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FUNCTIONAL EQUATIONS IN THREE VARIABLES

Deok-Hoon Boo*, Chun-Gil Park**,

and Hee-Jung Wee***

Abstract. Let r, s be nonzero real numbers. Let X, Y be vector

spaces. It is shown that if a mapping f : X → Y satisfies f(0) = 0,

and

sf(
x + y ± z

r
)+f(x)+f(y)±f(z) = sf(

x + y

r
)+sf(

y ± z

r
)+sf(

x ± z

r
),

or

sf(
x + y ± z

r
) + f(x) + f(y) ± f(z) = f(x + y) + f(y ± z) + f(x ± z)

for all x, y, z ∈ X, then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that f(x) = A(x) + Q(x)
for all x ∈ X.

Furthermore, we prove the Cauchy–Rassias stability of the func-

tional equations as given above.

1. Introduction

In 1940, S.M. Ulam [7] raised the following question: Under what

conditions does there exist an additive mapping near an approxi-

mately additive mapping?

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respec-

tively. Hyers [4] showed that if ǫ > 0 and f : X → Y such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ
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for all x, y ∈ X, then there exists a unique additive mapping T : X →

Y such that

‖f(x) − T (x)‖ ≤ ǫ

for all x ∈ X.

Consider f : X → Y to be a mapping such that f(tx) is continuous

in t ∈ R for each fixed x ∈ X. Assume that there exist constants ǫ ≥ 0

and p ∈ [0, 1) such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [5] showed that there exists a unique

R-linear mapping T : X → Y such that

‖f(x) − T (x)‖ ≤
2ǫ

2 − 2p
||x||p

for all x ∈ X. Găvruta [3] generalized the Rassias’ result.

A square norm on an inner product space satisfies the important

parallelogram equality

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution

of the quadratic functional equation is said to be a quadratic function.

A Hyers–Ulam stability problem for the quadratic functional equation

was proved by Skof [6] for mappings f : E1 → E2, where E1 is a

normed space and E2 is a Banach space. Cholewa [1] noticed that

the theorem of Skof is still true if the relevant domain E1 is replaced
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by an Abelian group. In [2], Czerwik proved the Hyers–Ulam–Rassias

stability of the quadratic functional equation.

Throughout this paper, assume that r and s are nonzero real num-

bers.

In this paper, we are going to investigate functional equations of

sum type of an additive mapping and a quadratic mapping between

vector spaces, and prove the Cauchy–Rassias stability of the func-

tional equations between Banach spaces.

2. Functional equations in three variables

Throughout this section, assume that X and Y are vector spaces.

Theorem 2.1. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y + z

r
) + f(x) + f(y) + f(z) = sf(

x + y

r
) + sf(

y + z

r
)

+ sf(
x + z

r
)(2.i)

for all x, y, z ∈ X, then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that f(x) = A(x) + Q(x)

for all x ∈ X.

Proof. Let A : X → Y and Q : X → Y be the mappings defined

by

A(x) : =
f(x) − f(−x)

2
,

Q(x) : =
f(x) + f(−x)

2

for all x ∈ X. It is obvious that A : X → Y is an odd mapping and

Q : X → Y is an even mapping, and that f(x) = A(x) + Q(x) for all

x ∈ X.
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It follows from (2.i) that

sA(
x + y + z

r
) + A(x) + A(y) + A(z) = sA(

x + y

r
) + sA(

y + z

r
)

+ sA(
x + z

r
)(2.1)

for all x, y, z ∈ X. Put y = z = 0 in (2.1). Then one can obtain that

sA(
x

r
) + A(x) = 2sA(

x

r
),

A(
x

r
) =

1

s
A(x)

for all x ∈ X. So

(2.2) A(x+y+z)+A(x)+A(y)+A(z) = A(x+y)+A(y+z)+A(x+z)

for all x, y, z ∈ X. Replacing z by −y in (2.2), one can get

2A(x) = A(x + y) + A(x − y)

for all x, y ∈ X. Let x+y
2 = z and x−y

2 = w. Then

(2.3) 2A(z + w) = A(2z) + A(2w)

for all z, w ∈ X. Let w = 0 in (2.3). 2A(z) = A(2z), and so

A(z + w) = A(z) + A(w)

for all z, w ∈ X. Thus the mapping A : X → Y is additive.

