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ON THE STABILITY OF A MIXED TYPE
FUNCTIONAL EQUATION

Sang-Baek Lee*, Won-Gil Park** and Jae-Hyeong Bae***

Abstract. The generalized Hyers–Ulam stability problems of the
mixed type functional equation

f

(
4∑

i=1

xi

)
+

∑

1≤i<j≤4

f(xi+xj) =

4∑
i=1

f(xi) +
∑

1≤i<j<k≤4

f(xi+xj+xk)

is treated under the approximately even(or odd) condition and the
behavior of the quadratic mappings and the additive mappings is
investigated.

1. Introduction

In 1940, Ulam proposed the general Ulam stability problem (see [6]):
“When is it true that by slightly changing the hypothesis of a theo-

rem one can still assert that the thesis of the theorem remains true or
approximately true?”

In 1941, this problem was solved by Hyers [2] in the case of Banach
spaces. Thereafter, this type of stability is called the Hyers–Ulam sta-
bility. In 1978 Th. M. Rassias [4] provided a remarkable generalization
of the Hyers–Ulam stability of mappings by considering variables. This
fact rekindled interest in the field. Such type of stability is now called
the Hyers–Ulam–Rassias stability of functional equations. For the func-
tion case, the reader is referred to Găvruta [1]. Throughout this paper,
let X be a real normed space and Y be a real Banach space in the case
of functional inequalities, as well as let X and Y be real linear spaces
for the case of functional equations.
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Definition. A mapping f : X → Y is called additive (respectively,
quadratic) if f satisfies the equation f(x+y) = f(x)+f(y) (respectively,
f(x + y) + f(x− y) = 2f(x) + 2f(y)) for all x, y ∈ X.

We here introduce a theorem of Găvruta [1]:
Theorem. Let G be an abelian group and E a Banach space. Denote

by ϕ : G×G → [0,∞) a function such that

Φ(x, y) :=
∞∑

i=1

2−iϕ(2i−1x, 2i−1) < ∞

for all x, y ∈ G. If a function f : G → E satisfies the inequality ‖f(x +
y)− f(x)− f(y)‖ ≤ ϕ(x, y) for any x, y ∈ G, then there exists a unique
additive function A : G → E such that

‖f(x)−A(x)‖ ≤ Φ(x, x)

for each x ∈ G.
For a mapping f : X → Y , consider the following functional equation:

(1)

f

(
4∑

i=1

xi

)
+

∑

1≤i<j≤4

f(xi + xj) =
4∑

i=1

f(xi) +
∑

1≤i<j<k≤4

f(xi + xj + xk).

The general mixed stability problem had been posed for the first time
by Th.M. Rassias and J. Tabor [5] in the year 1992.

In Section 2, the generalized Hyers–Ulam stability will be discussed
in the spirit of Găvruta.

2. Stability for approximately even mappings

Let ϕ : X4 → [0,∞) and ψ : X → [0,∞) be two functions such that

Φ(x1, x2, x3, x4) :=
5
6
ϕ(0, 0, 0, 0)

+
1
2

∞∑

i=1

2−2iϕ(2i−1x1, 2i−1x2,−2i−1x3,−2i−1x4) < ∞,

Ψ(x) :=
1
2

∞∑

i=1

2−2i
(
4ψ(2i−1x) + ψ(2ix)

)
< ∞(2)

for all x, x1, x2, x3, x4 ∈ X. The generalized Hyers–Ulam stability of the
mixed type equation (1) is proved under a suitable condition by using
ideas from the paper of Găvruta [1]. We first prove the following lemma.
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In this section, we use the notation ϕ1(x) := ϕ(x, x,−x,−x) for all
x ∈ X.

Lemma 1. Let f : X → Y be a mapping satisfying the inequalities
∥∥∥∥f

(
4∑

i=1

xi

)
+

∑

1≤i<j≤4

f(xi + xj)−
4∑

i=1

f(xi)

−
∑

1≤i<j<k≤4

f(xi + xj + xk)
∥∥∥∥ ≤ ϕ(x1, x2, x3, x4)(3)

and

(4) ‖f(x)− f(−x)‖ ≤ ψ(x)

for all x, x1, x2, x3, x4 ∈ X. Then

‖f(x)− 2−2nf(2nx)‖(5)

≤ 1
8

n∑

i=1

2−2(i−1)
(
5ϕ1(0) + ϕ1(2i−1x) + 4ψ(2i−1x) + ψ(2ix)

)

for all x ∈ X and n ∈ IN.

