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Abstract. In this paper, we will prove some uniqueness theorems that

can be applied to the generalized Hyers-Ulam stability of some additive-
quadratic-cubic functional equation in complete modular spaces without

42-conditions.
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1. Introduction

Modular spaces have been studied for almost forty years and there is a large
set of known applications of them in various parts of analysis([6], [7], [9], [10],
[11], [12], [13], [16], [19]).

Definition 1.1. Let X be a vector space over a field K(=R or C).
(1) A generalized functional ρ : X −→ [0,∞] is called a modular if

(M1) ρ(x) = 0 if and only if x = 0,
(M2) ρ(αx) = ρ(x) for every scalar α with |α| = 1, and
(M3) ρ(z) ≤ ρ(x) + ρ(y) whenever z is a convex combination of x and y.

(2) If (M3) is replaced by
(M4) ρ(αx+ βy) ≤ αρ(x) + βρ(y)

for all x, y ∈ V and all nonnegative scalars α, β with α + β = 1, then we say
that ρ is convex.

For any convex modular ρ on X, the modular space Xρ is defined by

Xρ := {x ∈ X | ρ(λx)→ 0 as λ→ 0}.
Definition 1.2. Let Xρ be a modular space and {xn} a sequence in Xρ. Then

(1) {xn} is called ρ-convergent to a point x ∈ Xρ, denoted by x =ρ limn→∞ xn,
if ρ(xn − x)→ 0 as n→∞,
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(2) {xn} is called ρ-Cauchy if for any ε > 0, one has ρ(xn−xm) < ε for sufficiently
large m,n ∈ N, and

(3) a subset K of Xρ is called ρ-complete if each ρ-Cauchy sequence in K is
ρ-convergent to a ponit in K.

It is well known that fixed point theories are one of powerful tools in solving
mathematical problems. Banach’s contraction principle is one of the pivotal
results in fixed point theories and they have a board set of applications. Khamsi,
Kozowski and Reich [4] investigated the fixed point theorem in modular spaces.
In [5], Khamsi proved a series of fixed point theorems in modular spaces.

For a modular space Xρ, a nonempty subset C of Xρ, and a mapping T :
C −→ C, the orbit of T at x ∈ C is the set O(x) = {x, Tx, T 2x, · · ·}. If
δρ(x) = sup{ρ(u − v) | u, v ∈ O(x)} < ∞, then one says that T has a bounded
orbit at x.

Lemma 1.3. [5] Let Xρ be a modular space whose induced modular is lower
semi-continuous and let C ⊆ Xρ be a ρ-complete subset. If T : C −→ C is a
ρ-contraction, that is, there is a constant L ∈ [0, 1) such that

ρ(Tx− Ty) ≤ Lρ(x− y), ∀x, y ∈ C

and T has a bounded orbit at a point x0 ∈ C, then the sequence {Tnx0} is
ρ-convergent to a point w ∈ C.

The convergence of a sequence {xn} does not imply that of {c · xn} for a
scalar c in modular spaces. In order to avoid such diffculties, some additional
conditions are imposed on the modular so that the multiple of {xn} converges
naturally. One of such conditions is the so-called 42-condition.

A modular space Xρ is said to satisfy the 42-condition if there exists k ≥ 2
such that ρ(2x) ≤ kρ(x) for all x ∈ Xρ.

Let X and Y be real vector spaces. For any mapping f : X −→ Y , consider
the following functional equations :

f(4x+ y) + f(4x− y) = 4f(x+ y) + 4f(x− y), (1)

f(4x+ y) + f(4x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y), (2)

and

f(4x+ y) + f(4x− y) = 4f(x+ y) + 4f(x− y) + 120f(x) (3)

for all x, y ∈ X. Then a mapping f : X −→ Y is called an additive(quadratic,
cubic, resp.) if f satisfies (1)((2), (3), resp.) and a mapping f : X −→ Y is
called an additive-quadratic-cubic if f is represented by the sum of an additive
mapping, a quadratic mapping, and a cubic mapping.

The stability problem for functional equations first was planed in 1940 by
Ulam [17].

“Let G1 be a group and G2 a metric group with the metric d. Given a constant
δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 −→ G2
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satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there exists a unique
homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all x ∈ G1?”

In the next year, Hyers [3] gave the first affirmative partial answer to the ques-
tion of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [1]
for additive mappings and by Rassias [14] for linear mappings by considering an
unbounded Cauchy difference, the latter of which has influenced many develop-
ments in the stability theory. This area is then referred to as the generalized
Hyers-Ulam stability. In 1994, P. Gǎvruta [2] generalized these theorems for
approximate additive mappings controlled by the unbounded Cauchy difference
with regular conditions.

