FUNCTIONAL EQUATIONS ASSOCIATED WITH INNER PRODUCT SPACES

Choonkil Park*, Jae Sung Huh**, Won June Min***, Dong Hoon Nam ${ }^{* * * * \text {, and Seung Hyeon Roh }}$ *****

Abstract. In [7], Th.M. Rassias proved that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer $n \geq 2$

$$
n\left\|\frac{1}{n} \sum_{i=1}^{n} x_{i}\right\|^{2}+\sum_{i=1}^{n}\left\|x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right\|^{2}=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}
$$

holds for all $x_{1}, \cdots, x_{n} \in V$.
Let V, W be real vector spaces. It is shown that if a mapping $f: V \rightarrow W$ satisfies

$$
\begin{align*}
n f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) & +\sum_{i=1}^{n} f\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right) \tag{0.1}\\
& =\sum_{i=1}^{n} f\left(x_{i}\right)
\end{align*}
$$

for all $x_{1}, \cdots, x_{n} \in V$, then the mapping $f: V \rightarrow W$ satisfies

$$
\begin{align*}
2 f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right) & +f\left(\frac{y-x}{2}\right) \tag{0.2}\\
& =f(x)+f(y)
\end{align*}
$$

for all $x, y \in V$.
Furthermore, we prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

[^0]
1. Introduction

The stability problem of functional equations originated from a question of Ulam [15] concerning the stability of group homomorphisms. Hyers [5] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [6] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [6] has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th.M. Rassias' approach.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [14] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [3], Czerwik proved the generalized HyersUlam stability of the quadratic functional equation. Several functional equations have been investigated in [8]-[13].

Throughout this paper, assume that n is a fixed integer greater than 1. Let X be a real normed vector space with norm $\|\cdot\|$, and Y a real Banach space with norm $\|\cdot\|$.

In this paper, we investigate the functional equation (0.2), and prove the generalized Hyers-Ulam stability of the functional equation (0.2) in real Banach spaces.

2. Jensen quadratic mappings associated with inner product spaces

We investigate the functional equations (0.1) and (0.2).

Lemma 2.1. Let V and W be real vector spaces. If a mapping f : $V \rightarrow W$ satisfies

$$
\begin{equation*}
n f\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)+\sum_{i=1}^{n} f\left(x_{i}-\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \tag{2.1}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in V$, then the mapping $f: V \rightarrow W$ satisfies

$$
\begin{equation*}
2 f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)+f\left(\frac{y-x}{2}\right)=f(x)+f(y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in V$.
Proof. Assume that $f: V \rightarrow W$ satisfies (2.1).
Letting $x_{n}=\frac{\sum_{i=1}^{n-1} x_{i}}{n-1}$, we get

$$
(n-1) f\left(\frac{1}{n-1} \sum_{i=1}^{n-1} x_{i}\right)+\sum_{i=1}^{n-1} f\left(x_{i}-\frac{1}{n-1} \sum_{j=1}^{n-1} x_{j}\right)=\sum_{i=1}^{n-1} f\left(x_{i}\right)
$$

for all $x_{1}, \cdots, x_{n-1} \in V$. Applying continuously this method $n-3$ times, we get

$$
2 f\left(\frac{x_{1}+x_{2}}{2}\right)+f\left(\frac{x_{1}-x_{2}}{2}\right)+f\left(\frac{x_{2}-x_{1}}{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in V$, as desired.
One can easily show that an even mapping $f: V \rightarrow W$ satisfies (2.2) if and only if the even mapping $f: V \rightarrow W$ is a Jensen quadratic mapping, i.e.,

$$
2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y)
$$

and that an odd mapping $f: V \rightarrow W$ satisfies (2.2) if and only if the odd mapping mapping $f: V \rightarrow W$ is a Jensen additive mapping, i.e.,

$$
2 f\left(\frac{x+y}{2}\right)=f(x)+f(y)
$$

For a given mapping $f: X \rightarrow Y$, we define
$D f(x, y):=2 f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)+f\left(\frac{y-x}{2}\right)-f(x)-f(y)$
for all $x, y \in X$.
We prove the generalized Hyers-Ulam stability of the functional equation $D f(x, y)=0$ in real Banach spaces: an even case.