Proof. Put xi = 0(i = 1, 2, 3, 4) in (3), then ‖f(0)‖ ≤ ϕ1(0). Also
putting xi = x(i = 1, 2) and xj = −x(j = 3, 4) in (3) yields

(6) ‖4f(x) + 4f(−x)− f(2x)− f(−2x)‖ ≤ 5ϕ1(0) + ϕ1(x)

for all x ∈ X. We apply induction on n to prove Lemma 1. By (4) and
(6), we have

‖f(x)− 2−2f(2x)‖ ≤ 1
8

(
‖4f(x) + 4f(−x)− f(2x)− f(−2x)‖

+
∥∥− 4

(
f(−x)− f(x)

)∥∥ + ‖f(−2x)− f(2x)‖
)

(7)

≤ 5
8
ϕ1(0) +

1
8
ϕ1(x) +

1
2
ψ(x) +

1
8
ψ(2x),

which proves the validity of the inequality (5) when n = 1. Now assume
that the inequality (5) holds true for some n ∈ IN. By using (6) and (7),
and the following relation:

‖f(x)− 2−2(n+1)f(2n+1x)‖
≤ ‖f(x)− 2−2nf(2nx)‖+ ‖2−2nf(2nx)− 2−2(n+1)f(2n+1x)‖

≤ 1
8

n∑

i=1

2−2(i−1)
(
5ϕ1(0) + ϕ1(2i−1x) + 4ψ(2i−1x) + ψ(2ix)

)
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+
1
8
· 2−2n

(
5ϕ1(0) + ϕ1(2nx) + 4ψ(2nx) + ψ(2n+1x)

)

≤ 1
8

n+1∑

i=1

2−2(i−1)
(
5ϕ1(0) + ϕ1(2i−1x) + 4ψ(2i−1x) + ψ(2ix)

)
,

one can easily verify inequality (5) for n + 1. This completes the proof.
¤

Theorem 2. Let f : X → Y be a mapping satisfying inequalities (3)
and (4) for all x, x1, x2, x3, x4 ∈ X. Then there exists a unique quadratic
mapping Q : X → Y which satisfies (1) as well as the inequality

(8) ‖f(x)−Q(x)‖ ≤ Φ(x, x, x, x) + Ψ(x)

for all x ∈ X.

Proof. For any x ∈ X and for every positive integer n, we define
Qn(x) := 2−2nf(2nx). From (5), one has, for every positive integers
n ≥ m,

‖2−2nf(2nx)− 2−2mf(2mx)‖
= 2−2m‖2−2(n−m)f(2n−m · 2mx)− f(2mx)‖(9)

≤ 2−2m 1
8

n−m∑

i=1

2−2(i−1)
(
5ϕ1(0) + ϕ1(2i−12mx) + 4ψ(2i−12mx)

+ψ(2i2mx)
)

for all x ∈ X. By (2), since the right-hand side of the inequality (9)
tends to zero as m tends to infinity, the sequence {Qn(x)} is a Cauchy
sequence. Therefore, we may apply a direct method to the definition
of Q. Define Q(x) = limn→∞Qn(x) for all x ∈ X. The inequality (3)
implies that

∥∥∥∥Qn

(
4∑

i=1

xi

)
+

∑

1≤i<j≤4

Qn(xi + xj)−
4∑

i=1

Qn(xi)

−
∑

1≤i<j<k≤4

Qn(xi + xj + xk)
∥∥∥∥ ≤ 2−2nϕ(2nx1, 2nx2, 2nx3, 2nx4)

for all x1, x2, x3, x4 ∈ X and all n ∈ IN. Letting n tend to infinity in the
last inequality, then by (2), Q satisfies (1). By (1) and (4), we can show
that Q(0) = 0 (with xi = 0(i = 1, 2, 3, 4) in (1)) and that Q is even.
Putting x1 = −x2 = x and x3 = −x4 = y in (1), one gets that Q as an
even solution of (1) is quadratic. According to (5), the inequality (8)
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holds. Now, let R : X → Y be another quadratic mapping which satisfies
equation (1) and inequality (8). Obviously, we have Q(2nx) = 22nQ(x)
and R(2nx) = 22nR(x) for all x ∈ X and n ∈ IN. Hence, it follows from
(8) that

‖Q(x)−R(x)‖ = 2−2n‖Q(2nx)−R(2nx)‖
≤ 2−2n

(‖Q(2nx)− f(2nx)‖+ ‖f(2nx)−R(2nx)‖)

≤ 2−2n+1

(
Φ(2nx, 2nx, 2nx, 2nx) + Ψ(2nx)

)

for all x ∈ X and n ∈ IN. By letting n →∞ in the preceding inequality,
one immediately obtains the uniqueness of Q. Therefore the proof is
complete. ¤

3. Stability for approximately odd mappings

From now on, let ϕ : X4 → [0,∞) and ψ : X → [0,∞) be two
functions such that

Φ(x1, x2, x3, x4) :=
11
7

ϕ(0, 0, 0, 0)