It follows from (2.i) that

sQ(
x + y + z

r
) + Q(x) + Q(y) + Q(z) = sQ(

x + y

r
) + sQ(

y + z

r
)

+ sQ(
x + z

r
)(2.4)
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for all x, y, z ∈ X. Put y = z = 0 in (2.4). Then one can obtain that

sQ(
x

r
) + Q(x) = 2sQ(

x

r
),

Q(
x

r
) =

1

s
Q(x)

for all x ∈ X. So

(2.5) Q(x+y+z)+Q(x)+Q(y)+Q(z) = Q(x+y)+Q(y+z)+Q(x+z)

for all x, y, z ∈ X. Replacing z by −y in (2.5), one can get

2Q(x) + 2Q(y) = Q(x + y) + Q(x − y)

for all x, y ∈ X. Thus the mapping Q : X → Y is quadratic.

Therefore, there exist an additive mapping A : X → Y and a

quadratic mapping Q : X → Y such that f(x) = A(x) + Q(x) for all

x ∈ X. �

Theorem 2.2. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y + z

r
) + f(x) + f(y) + f(z) = f(x + y) + f(y + z) + f(x + z)

for all x, y, z ∈ X, then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that f(x) = A(x) + Q(x)

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 2.1. �

Theorem 2.3. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y − z

r
) + f(x) + f(y) + f(z) = sf(

x + y

r
) + sf(

y − z

r
)

+ sf(
x − z

r
)(2.ii)
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for all x, y, z ∈ X, then the mapping f : X → Y is quadratic.

Proof. Put y = z = 0 in (2.ii). Then one can obtain that

sf(
x

r
) + f(x) = 2sf(

x

r
),

f(
x

r
) =

1

s
f(x)

for all x ∈ X. It follows from (2.ii) that

(2.6) f(x+y−z)+f(x)+f(y)+f(z) = f(x+y)+f(y−z)+f(x−z)

for all x, y, z ∈ X. Replacing z by y in (2.6), one can get

2f(x) + 2f(y) = f(x + y) + f(x − y)

for all x, y ∈ X. Thus the mapping f : X → Y is quadratic. �

Theorem 2.4. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y − z

r
) + f(x) + f(y) + f(z) = f(x + y) + f(y − z) + f(x − z)

for all x, y, z ∈ X, then the mapping f : X → Y is quadratic.

Proof. The proof is similar to the proof of Theorem 2.3. �

Theorem 2.5. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y − z

r
) + f(x) + f(y) − f(z) = sf(

x + y

r
) + sf(

y − z

r
)

+ sf(
x − z

r
)(2.iii)

for all x, y, z ∈ X, then the mapping f : X → Y is additive.

Proof. By a similar method to the proof of Theorem 2.3, one can

obtain that

(2.7) f(x+y−z)+f(x)+f(y)−f(z) = f(x+y)+f(y−z)+f(x−z)
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for all x, y, z ∈ X. Replacing z by y in (2.7), one can get

2f(x) = f(x + y) + f(x − y)

for all x, y ∈ X. Let x+y

2 = z and x−y

2 = w. Then

(2.8) 2f(z + w) = f(2z) + f(2w)

for all z, w ∈ X. Let w = 0 in (2.8). 2f(z) = f(2z), and so

f(z + w) = f(z) + f(w)

for all z, w ∈ X. Thus the mapping f : X → Y is additive. �

Theorem 2.6. If a mapping f : X → Y satisfies f(0) = 0 and

sf(
x + y − z

r
) + f(x) + f(y) − f(z) = f(x + y) + f(y − z) + f(x − z)

for all x, y, z ∈ X, then the mapping f : X → Y is additive.

Proof. The proof is similar to the proofs of Theorems 2.3 and 2.5.

�

3. Stability of functional equations in three variables

Throughout this section, assume that X is a normed vector space

with norm || · || and that Y is a Banach space with norm ‖ · ‖.

Theorem 3.1. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) such that

ϕ̃(x, y, z) :=

∞∑

j=0

|s|jϕ(
x

rj
,

y

rj
,

z

rj
) < ∞,(3.i)

‖sf(
x + y + z

r
) + f(x) + f(y) + f(z) − sf(

x + y

r
) − sf(

y + z

r
)

−sf(
x + z

r
)‖ ≤ ϕ(x, y, z)(3.ii)
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for all x, y, z ∈ X. Then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤ ϕ̃(x, 0, 0),(3.iii)

‖
f(x) + f(−x)

2
− Q(x)‖ ≤ ϕ̃(x, 0, 0)(3.iv)

for all x ∈ X.