Recently, Sadeghi [15] presented a fixed point method to prove the generalized
Hyers-Ulam stability of functional equations in modular spaces with the 42-
condition and using the fixed point theorem Lemma 1.3, Wongkum, Chaipunya,
and Kumam [18] proved the generalized Hyers-Ulam stability for quadratic map-
pings in a modular space whose modular is convex, lower semi-continuous but
do not satisfy the 42-condition.

Lee and Jung [8] proved uniqueness theorems on functional inequalities con-
cerning cubic-quadratic-additive equation in Banach spaces.

In this paper, using the fixed point theorem, we will prove a general unique-
ness theorem that can be applied to the generalized Hyers-Ulam stability of
some additive-quadratic-cubic functional equation in modular spaces without
42-conditions.

2. Main results

Throughout this section, we assume that V is a linear space and Xρ is a ρ-
complete modular space whose induced modular is convex lower semi-continuous.
In this section, we will prove that, if for given map f : V −→ Xρ, there is a
mapping F : V −→ Xρ, which is near f in Xρ, with some properties possessed
by additive-quadratic-cubic mappings, then F is uniquely determined.

Define a set M by

M := {g : V −→ Xρ | g(0) = 0}
and a generalized function ρ̃ on M by for each g ∈M,

ρ̃(g) := inf{c > 0 | ρ(g(x)) ≤ cφ(x), ∀x ∈ V },
where φ : V −→ [0,∞) is a mapping.

Lemma 2.1. [18] We have the following :
(1) M is a linear space,
(2) ρ̃ is a convex modular on M,
(3) Mρ̃ = M and Mρ̃ is ρ̃-complete, and
(4) ρ̃ is lower semi-continuous.

Now, with Lemma 1.3 and Lemma 2.1, we will show the following uniquness
theorems concerning additive-quadratic-cubic type functional equations.
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Theorem 2.2. Let φ : V −→ [0,∞) be a mapping and L a real number such
that 0 ≤ L < 3

5 and

φ(2x) ≤ 2Lφ(x) (4)

for all x ∈ V . Let f, F : V −→ Xρ be mappings such that

ρ(F (x)− f(x)) ≤ φ(x) (5)

for all x ∈ V and

F (2x) = 2F (x) (6)

for all x ∈ X. Then F is determined by

1

23
F (x)

=ρ lim
n→∞

1

3n · 23
[
f(22nx) + nΣn−1k=1(−1)k

1

23k
f(22n+kx) + (−1)n

1

23n
f(23nx)

]
(7)

for all x ∈ V and F is the unique mapping with (5) and (6).

Proof. By Lemma 2.1, Mρ̃ = M is ρ̃-complete and ρ̃ is lower semi-continuous.
Define T : Mρ̃ −→ Mρ̃ by Tag(x) = 1

3g(4x) − 1
24g(8x) for all g ∈ Mρ̃ and all

x ∈ V . By (6), we have TaF (x) = F (x) for all x ∈ V and so F is a fixed point
of Ta. Suppose that g, h ∈ Mρ̃ and ρ̃(g − h) ≤ c for some positive real number
c. By (M3) and (4), we have

ρ(2Tag(x)− 2Tah(x)) ≤ 2

3
ρ(g(4x)− h(4x)) +

1

12
ρ(g(8x)− h(8x)

≤ 2

3
cφ(4x) +

1

12
cφ(8x) ≤

(8

3
+

2

3
L
)
cL2φ(x) ≤ 2cLφ(x)

for all x ∈ V , because 0 ≤ L < 3
5 . Hence we have

ρ̃(Tag − Tah) ≤ 1

2
ρ̃(2Tag − 2Tah) ≤ Lρ̃(g − h). (8)

for all g, h ∈Mρ̃ and so T is ρ̃-contractive.
Now, we will show that Ta has a bounded orbit at a point 2−3f in Mρ̃. Since

F is a fixed point of Ta, by (5) and (8), we have

ρ̃(2−1Taf − 2−1f) ≤ 1

2
ρ̃(Taf − TaF ) +

1

2
ρ̃(F − f)

≤ 1

2
(1 + L)ρ̃(F − f)

≤ 1

2
(1 + L).