+
1
12

∞∑

i=1

(
1
2i
− 1

8i

) (
3ϕ(2i−1x1, 2i−1x2, 2i−1x3,−2i−1x4)

+3ϕ(−2i−1x1,−2i−1x2,−2i−1x3, 2i−1x4)(10)

+2ϕ(2i−1x1, 2i−1x2, 2ix3,−2i−1x4)
)

< ∞,

Ψ(x) :=
1
12

∞∑

i=1

(
1
2i
− 1

8i

)(
17ψ(2i−1x) + 12ψ(2ix)

+3ψ(3 · 2i−1x)
)

< ∞
for all x, x1, x2, x3, x4 ∈ X.

For simplicity of calculation in this section, we use the notation
ϕ1(x) := ϕ(x, x, x,−x), ϕ2(x) := ϕ(x, x, 2x,−x) and χ(x) := 3ϕ1(x) +
3ϕ1(−x) + 2ϕ2(x) + 17ψ(x) + 12ψ(2x) + 3ψ(3x) for all x ∈ X.

Lemma 4. Let f : X → Y be a mapping satisfying (3) and

(11) ‖f(x) + f(−x)‖ ≤ ψ(x)
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for all x, x1, x2, x3, x4 ∈ X. Then∥∥∥∥f(x)− 1
6

(
8
2n
− 2

8n

)
f(2nx) +

1
6

(
1
2n
− 1

8n

)
f(2n+1x)

∥∥∥∥

≤ 1
12

n∑

i=1

(
1
2i
− 1

8i

) (
22ϕ1(0) + χ(2i−1x)

)
(12)

for all x ∈ X and n ∈ IN.

Proof. Putting xi = x(i = 1, 2, 3) and xj = −x(j = 4) in (3) it follows
that

(13) ‖6f(x) + f(−x)− 4f(2x) + f(3x)‖ ≤ 3ϕ1(0) + ϕ1(x)

for all x ∈ X. Substitute −x for x in (13), then

(14) ‖ − 6f(−x)− f(x) + 4f(−2x)− f(−3x)‖ ≤ 3ϕ1(0) + ϕ1(−x)

for all x ∈ X. From (13) and (14), one has

‖5f(x)− 5f(−x)− 4f(2x) + 4f(−2x) + f(3x)− f(−3x)‖
≤ 6ϕ1(0) + ϕ1(x) + ϕ1(−x)

for all x ∈ X. By (11),

2‖5f(x)− 4f(2x) + f(3x)‖
≤ ‖5f(x)− 5f(−x)− 4f(2x) + 4f(−2x) + f(3x)− f(−3x)‖

+‖5f(x) + 5f(−x)‖+ ‖ − 4f(2x)− 4f(−2x)‖+ ‖f(3x) + f(−3x)‖
≤ 6ϕ1(0) + ϕ1(x) + ϕ1(−x) + 5ψ(x) + 4ψ(2x) + ψ(3x)

for all x ∈ X. Hence

‖5f(x)− 4f(2x) + f(3x)‖
≤ 3ϕ1(0) +

1
2
ϕ1(x) +

1
2
ϕ1(−x) +

5
2
ψ(x) + 2ψ(2x) +

1
2
ψ(3x)(15)

for all x ∈ X. Putting xi = x(i = 1, 2), x3 = 2x and x4 = −x in (3), it
yields

(16) ‖2f(x) + f(−x) + 2f(2x)− 3f(3x) + f(4x)‖ ≤ 2ϕ1(0) + ϕ2(x)

for all x ∈ X. By (11),

(17) ‖f(x) + 2f(2x)− 3f(3x) + f(4x)‖ ≤ 2ϕ1(0) + ϕ2(x) + ψ(x)

for all x ∈ X. We use induction on n to prove the lemma. From (15)
and (17), it follows

(18) ‖16f(x)− 10f(2x) + f(4x)‖ ≤ 11ϕ1(0) +
1
2
χ(x)
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for all x ∈ X. So
∥∥∥∥f(x)− 5

8
f(2x) +

1
16

f(4x)
∥∥∥∥ ≤

11
16

ϕ1(0) +
1
32

χ(x)(19)

which proves the validity of the inequality (12) for the case n = 1. Now
assume that inequality (12) holds true for some n ∈ IN. By using (18)
and the following relation:

∥∥∥∥f(x)− 1
6

(
8

2n+1
− 2

8n+1

)
f(2n+1x) +

1
6

(
1

2n+1
− 1

8n+1

)
f(2n+2x)

∥∥∥∥

≤
∥∥∥∥f(x)− 1

6

(
8
2n
− 2

8n

)
f(2nx) +

1
6

(
1
2n
− 1

8n

)
f(2n+1x)