Proof. Let f1 : X → Y be the mapping defined by f1(x) :=
f(x)−f(−x)

2 . It follows from (3.ii) that

‖f1(x) − sf1(
x

r
)‖ ≤

ϕ(x, 0, 0) + ϕ(−x, 0, 0)

2
= ϕ(x, 0, 0),

‖sf1(
x + y + z

r
) + f1(x) + f1(y) + f1(z) − sf1(

x + y

r
) − sf1(

y + z

r
)

−sf1(
x + z

r
)‖ ≤ ϕ(x, y, z)(3.1)

for all x, y, z ∈ X. Then

‖snf1(
x

rn
) − sn+1f1(

x

rn+1
)‖ ≤ |s|nϕ(

x

rn
, 0, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.2) ‖slf1(
x

rl
) − smf1(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

rj
, 0, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.i) and (3.2) that the sequence {snf1(
x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf1(
x
rn

)}

converges. So one can define the mapping A : X → Y by

(3.3) A(x) := lim
n→∞

snf1(
x

rn
)

for all x ∈ X.
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By (3.i), (3.1) and (3.3),

sA(
x + y + z

r
) + A(x) + A(y) + A(z) − sA(

x + y

r
)

−sA(
y + z

r
) − sA(

x + z

r
) = 0

for all x, y, z ∈ X. It is obvious that A(−x) = −A(x) for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.1, the mapping

A : X → Y is additive. Moreover, letting l = 0 and passing the limit

m → ∞ in (3.2), one can obtain that

‖f1(x) −A(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

rj
, 0, 0) = ϕ̃(x, 0, 0)

for all x ∈ X. That is, the inequality (3.iii) holds for all x ∈ X.

Now let f2 : X → Y be the mapping defined by f2(x) := f(x)+f(−x)
2 .

It follows from (3.ii) that

‖f2(x) − sf2(
x

r
)‖ ≤

ϕ(x, 0, 0) + ϕ(−x, 0, 0)

2
= ϕ(x, 0, 0),

‖sf2(
x + y + z

r
) + f2(x) + f2(y) + f2(z) − sf2(

x + y

r
)

−sf2(
y + z

r
) − sf2(

x + z

r
)‖ ≤ ϕ(x, y, z)(3.4)

for all x, y, z ∈ X. Then

‖snf2(
x

rn
) − sn+1f2(

x

rn+1
)‖ ≤ |s|nϕ(

x

rn
, 0, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.5) ‖slf2(
x

rl
) − smf2(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

rj
, 0, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.i) and (3.5) that the sequence {snf2(
x
rn

)} is a Cauchy
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sequence for all x ∈ X. Since Y is complete, the sequence {snf2(
x
rn

)}

converges. So one can define the mapping Q : X → Y by

(3.6) Q(x) := lim
n→∞

snf2(
x

rn
)

for all x ∈ X.

By (3.i), (3.4) and (3.6),

sQ(
x + y + z

r
) + Q(x) + Q(y) + Q(z) − sQ(

x + y

r
) − sQ(

y + z

r
)

− sQ(
x + z

r
) = 0

for all x, y, z ∈ X. It is obvious that Q(−x) = Q(x) for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.1, the mapping

Q : X → Y is quadratic. Moreover, letting l = 0 and passing the

limit m → ∞ in (3.5), one can obtain that

‖f2(x) −Q(x)‖ ≤

∞∑

j=0

|s|jϕ(
x

rj
, 0, 0) = ϕ̃(x, 0, 0)

for all x ∈ X. That is, the inequality (3.iv) holds for all x ∈ X. �

Corollary 3.2. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y + z

r
) + f(x) + f(y) + f(z) − sf(

x + y

r
) − sf(

y + z

r
)

−sf(
x + z

r
)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤

|r|pθ

|r|p − |s|
||x||p,

‖
f(x) + f(−x)

2
− Q(x)‖ ≤

|r|pθ

|r|p − |s|
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.1. �
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Theorem 3.3. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) such that

ϕ̃(x, y, z) :=
∞∑

j=0

|s|jϕ(
x

2rj
,

y

2rj
,

z

2rj
) < ∞,(3.v)

‖sf(
x + y + z

r
) + f(x) + f(y) + f(z) − f(x + y) − f(y + z)

−f(x + z)‖ ≤ ϕ(x, y, z)(3.vi)

for all x, y, z ∈ X. Then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤ ϕ̃(x, x, 0),(3.vii)

‖
f(x) + f(−x)

2
− Q(x)‖ ≤ ϕ̃(x, x, 0)(3.viii)

for all x ∈ X.

