations, Aequationes Math., 27(1984), 76-86.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62(1992), 59-64.
[6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, 74(1968), 305309.
[7] P. Găvruta, A generalization of the Hyer-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27(1941), 222-224.
[9] S. M. Jung, Z. H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008.
[10] Th. M. Rassias, On the stability of the linear mapping in Banach sapces, Proc. Amer. Math. Sco. 72(1978), 297-300.
[11] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
[12] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54 (1997), 144-172.
[13] S. M. Ulam, A collection of mathematical problems, Interscience Publ., New York, 1960.
Chang Il Kim
Department of Mathematics Education, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeongai-do 16890, Korea

E-mail address: kci206@hanmail.net
Yong Sik Yun
Department of Mathematics and Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Korea

E-mail address: yunys@jejunu.ac.kr

[^0]: Received July 3, 2018; Accepted September 27, 2018.
 2010 Mathematics Subject Classification. 39B52, 39B72.
 Key words and phrases. Fixed point theorem, Hyers-Ulam stability, cubic functional equations.

 * corresponding author.