By (M1) and (8), we have

ρ̃(2−2Tna f − 2−2f) ≤ 1

2
ρ̃(2−1Tna f − 2−1Taf) +

1

2
ρ̃(2−1Taf − 2−1f)

≤ Lρ̃(2−2Tn−1a f − 2−2f) +
1

2
ρ̃(2−1Taf − 2−1f)
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for all n ∈ N. Hence we have

ρ̃(2−2Tna f − 2−2f) ≤ 1

2

[
Σn−1k=0L

k
]
ρ̃(2−1Taf − 2−1f) ≤ 1 + L

22(1− L)

for all n ∈ N. For any non-negative integers m,n with m > n,

ρ̃(2−3Tna f − 2−3Tma f) ≤ 1

2
ρ̃(2−2Tna f − 2−2f) +

1

2
ρ̃(2−2Tma f − 2−2f)

≤ 1 + L

22(1− L)
.

(9)

Hence Ta has a bounded orbit at 2−3f in Mρ̃ and thus by Lemma 1.3, there is
a A ∈Mρ̃ such that {Tna 2−3f} is ρ̃-convergent to A in Mρ̃. That is, limn→∞
ρ̃(Tna 2−3f −A) = 0. Since ρ̃ is lower semi-continuous, by (9), we have

ρ̃(A− 2−3f) ≤ 1 + L

22(1− L)
. (10)

Since ρ̃(A−TaA) ≤ lim infn→∞ ρ̃(2−3Tn+1
a f −TaA) ≤ L lim infn→∞ A is a fixed

pont of Ta. Since F is a fixed point of Ta, by (8),

ρ̃(2−1A− 2−4F ) = ρ̃(2−1TaA− 2−4TaF ) ≤ Lρ̃(2−1A− 2−4F )].

Since 0 ≤ L < 3
5 , A = 2−3F . Moreover, we have

Tna f(x) =
1

3n

[
f(22nx) + nΣn−1k=1(−1)k

1

23k
f(22n+kx) + (−1)n

1

23n
f(23nx)

]
for all x ∈ V and all n ∈ N. Thus

A(x) =ρ lim
n→∞

1

3n · 23
[
f(22nx)+nΣn−1k=1(−1)k

1

23k
f(22n+kx)+(−1)n

1

23n
f(23nx)

]
for all x ∈ V . Since A = 2−3F , we have (7).

Suppose that G is a mapping with (5) and (6). Then by (5), and (6), we have

ρ
(1

2
F (x)− 1

2
G(x)

)
≤ 1

2n
φ(2nx) ≤ Lnφ(x)

for all x ∈ V and all n ∈ N. Hence F (x) = G(x) for all x ∈ V . �

Similar to the proof of Theorem 2.2, we can show the following two theorems
for modular spaces.

Theorem 2.3. Let φ : V −→ [0,∞) be a mapping and L a real number such
that 0 ≤ L < 1 and

φ(2x) ≤ 4Lφ(x) (11)

for all x ∈ V . Let f, F : V −→ Xρ be mappings satisfying (5) and

F (2x) = 4F (x) (12)

for all x ∈ X. Then F is determined by

1

23
F (x) =ρ lim

n→∞

1

22n+3
f(22nx) (13)

for all x ∈ V and F is the unique mapping with (5) and (12).
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Theorem 2.4. Let φ : V −→ [0,∞) be a mapping and L a real number such
that 0 ≤ L < 3

5 and

φ(2x) ≤ 8Lφ(x) (14)

for all x ∈ V . Let f, F : V −→ Xρ be mappings satisfying (5) and

F (2x) = 8F (x) (15)

for all x ∈ V . Then F is determined by

1

23
F (x)

=ρ lim
n→∞

1

3n · 26n+3

[
(−1)nf(22nx) + nΣn−1k=1(−1)n+k

1

2k
f(22n+kx) +

1

2n
f(23nx)

]
(16)

for all x ∈ V and F is the unique mapping with (5) and (15).

