
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 21, No. 4, December 2008

FUNCTIONAL EQUATIONS ASSOCIATED WITH
INNER PRODUCT SPACES

Choonkil Park*, Jae Sung Huh**, Won June Min***, Dong
Hoon Nam****, and Seung Hyeon Roh*****

Abstract. In [7], Th.M. Rassias proved that the norm defined
over a real vector space V is induced by an inner product if and
only if for a fixed integer n ≥ 2

n

∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2

+

n∑
i=1

∥∥∥∥∥xi −
1

n

n∑
j=1

xj

∥∥∥∥∥
2

=

n∑
i=1

‖xi‖2

holds for all x1, · · · , xn ∈ V .
Let V, W be real vector spaces. It is shown that if a mapping
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for all x1, · · · , xn ∈ V , then the mapping f : V → W satisfies
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for all x, y ∈ V .
Furthermore, we prove the generalized Hyers-Ulam stability of

the functional equation (0.2) in real Banach spaces.
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1. Introduction

The stability problem of functional equations originated from a ques-
tion of Ulam [15] concerning the stability of group homomorphisms. Hy-
ers [5] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive
mappings and by Th.M. Rassias [6] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th.M. Rassias [6] has
provided a lot of influence in the development of what we call gener-
alized Hyers-Ulam stability of functional equations. A generalization of
the Th.M. Rassias theorem was obtained by Găvruta [4] by replacing
the unbounded Cauchy difference by a general control function in the
spirit of Th.M. Rassias’ approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of
the quadratic functional equation is said to be a quadratic mapping. A
generalized Hyers-Ulam stability problem for the quadratic functional
equation was proved by Skof [14] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced
by an Abelian group. In [3], Czerwik proved the generalized Hyers-
Ulam stability of the quadratic functional equation. Several functional
equations have been investigated in [8]–[13].

Throughout this paper, assume that n is a fixed integer greater than
1. Let X be a real normed vector space with norm || · ||, and Y a real
Banach space with norm ‖ · ‖.

In this paper, we investigate the functional equation (0.2), and prove
the generalized Hyers-Ulam stability of the functional equation (0.2) in
real Banach spaces.

2. Jensen quadratic mappings associated with inner product
spaces

We investigate the functional equations (0.1) and (0.2).
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Lemma 2.1. Let V and W be real vector spaces. If a mapping f :
V → W satisfies
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for all x1, · · · , xn−1 ∈ V . Applying continuously this method n−3 times,
we get
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for all x1, x2 ∈ V , as desired.

One can easily show that an even mapping f : V → W satisfies
(2.2) if and only if the even mapping f : V → W is a Jensen quadratic
mapping, i.e.,
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and that an odd mapping f : V → W satisfies (2.2) if and only if the
odd mapping mapping f : V → W is a Jensen additive mapping, i.e.,
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For a given mapping f : X → Y , we define
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for all x, y ∈ X.
We prove the generalized Hyers-Ulam stability of the functional equa-

tion Df(x, y) = 0 in real Banach spaces: an even case.
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Theorem 2.2. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) such that
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for all nonnegative integers m and l with m > l and all x ∈ X. It
follows from (2.3) and (2.9) that the sequence {4kg( x

2k )} is Cauchy for
all x ∈ X. Since Y is complete, the sequence {4kg( x
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one can define the mapping Q : X → Y by
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for all x, y ∈ X. So DQ(x, y) = 0. Since g : X → Y is even, Q : X → Y
is even. So the mapping Q : X → Y is Jensen quadratic. Moreover,
letting l = 0 and passing the limit m → ∞ in (2.9), we get (2.5). So
there exists a Jensen quadratic mapping Q : X → Y satisfying (2.5).

Now, let Q′ : X → Y be another Jensen quadratic mapping satisfying
(2.5). Then we have

‖Q(x)−Q′(x)‖ = 4q
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which tends to zero as q → ∞ for all x ∈ X. So we can conclude that
Q(x) = Q′(x) for all x ∈ X. This proves the uniqueness of Q.

Corollary 2.3. Let p > 2 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖Df(x, y)‖ ≤ θ(||x||p + ||y||p)(2.10)

for all x, y ∈ X. Then there exists a unique Jensen quadratic mapping
Q : X → Y such that

‖f(x) + f(−x)−Q(x)‖ ≤ 2p+1θ

2p − 4
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 2.2 to
get the desired result.

Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) satisfying (2.4) such that

ϕ̃(x, y) :=
∞∑

j=1

4−jϕ(2jx, 2jy) < ∞(2.11)

for all x, y ∈ X. Then there exists a unique Jensen quadratic mapping
Q : X → Y such that

‖f(x) + f(−x)−Q(x)‖ ≤ ϕ̃(x, 0) + ϕ̃(−x, 0)(2.12)

for all x ∈ X.
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Proof. It follows from (2.8) that∥∥∥∥g(x)− 1
4
g(2x)

∥∥∥∥ ≤ 1
4
ϕ(2x, 0) +

1
4
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for all x ∈ X. So∥∥∥∥ 1
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows
from (2.11) and (2.13) that the sequence { 1

4k g(2kx)} is Cauchy for all
x ∈ X. Since Y is complete, the sequence { 1

4k g(2kx)} converges. So one
can define the mapping Q : X → Y by

Q(x) := lim
k→∞

1
4k

g(2kx)

for all x ∈ X.
By (2.4) and (2.11),

‖DQ(x, y)‖ = lim
k→∞

1
4k
‖Dg(2kx, 2ky)‖

≤ lim
k→∞

1
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(ϕ(2kx, 2ky) + ϕ(−2kx,−2ky)) = 0

for all x, y ∈ X. So DQ(x, y) = 0. Since g : X → Y is even, Q : X → Y
is even. So the mapping Q : X → Y is Jensen quadratic. Moreover,
letting l = 0 and passing the limit m → ∞ in (2.13), we get (2.12). So
there exists a Jensen quadratic mapping Q : X → Y satisfying (2.12).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let p < 2 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (2.10). Then there exists a unique
Jensen quadratic mapping Q : X → Y such that

‖f(x) + f(−x)−Q(x)‖ ≤ 2p+1θ

4− 2p
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 2.4 to
get the desired result.
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3. Jensen additive mappings associated with inner product
spaces

In this section, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in real Banach spaces: an odd case.

Theorem 3.1. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) such that

Φ(x, y) : =
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j=0
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2j
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)
< ∞,(3.1)

‖Df(x, y)‖ ≤ ϕ(x, y)(3.2)

for all x, y ∈ X. Then there exists a unique Jensen additive mapping
A : X → Y such that

‖f(x)− f(−x)−A(x)‖ ≤ Φ(x, 0) + Φ(−x, 0)(3.3)

for all x ∈ X.

Proof. Letting y = 0 in (3.2), we get∥∥∥∥3f
(x

2

)
+ f

(
−x

2

)
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for all x ∈ X. Let h(x) := f(x) − f(−x) for all x ∈ X. It follows from
(3.4) and (3.5) that∥∥∥h(x)− 2h

(x

2

)∥∥∥ ≤ ϕ(x, 0) + ϕ(−x, 0)(3.6)

for all x ∈ X. Hence

‖2lh(
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x
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+
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j=l

2jϕ
(
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for all nonnegative integers m and l with m > l and all x ∈ X. It
follows from (3.1) and (3.7) that the sequence {2kh( x

2k )} is Cauchy for
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all x ∈ X. Since Y is complete, the sequence {2kh( x
2k )} converges. So

one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kh
( x

2k

)
for all x ∈ X.

By (3.1) and (3.2),

‖DA(x, y)‖ = lim
k→∞

2k
∥∥∥Dh

( x

2k
,

y
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≤ lim

k→∞
2k
(
ϕ
( x

2k
,

y
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)
+ ϕ

(
− x

2k
,− y
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))
= 0

for all x, y ∈ X. So DA(x, y) = 0. Since h : X → Y is odd, A : X → Y
is odd. So the mapping A : X → Y is Jensen additive. Moreover, letting
l = 0 and passing the limit m →∞ in (3.7), we get (3.3). So there exists
a Jensen additive mapping A : X → Y satisfying (3.3).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 3.2. Let p > 1 and θ be positive real numbers, and let
f : X → Y be a mapping such that

‖Df(x, y)‖ ≤ θ(||x||p + ||y||p)(3.8)

for all x, y ∈ X. Then there exists a unique Jensen additive mapping
A : X → Y such that

‖f(x)− f(−x)−A(x)‖ ≤ 2p+1θ

2p − 2
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 3.1 to
get the desired result.