THEOREM 2.2. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\widetilde{\varphi}(x, y): & =\sum_{j=0}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{2.3}\\
\|D f(x, y)\| & \leq \varphi(x, y) \tag{2.4}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)+f(-x)-Q(x)\| \leq \widetilde{\varphi}(x, 0)+\widetilde{\varphi}(-x, 0) \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (2.4), we get

$$
\begin{equation*}
\left\|3 f\left(\frac{x}{2}\right)+f\left(\frac{-x}{2}\right)-f(x)\right\| \leq \varphi(x, 0) \tag{2.6}
\end{equation*}
$$

for all $x \in X$. Replacing x by $-x$ in (2.6), we get

$$
\begin{equation*}
\left\|3 f\left(\frac{-x}{2}\right)+f\left(\frac{x}{2}\right)-f(-x)\right\| \leq \varphi(-x, 0) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. Let $g(x):=f(x)+f(-x)$ for all $x \in X$. It follows from (2.6) and (2.7) that

$$
\begin{equation*}
\left\|g(x)-4 g\left(\frac{x}{2}\right)\right\| \leq \varphi(x, 0)+\varphi(-x, 0) \tag{2.8}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{equation*}
\left\|4^{l} g\left(\frac{x}{2^{l}}\right)-4^{m} g\left(\frac{x}{2^{m}}\right)\right\| \leq \sum_{j=l}^{m-1} 4^{j} \varphi\left(\frac{x}{2^{j}}, 0\right)+\sum_{j=l}^{m-1} 4^{j} \varphi\left(-\frac{x}{2^{j}}, 0\right) \tag{2.9}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.3) and (2.9) that the sequence $\left\{4^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{4^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{k \rightarrow \infty} 4^{k} g\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$.
By (2.3) and (2.4),

$$
\begin{aligned}
\|D Q(x, y)\| & =\lim _{k \rightarrow \infty} 4^{k}\left\|D g\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} 4^{k}\left(\varphi\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)+\varphi\left(-\frac{x}{2^{k}},-\frac{y}{2^{k}}\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D Q(x, y)=0$. Since $g: X \rightarrow Y$ is even, $Q: X \rightarrow Y$ is even. So the mapping $Q: X \rightarrow Y$ is Jensen quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.9), we get (2.5). So there exists a Jensen quadratic mapping $Q: X \rightarrow Y$ satisfying (2.5).

Now, let $Q^{\prime}: X \rightarrow Y$ be another Jensen quadratic mapping satisfying (2.5). Then we have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =4^{q}\left\|Q\left(\frac{x}{2^{q}}\right)-Q^{\prime}\left(\frac{x}{2^{q}}\right)\right\| \\
& \leq 4^{q}\left\|Q\left(\frac{x}{2^{q}}\right)-f\left(\frac{x}{2^{q}}\right)-f\left(\frac{-x}{2^{q}}\right)\right\| \\
& +4^{q}\left\|Q^{\prime}\left(\frac{x}{2^{q}}\right)-f\left(\frac{x}{2^{q}}\right)-f\left(\frac{-x}{2^{q}}\right)\right\| \\
& \leq 2 \cdot 4^{q} \widetilde{\varphi}\left(\frac{x}{2^{q}}, 0\right)+2 \cdot 4^{q} \widetilde{\varphi}\left(\frac{-x}{2^{q}}, 0\right),
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of Q.

Corollary 2.3. Let $p>2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)+f(-x)-Q(x)\| \leq \frac{2^{p+1} \theta}{2^{p}-4}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 2.2 to get the desired result.

THEOREM 2.4. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (2.4) such that

$$
\begin{equation*}
\widetilde{\varphi}(x, y):=\sum_{j=1}^{\infty} 4^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty \tag{2.11}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)+f(-x)-Q(x)\| \leq \widetilde{\varphi}(x, 0)+\widetilde{\varphi}(-x, 0) \tag{2.12}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (2.8) that

$$
\left\|g(x)-\frac{1}{4} g(2 x)\right\| \leq \frac{1}{4} \varphi(2 x, 0)+\frac{1}{4} \varphi(-2 x, 0)
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|\frac{1}{4^{l}} g\left(2^{l} x\right)-\frac{1}{4^{m}} g\left(2^{m} x\right)\right\| & \leq \sum_{j=l+1}^{m} \frac{1}{4^{j}} \varphi\left(2^{j} x, 0\right) \tag{2.13}\\
& +\sum_{j=l+1}^{m} \frac{1}{4^{j}} \varphi\left(-2^{j} x, 0\right)
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.11) and (2.13) that the sequence $\left\{\frac{1}{4^{k}} g\left(2^{k} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^{k}} g\left(2^{k} x\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{k \rightarrow \infty} \frac{1}{4^{k}} g\left(2^{k} x\right)
$$