Proof. Define T : Mρ̃ −→ Mρ̃ by Tcg(x) = − 1
3·26 g(4x) + 1

3·27 g(8x) for all
g ∈Mρ̃ and all x ∈ V . By (15), F is a fixed point of Tc. Suppose that g, h ∈Mρ̃

and ρ̃(g − h) ≤ c for some positive real number c. By (M3) and (14), we have

ρ(2Tcg(x)− 2Tch(x)) ≤ 1

3 · 26
cφ(4x) +

1

3 · 27
cφ(8x)

≤
(1

3
+

4

3
L
)
cL2φ(x)

≤ 2cLφ(x)

for all x ∈ V , because 0 ≤ L < 3
5 . Hence we have ρ̃(Tcg − Tch) ≤ Lρ̃(g − h).

for all g, h ∈Mρ̃ and so T is ρ̃-contractive. Similar to Theorem 2.2, we have the
results. �

For any map g : V −→ X, let

go(x) =
g(x)− g(−x)

2
, ge(x) =

g(x) + g(−x)

2
,

ga(x) =
8go(x)− go(2x)

6
, gc(x) = − 2go(x)− go(2x)

6
for all x ∈ V . Then go, ga, and gc are odd mappings, fe is an even mapping, and

g(x) = go(x) + ge(x) = ga(x) + ge(x) + gc(x)

for all x ∈ V . Using Theroem 2.2, Theroem 2.3, and Theroem 2.4, we will prove
the following theorem which is the main theorem of this paper.

Theorem 2.5. Let φ : V −→ [0,∞) be a mapping and L a positive real number
such that 0 ≤ L < 3

5 and

φ(2x) ≤ 2Lφ(x) (17)

for all x ∈ V . Let f, F : V −→ Xρ be mappings satisfying (5) and

Fo(x) =
5

8
Fo(2x)− 1

16
Fo(4x), Fe(2x) = 4Fe(x) (18)



Uniqueness Theorem concerning functional quations in modular spaces 421

for all x ∈ X. Then F is determined by

1

26
F (x) =ρ lim

n→∞

[ 1

26 · 3n+1

(
4 + (−1)n

1

26n

)
fo(2

2nx)

− n+ 1

27 · 3n+1

(
1 + (−1)n+1 1

26n

)
fo(2

2n+1x) +
n

26 · 3n+1
Σn−2k=1

(
(−1)k+1 · 1

23k

+ (−1)n+k
1

26n+k

)
fo(2

2n+k+1x) +
n+ 1

23n+4 · 3n+1

(
(−1)n − 1

24n+2

)
fo(2

3nx)

+
1

6n+1 · 23n+1

(
(−1)n+1 +

1

24n+5

)
fo(2

3n+1x) +
1

22n+6
fe(2

nx)
]
.

(19)

Moreover, F is the unique mapping with (5) and (18).

Proof. By (18), we get Fa(2x) = 2Fa(x), Fc(2x) = 8Fc(x) for all x ∈ V . By
(17) and (5), we have

ρ
(1

2
Fa(x)− 1

2
fa(x)

)
≤ 1

3
c[φ(x) + φ(−x)] +

1

24
c[φ(2x) + φ(−2x)]

≤
(1

3
+

1

12
L
)
c[φ(x) + φ(−x)],

(20)

ρ(Fe(x)− fe(x)) ≤ 1

2
c[φ(x) + φ(−x)], (21)

and

ρ
(1

2
Fc(x)− 1

2
fc(x)

)
≤ 1

6
ρ(Fo(x)− fo(x))) +

1

12
ρ(Fo(2x)− fo(2x))

≤
( 1

12
+

1

12
L
)
c[φ(x) + φ(−x)]

(22)

for all x ∈ V . By (20), (21), (22), Theorem (2.2), Theorem (2.3), and Theo-
rem (2.4), we have

1

24
Fa(x)

=ρ lim
n→∞

1

3n · 24
[
fa(22nx) + nΣn−1k=1(−1)k

1

23k
fa(22n+kx) + (−1)n

1

23n
fa(23nx)

]
,

(23)

1

24
Fe(x) =ρ lim

n→∞

1

22n+4
fe(2

2nx) (24)

and

1

24
Fc(x) =ρ lim

n→∞

1

3n · 26n+4

[
(−1)nfc(2

2nx)

+ nΣn−1k=1(−1)n+k
1

2k
fc(2

2n+kx) +
1

2n
fc(2

3nx)
] (25)
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for all x ∈ V . By the definitions of fa and fc, we have

Tna fa(x)

=
1

3n

[
fa(22nx) + nΣn−1k=1(−1)k

1

23k
fa(22n+kx) + (−1)n

1

23n
fa(23nx)

]
=

1

3n+1

[
4fo(2

2nx)− n+ 1

2
fo(2

2n+1x) + nΣn−2k=1(−1)k+1 1

23k
fo(2

2n+k+1x)

+ (−1)n
n+ 1

23n−2
fo(2

3nx) + (−1)n+1 1

23n+1
fo(2

3n+1x)
]
,

(26)

and

Tnc fc(x)