∥∥∥∥

+
∥∥∥∥
1
6

(
8
2n
− 2

8n

)
f(2nx)− 1

6

(
1
2n
− 1

8n

)
f(2n+1x)

−1
6

(
8

2n+1
− 2

8n+1

)
f(2n+1x) +

1
6

(
1

2n+1
− 1

8n+1

)
f(2n+2x)

∥∥∥∥

=
∥∥∥∥f(x)− 1

6

(
8
2n
− 2

8n

)
f(2nx) +

1
6

(
1
2n
− 1

8n

)
f(2n+1x)

∥∥∥∥

+
1
6

(
1

2n+1
− 1

8n+1

)
‖16f(2nx)− 10f(2n+1x) + f(2n+2x)‖

≤ 1
12

n∑

i=1

(
1
2i
− 1

8i

) (
22ϕ1(0) + χ(2i−1x)

)

+
1
6

(
1

2n+1
− 1

8n+1

) (
11ϕ1(0) +

1
2
χ(2nx)

)

≤ 1
12

n+1∑

i=1

(
1
2i
− 1

8i

)(
22ϕ1(0) + χ(2i−1x)

)
,

one can can easily verify inequality (12) for n + 1. This completes the
proof. ¤

Theorem 5. Let f : X → Y be a mapping satisfying (3) and (11)
for all x, x1, x2, x3, x4 ∈ X. Then there exist two mappings A : X → Y
and B : X3 → Y which satisfy the inequality

(20) ‖f(x)−A(x)−B(x, x, x)‖ ≤ Φ(x, x, x, x) + Ψ(x)

for all x ∈ X. Furthermore, g(x) := A(x) + B(x, x, x) satisfies (1) for
all x ∈ X.
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Proof. For any x ∈ X and for every positive integer n, we define

gn(x) :=
1
6

(
8
2n
− 2

8n

)
f(2nx)− 1

6

(
1
2n
− 1

8n

)
f(2n+1x).

By (19), we obtain that

‖gn+1(x)− gn(x)‖
=

∥∥∥∥
1
6

(
8

2n+1
− 2

8n+1

)
f(2n+1x)− 1

6

(
1

2n+1
− 1

8n+1

)
f(2n+2x)

−1
6

(
8
2n
− 2

8n

)
f(2nx) +

1
6

(
1
2n
− 1

8n

)
f(2n+1x)

∥∥∥∥

=
1
6
· 1
8n+1

∥∥(8 · 4n+1 − 2)f(2n+1x)− (4n+1 − 1)f(2n+2x)

−(64 · 4n − 16)f(2nx) + (8 · 4n − 8)f(2n+1x)
∥∥

≤ 4n+1

6 · 8n+1

∥∥8f(2n+1x)− f(2n+2x)− 16f(2nx) + 2f(2n+1x)
∥∥

+
1

6 · 8n+1

∥∥2f(2n+1x)− f(2n+2x)− 16f(2nx) + 8f(2n+1x)
∥∥

=
4n+1 + 1
6 · 8n+1

∥∥16f(2nx)− 10f(2n+1x) + f(2n+2x)
∥∥

=
4n+1 + 1

3 · 8n

∥∥∥∥f(2nx)− 5
8
f(2n+1x) +

1
16

f(2n+2x)
∥∥∥∥

≤ 4n+1 + 1
3 · 8n

(
11
16

ϕ1(0) +
1
32

χ(2nx)
)

for all positive integers n. For n ≥ m,

‖gn(x)− gm(x)‖ ≤
n−1∑

i=m

‖gi+1(x)− gi(x)‖

≤ 4i+1 + 1
3 · 8i

(
11
16

ϕ1(0) +
1
32

χ(2ix)
)

(21)

for all x ∈ X. By (10), since the right-hand side of the inequality (21)
tends to zero as m tends to infinity, the sequence {gn(x)} is a Cauchy
sequence. Therefore, we may apply a direct method to the definition of
g. Define g(x) = limn→∞ gn(x) for all x ∈ X. Similarly, as in the proof
of Theorem 3, due to (11), the mapping g satisfies (1) and is odd. By
putting x1 = y, x2 = 2x and x3 = x4 = −x in (1) and considering the
oddness of A, we get

(22) 4g(x)− 2g(x + y)− 2g(x− y) = 2g(2x)− g(2x + y)− g(2x− y)



Stability of mixed type functional equation 77

for all x, y ∈ X. According to the proof of Theorem 2.1 in [3], there
exist two mappings A : X → Y and B : X3 → Y such that g(x) =
A(x) + B(x, x, x) for all x ∈ X. The validity of inequality (20) follows
directly from Lemma 4 and the definition of g. Hence, the proof is
complete. ¤
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