for all $x \in X$.
By (2.4) and (2.11),

$$
\begin{aligned}
\|D Q(x, y)\| & =\lim _{k \rightarrow \infty} \frac{1}{4^{k}}\left\|D g\left(2^{k} x, 2^{k} y\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{4^{k}}\left(\varphi\left(2^{k} x, 2^{k} y\right)+\varphi\left(-2^{k} x,-2^{k} y\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D Q(x, y)=0$. Since $g: X \rightarrow Y$ is even, $Q: X \rightarrow Y$ is even. So the mapping $Q: X \rightarrow Y$ is Jensen quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.13), we get (2.12). So there exists a Jensen quadratic mapping $Q: X \rightarrow Y$ satisfying (2.12).

The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $p<2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.10). Then there exists a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)+f(-x)-Q(x)\| \leq \frac{2^{p+1} \theta}{4-2^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 2.4 to get the desired result.

3. Jensen additive mappings associated with inner product spaces

In this section, we prove the generalized Hyers-Ulam stability of the functional equation $D f(x, y)=0$ in real Banach spaces: an odd case.

THEOREM 3.1. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\Phi(x, y): & =\sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{3.1}\\
\|D f(x, y)\| & \leq \varphi(x, y) \tag{3.2}
\end{align*}
$$

for all $x, y \in X$. Then there exists a unique Jensen additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-f(-x)-A(x)\| \leq \Phi(x, 0)+\Phi(-x, 0) \tag{3.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (3.2), we get

$$
\begin{equation*}
\left\|3 f\left(\frac{x}{2}\right)+f\left(\frac{-x}{2}\right)-f(x)\right\| \leq \varphi(x, 0) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Replacing x by $-x$ in (3.4), we get

$$
\begin{equation*}
\left\|3 f\left(\frac{-x}{2}\right)+f\left(\frac{x}{2}\right)-f(-x)\right\| \leq \varphi(-x, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Let $h(x):=f(x)-f(-x)$ for all $x \in X$. It follows from (3.4) and (3.5) that

$$
\begin{equation*}
\left\|h(x)-2 h\left(\frac{x}{2}\right)\right\| \leq \varphi(x, 0)+\varphi(-x, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
\left\|2^{l} h\left(\frac{x}{2^{l}}\right)-2^{m} h\left(\frac{x}{2^{m}}\right)\right\| & \leq \sum_{j=l}^{m-1} 2^{j} \varphi\left(\frac{x}{2^{j}}, 0\right) \tag{3.7}\\
& +\sum_{j=l}^{m-1} 2^{j} \varphi\left(-\frac{x}{2^{j}}, 0\right)
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.1) and (3.7) that the sequence $\left\{2^{k} h\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for
all $x \in X$. Since Y is complete, the sequence $\left\{2^{k} h\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} 2^{k} h\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$.
By (3.1) and (3.2),

$$
\begin{aligned}
\|D A(x, y)\| & =\lim _{k \rightarrow \infty} 2^{k}\left\|D h\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} 2^{k}\left(\varphi\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)+\varphi\left(-\frac{x}{2^{k}},-\frac{y}{2^{k}}\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D A(x, y)=0$. Since $h: X \rightarrow Y$ is odd, $A: X \rightarrow Y$ is odd. So the mapping $A: X \rightarrow Y$ is Jensen additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.7), we get (3.3). So there exists a Jensen additive mapping $A: X \rightarrow Y$ satisfying (3.3).

The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 3.2. Let $p>1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.8}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique Jensen additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-f(-x)-A(x)\| \leq \frac{2^{p+1} \theta}{2^{p}-2}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 3.1 to get the desired result.

Theorem 3.3. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (3.2) such that

$$
\begin{equation*}
\Phi(x, y):=\sum_{j=1}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)<\infty \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique Jensen additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-f(-x)-A(x)\| \leq \Phi(x, 0)+\Phi(-x, 0) \tag{3.10}
\end{equation*}
$$

for all $x \in X$.