=
1

3n+1 · 26n
[
(−1)n+1fo(2

2nx) + (−1)n
n+ 1

2
fo(2

2n+1x)

+ nΣn−2k=1(−1)n+k
1

2k
fo(2

2n+k+1x)− n+ 1

2n
fo(2

3nx) +
1

2n+1
fo(2

3n+1x)
] (27)

for all x ∈ V and all n ∈ N. By (26) and (27), we have

Tna fa(x) + Tnc fc(x) + Tne fe(x)

=
1

3n+1

[
4 + (−1)n+1 1

26n

]
fo(2

2nx)− n+ 1

2 · 3n+1

[
1 + (−1)n+1 1

26n

]
fo(2

2n+1x)

+
n

3n+1
Σn−2k=1

[
(−1)k+1 · 1

23k
+ (−1)n+k

1

26n+k

]
fo(2

2n+k+1x)

+
n+ 1

23n−2 · 3n+1

[
(−1)n − 1

24n+2

]
fo(2

3nx)

+
1

6n+1 · 22n
[
(−1)n+1 +

1

24n

]
fo(2

3n+1x) +
1

22n
fe(2

nx)

(28)

for all x ∈ V and all n ∈ N. By (23), (24), and (25),

1

26
F (x) =ρ lim

n→∞

1

26
[Tna fa(x) + Tnc fc(x) + Tne fe(x)]

and by (28), we have (19).
Similar to Theorem 2.2, Theorem 2.3, and Theorem 2.4, Fa, Fe, and Fc are

unique mappings with some properties related with (5) and (18) and and hence
F is the unique mapping with (5) and (18) �

3. Applications

For any mapping f : X −→ Y , let

Df (x, y) = f(4x+ y) + f(4x− y)− 4f(x+ y)− 4f(x− y)− 20f(2x)

+ 48f(x) + 8f(−x) + 3f(y) + 3f(−y)
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In this section, we consider the following additive-quadratic-cubic functional
equation

Df (x, y) = 0 (29)

and using Theorem (2.5), we prove the generalized Hyers-Ulam stability for it
in complete modular spaces.

Lemma 3.1. Let f : V −→ X be a mapping. Then f satisfies (29) if and only
if f is an additive-quadratic-cubic mapping.

Using Theorem 2.2 - Theorem 2.5 and Lemma 3.1, we can show the generalized
Hyers-Ulam stability for (29).

Theorem 3.2. Let V be a linear space and Xρ a ρ-complete modular space whose
induced modular is convex lower semi-continuous. Suppose that f : V −→ X is
a mapping such that

ρ(Df (x, y)) ≤ φ(x, y) (30)

for all x, y ∈ V and let φ : V 2 −→ [0,∞) be a mapping satisfying

φ(2x, 2y) ≤ 2Lφ(x, y), ∀x, y ∈ V (31)

for some real number L with 0 ≤ L < 5. Then there is a unique additive-
quadratic-cubic mapping F : V −→ Xρ such that

ρ(2−2F (x)− 2−5f(x))

≤
( Ma

24(1−Ma)
+

Me

24(1−Me)
+

Mc

24(1−Mc)

)
[ψ(x, 0) + ψ(x, x) + ψ(x, 4x)]

(32)

for all x ∈ V , where Ma = 1
24

(
1+L+ L2

3

)
, Me = 13

80 , Mc = 1
96

(
1+ 1

4L+ 1
12L

2
)

and ψ(x, y) = 1
2 [φ(x, y) + φ(−x,−y)] for all x, y ∈ V .

Proof. By (30), we have

ρ(Dfo(x, y)) ≤ 1

2
ρ(Df (x, y)) +

1

2
ρ(Df (−x,−y)) ≤ ψ(x, y) (33)

for all x, y ∈ V . Letting y = 0 in (33), we get

ρ(2fo(4x)− 20fo(2x) + 32fo(x)) ≤ ψ(x, 0) (34)

for all x, y ∈ X and by (34), we have

ρ(12[fa(2x)− 2fa(x)]) ≤ ψ(x, 0) (35)

for all x ∈ X. By (35), we have

ρ(Tafa(x)− fa(x))

≤ 1

2
ρ(2fa(x)− fa(2x)) +

1

4
ρ(2fa(2x)− fa(4x)) +

1

24
ρ(2fa(4x)− fa(8x))

≤ 1

24

(
1 + L+

L2

3

)
ψ(x, 0)

(36)
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for all x ∈ X. By (34), we have