Theorem 3.3. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) satisfying (3.2) such that

Φ(x, y) :=
∞∑

j=1

2−jϕ(2jx, 2jy) < ∞(3.9)

for all x, y ∈ X. Then there exists a unique Jensen additive mapping
A : X → Y such that

‖f(x)− f(−x)−A(x)‖ ≤ Φ(x, 0) + Φ(−x, 0)(3.10)

for all x ∈ X.
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Proof. It follows from (3.6) that∥∥∥∥h(x)− 1
2
h(2x)

∥∥∥∥ ≤ 1
2
ϕ(2x, 0) +

1
2
ϕ(−2x, 0)

for all x ∈ X. So∥∥∥∥ 1
2l

h(2lx)− 1
2m

h(2mx)
∥∥∥∥ ≤

m∑
j=l+1

1
2j

ϕ(2jx, 0)(3.11)

+
m∑

j=l+1

1
2j

ϕ(−2jx, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It
follows from (3.9) and (3.11) that the sequence { 1

2k h(2kx)} is Cauchy
for all x ∈ X. Since Y is complete, the sequence { 1

2k h(2kx)} converges.
So one can define the mapping A : X → Y by

A(x) := lim
k→∞

1
2k

h(2kx)

for all x ∈ X.
By (3.2) and (3.9),

‖DA(x, y)‖ = lim
k→∞

1
2k
‖Dh(2kx, 2ky)‖

≤ lim
k→∞

1
2k

(ϕ(2kx, 2ky) + ϕ(−2kx,−2ky)) = 0

for all x, y ∈ X. So DA(x, y) = 0. Since h : X → Y is odd, A : X → Y
is odd. So the mapping A : X → Y is Jensen additive. Moreover, letting
l = 0 and passing the limit m → ∞ in (3.11), we get (3.10). So there
exists a Jensen additive mapping A : X → Y satisfying (3.10).

The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 3.4. Let p < 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (3.8). Then there exists a unique
Jensen additive mapping A : X → Y such that

‖f(x)− f(−x)−A(x)‖ ≤ 2p+1θ

2− 2p
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 3.3 to
get the desired result.
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Note that
∞∑

j=0

2jϕ
( x

2j
,

y

2j

)
≤

∞∑
j=0

4jϕ
( x

2j
,

y

2j

)
.

Combining Theorem 2.2 and Theorem 3.1, we obtain the following
result.

Theorem 3.5. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) satisfying (2.3) and (2.4).
Then there exist a unique Jensen additive mapping A : X → Y and a
unique Jensen quadratic mapping Q : X → Y such that

‖2f(x)−A(x)−Q(x)‖ ≤ ϕ̃(x, 0) + ϕ̃(−x, 0) + Φ(x, 0) + Φ(−x, 0)

for all x ∈ X, where ϕ̃ and Φ are defined in (2.3) and (3.1), respectively.

Corollary 3.6. Let p > 2 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (2.10). Then there exist a unique
Jensen additive mapping A : X → Y and a unique Jensen quadratic
mapping Q : X → Y such that

‖2f(x)−A(x)−Q(x)‖ ≤
(

2p+1

2p − 2
+

2p+1

2p − 4

)
θ||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||x||p), and apply Theorem 3.5 to
get the desired result.

Note that
∞∑

j=1

4−jϕ(2jx, 2jy) ≤
∞∑

j=1

2−jϕ(2jx, 2jy).

Combining Theorem 2.4 and Theorem 3.3, we obtain the following
result.

Theorem 3.7. Let f : X → Y be a mapping satisfying f(0) = 0 for
which there exists a function ϕ : X2 → [0,∞) satisfying (2.4) and (3.9).
Then there exist a unique Jensen additive mapping A : X → Y and a
unique Jensen quadratic mapping Q : X → Y such that

‖2f(x)−A(x)−Q(x)‖ ≤ ϕ̃(x, 0) + ϕ̃(−x, 0) + Φ(x, 0) + Φ(−x, 0)

for all x ∈ X, where ϕ̃ and Φ are defined in (2.11) and (3.9), respectively.
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Corollary 3.8. Let p < 1 and θ be positive real numbers, and let
f : X → Y be a mapping satisfying (2.10). Then there exist a unique
Jensen additive mapping A : X → Y and a unique Jensen quadratic
mapping Q : X → Y such that

‖2f(x)−A(x)−Q(x)‖ ≤
(

2p+1

2− 2p
+

2p+1

4− 2p

)
θ||x||p

for all x ∈ X.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p), and apply Theorem 3.7 to
get the desired result.
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