Proof. It follows from (3.6) that

$$
\left\|h(x)-\frac{1}{2} h(2 x)\right\| \leq \frac{1}{2} \varphi(2 x, 0)+\frac{1}{2} \varphi(-2 x, 0)
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|\frac{1}{2^{l}} h\left(2^{l} x\right)-\frac{1}{2^{m}} h\left(2^{m} x\right)\right\| & \leq \sum_{j=l+1}^{m} \frac{1}{2^{j}} \varphi\left(2^{j} x, 0\right) \tag{3.11}\\
& +\sum_{j=l+1}^{m} \frac{1}{2^{j}} \varphi\left(-2^{j} x, 0\right)
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.9) and (3.11) that the sequence $\left\{\frac{1}{2^{k}} h\left(2^{k} x\right)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^{k}} h\left(2^{k} x\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{k \rightarrow \infty} \frac{1}{2^{k}} h\left(2^{k} x\right)
$$

for all $x \in X$.
By (3.2) and (3.9),

$$
\begin{aligned}
\|D A(x, y)\| & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|D h\left(2^{k} x, 2^{k} y\right)\right\| \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left(\varphi\left(2^{k} x, 2^{k} y\right)+\varphi\left(-2^{k} x,-2^{k} y\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D A(x, y)=0$. Since $h: X \rightarrow Y$ is odd, $A: X \rightarrow Y$ is odd. So the mapping $A: X \rightarrow Y$ is Jensen additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.11), we get (3.10). So there exists a Jensen additive mapping $A: X \rightarrow Y$ satisfying (3.10).

The rest of the proof is similar to the proof of Theorem 2.2 .
Corollary 3.4. Let $p<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.8). Then there exists a unique Jensen additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-f(-x)-A(x)\| \leq \frac{2^{p+1} \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 3.3 to get the desired result.

Note that

$$
\sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right) \leq \sum_{j=0}^{\infty} 4^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)
$$

Combining Theorem 2.2 and Theorem 3.1, we obtain the following result.

Theorem 3.5. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (2.3) and (2.4). Then there exist a unique Jensen additive mapping $A: X \rightarrow Y$ and a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|2 f(x)-A(x)-Q(x)\| \leq \widetilde{\varphi}(x, 0)+\widetilde{\varphi}(-x, 0)+\Phi(x, 0)+\Phi(-x, 0)
$$

for all $x \in X$, where $\widetilde{\varphi}$ and Φ are defined in (2.3) and (3.1), respectively.
Corollary 3.6. Let $p>2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.10). Then there exist a unique Jensen additive mapping $A: X \rightarrow Y$ and a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|2 f(x)-A(x)-Q(x)\| \leq\left(\frac{2^{p+1}}{2^{p}-2}+\frac{2^{p+1}}{2^{p}-4}\right) \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|x\|^{p}\right)$, and apply Theorem 3.5 to get the desired result.

Note that

$$
\sum_{j=1}^{\infty} 4^{-j} \varphi\left(2^{j} x, 2^{j} y\right) \leq \sum_{j=1}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right)
$$

Combining Theorem 2.4 and Theorem 3.3, we obtain the following result.

THEOREM 3.7. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (2.4) and (3.9). Then there exist a unique Jensen additive mapping $A: X \rightarrow Y$ and a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|2 f(x)-A(x)-Q(x)\| \leq \widetilde{\varphi}(x, 0)+\widetilde{\varphi}(-x, 0)+\Phi(x, 0)+\Phi(-x, 0)
$$

for all $x \in X$, where $\widetilde{\varphi}$ and Φ are defined in (2.11) and (3.9), respectively.

Corollary 3.8. Let $p<1$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (2.10). Then there exist a unique Jensen additive mapping $A: X \rightarrow Y$ and a unique Jensen quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|2 f(x)-A(x)-Q(x)\| \leq\left(\frac{2^{p+1}}{2-2^{p}}+\frac{2^{p+1}}{4-2^{p}}\right) \theta\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 3.7 to get the desired result.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[6] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[7] Th.M. Rassias, New characterizations of inner product spaces, Bull. Sci. Math. 108 (1984), 95-99.
[8] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
[9] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[10] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[11] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[12] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[13] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[14] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[15] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
*
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr
**
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: gasop@naver.com

Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: lion328@naver.com

Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: bv2@naver.com
$* * * * *$
Seoul Science High School
Seoul 110-530, Republic of Korea
E-mail: sofyhsh92@naver.com

[^0]: Received August 18, 2008; Accepted November 20, 2008.
 2000 Mathematics Subject Classification: Primary 39B72, 46C05.
 Key words and phrases: Jensen additive mapping, Jensen quadratic mapping, functional equation associated with inner product space, generalized Hyers-Ulam stability.

 This work was supported by the R \& E program of KOSEF in 2008.