ρ(12[fc(2x)− 8fc(x)]) ≤ ψ(x, 0) (37)

for all x ∈ X and

ρ(Tcfc(x)− fc(x)) ≤ 1

3 · 25
(

1 +
1

4
L+

1

12
L2
)
ψ(x, 0). (38)

By (30), we have

ρ(Dfe(x, y)) ≤ 1

2
ρ(Df (x, y)) +

1

2
ρ(Df (−x,−y)) ≤ ψ(x, y) (39)

for all x, y ∈ V . Letting y = 0 in (39), we get

ρ(2fe(4x)− 20fe(2x) + 48fe(x)) ≤ ψ(x, 0) (40)

for all x ∈ X and letting y = x in (39), we get

ρ(fe(5x) + fe(3x)− 24fe(2x) + 62fe(x)) ≤ ψ(x, x) (41)

for all x ∈ X. Letting y = 4x in (39), we get

ρ(fe(8x)− 4fe(5x)− 4fe(3x)− 20fe(2x) + 56fe(x) + 6fe(4x)) ≤ ψ(x, 4x) (42)

for all x ∈ X and letting x = 2x in (40), we get

ρ(2fe(8x)− 20fe(4x) + 48fe(2x)) ≤ ψ(2x, 0) (43)

for all x ∈ X. By (40)-(43), we get

ρ(fe(2x)− 4fe(x)) ≤
(2

5
+

1

20
L
)
ψ(x, 0) +

1

5
ψ(x, x) +

1

20
ψ(x, 4x) (44)

for all x ∈ X. By (45), we have

ρ(Tefe(x)− fe(x)) ≤ 1

80
(8 + L)ψ(x, 0) +

1

20
ψ(x, x) +

1

80
ψ(x, 4x)

≤ 13

80
[ψ(x, 0) + ψ(x, x) + ψ(x, 4x)]

(45)

for all x ∈ X. Since 0 ≤ L < 5, 1
24 ≤ Ma <

2
3 <

3
5 and for any t g, h ∈ Mρ̃, we

have

ρ̃(Tag − Tah) ≤ 1

2
ρ̃(2Tag − 2Tah) ≤Maρ̃(g − h).

for all g, h ∈ Mρ̃. Hence Ta is ρ̃-contractive and similar to the proof of Theo-
rem 2.2, there is a fixed point A ∈Mρ̃ of Ta such that

ρ(A(x)− 2−3fa(x)) ≤ Ma

22(1−Ma)
ψ(x, 0). (46)

for all x ∈ V . Since 0 ≤ L < 5, 1
96 ≤ Mc <

3
5 and similarly, there is a fixed

points C of Tc such that

ρ(C(x)− 2−3fc(x)) ≤ Mc

22(1−Mc)
ψ(x, 0). (47)
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for all x ∈ V . Since 0 < Me < 1, there is a fixed points Q of Te such that

ρ(Q(x)− 2−3fe(x)) ≤ Me

22(1−Me)
[ψ(x, 0) + ψ(x, x) + ψ(x, 4x)]. (48)

for all x ∈ V . Since A, Q, and C are fixed points of Ta, Te and Tc, respectively,

A(2x) = 2A(x), Q(2x) = 4Q(x), C(2x) = 8C(x) (49)

for all x ∈ V . Let F = A+Q+C. By (49), Fa = A, Fe = Q, and Fc = C. Since
ψ(x, 0) ≤ ψ(x, 0) + ψ(x, x) + ψ(x, 4x), by (46), (47), and (48), we get (32) and
by Theorem 2.5, F is the unique mapping with (49) and (32).

Since Ta is contractive, limn→∞ ρ(Tna Dfa(x, y)) = 0 and so

ρ
( 1

24
DFa(x, y)

)
≤ 1

24
ρ(Fa(4x+ y)− Tna 2−3fa(4x+ y)) +

1

24
ρ(Fa(4x− y)

− Tna 2−3fa(4x− y)) +
1

24
ρ(Fa(x+ y)− Tna fa2−3(x+ y))

+
1

24
ρ(Fa(x− y)− Tna 2−3fa(x− y)) +

1

27
ρ(Tna Dfa(x, y))

for all x ∈ V and all n ∈ N. Hence we have DFa
(x, y) = 0 for all x ∈ V and

by Lemma 3.1, Fa is an additive mapping. Similarly, Fe is a quadratic mapping
and Fc is a cubic mapping. Thus F is an additive-quadratic-cubic mapping. �
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