Proof. Let f1 : X → Y be the mapping defined by f1(x) :=
f(x)−f(−x)

2 . It follows from (3.vi) that

‖f1(2x) − sf1(
2x

r
)‖ ≤

ϕ(x, x, 0) + ϕ(−x,−x, 0)

2
= ϕ(x, x, 0),

‖sf1(
x + y + z

r
) + f1(x) + f1(y) + f1(z) − f1(x + y)

−f1(y + z) − f1(x + z)‖ ≤ ϕ(x, y, z)(3.7)

for all x, y, z ∈ X. So

‖f1(x) − sf1(
x

r
)‖ ≤

ϕ(x
2 , x

2 , 0) + ϕ(−x
2 ,−x

2 , 0)

2
= ϕ(

x

2
,
x

2
, 0)

for all x ∈ X. Then

‖snf1(
x

rn
) − sn+1f1(

x

rn+1
)‖ ≤ |s|nϕ(

x

2rn
,

x

2rn
, 0)
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for all x ∈ X and all n = 1, 2, · · · . So

(3.8) ‖slf1(
x

rl
) − smf1(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

2rj
,

x

2rj
, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.v) and (3.8) that the sequence {snf1(
x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf1(
x
rn

)}

converges. So one can define the mapping A : X → Y by

(3.9) A(x) := lim
n→∞

snf1(
x

rn
)

for all x ∈ X.

By (3.v), (3.7) and (3.9),

sA(
x + y + z

r
)+A(x)+A(y)+A(z)−A(x+y)−A(y+z)−A(x+z) = 0

for all x, y, z ∈ X. It is obvious that A(−x) = −A(x) for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.1, the mapping

A : X → Y is additive. Moreover, letting l = 0 and passing the limit

m → ∞ in (3.8), one can obtain that

‖f1(x) − A(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

2rj
,

x

2rj
, 0) = ϕ̃(x, x, 0)

for all x ∈ X. That is, the inequality (3.vii) holds for all x ∈ X.

Now let f2 : X → Y be the mapping defined by f2(x) := f(x)+f(−x)
2 .

It follows from (3.vi) that

‖f2(x) − sf2(
x

r
)‖ ≤

ϕ(x
2 , x

2 , 0) + ϕ(−x
2 ,−x

2 , 0)

2
= ϕ(

x

2
,
x

2
, 0),

‖sf2(
x + y + z

r
) + f2(x) + f2(y)+f2(z) − f2(x + y)

−f2(y + z) − f2(x + z)‖ ≤ϕ(x, y, z)(3.10)
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for all x, y, z ∈ X. Then

‖snf2(
x

rn
) − sn+1f2(

x

rn+1
)‖ ≤ |s|nϕ(

x

2rn
,

x

2rn
, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.11) ‖slf2(
x

rl
) − smf2(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

2rj
,

x

2rj
, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.v) and (3.11) that the sequence {snf2(
x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf2(
x
rn

)}

converges. So one can define the mapping Q : X → Y by

(3.12) Q(x) := lim
n→∞

snf2(
x

rn
)

for all x ∈ X.

By (3.v), (3.10) and (3.12),

sQ(
x + y + z

r
)+Q(x)+Q(y)+Q(z)−Q(x+y)−Q(y+z)−Q(x+z) = 0

for all x, y, z ∈ X. It is obvious that Q(−x) = Q(x) for all x ∈ X.

By the same reasoning as in the proof of Theorem 2.1, the mapping

Q : X → Y is quadratic. Moreover, letting l = 0 and passing the

limit m → ∞ in (3.11), one can obtain that

‖f2(x) − Q(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

2rj
,

x

2rj
, 0) = ϕ̃(x, x, 0)

for all x ∈ X. That is, the inequality (3.viii) holds for all x ∈ X. �
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Corollary 3.4. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y + z

r
) + f(x) + f(y) + f(z) − f(x + y) − f(y + z)

−f(x + z)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that

‖
f(x) − f(−x)

2
− A(x)‖ ≤

2|r|pθ

2p(|r|p − |s|)
||x||p,

‖
f(x) + f(−x)

2
− Q(x)‖ ≤

2|r|pθ

2p(|r|p − |s|)
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.3. �

Theorem 3.5. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) and (3.i) such that

‖sf(
x + y − z

r
) + f(x) + f(y) + f(z) − sf(

x + y

r
) − sf(

y − z

r
)

−sf(
x − z

r
)‖ ≤ ϕ(x, y, z)(3.ix)

for all x, y, z ∈ X. Then there exists a quadratic mapping Q : X → Y

such that

‖f(x) −Q(x)‖ ≤ ϕ̃(x, 0, 0)

for all x ∈ X.

Proof. Putting y = z = 0 in (3.ix), one can obtain that

‖f(x) − sf(
x

r
)‖ ≤ ϕ(x, 0, 0)
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for all x ∈ X. Then

‖snf(
x

rn
) − sn+1f(

x

rn+1
)‖ ≤ |s|nϕ(

x

rn
, 0, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.13) ‖slf(
x

rl
) − smf(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

rj
, 0, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.ix) and (3.13) that the sequence {snf( x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf( x
rn

)}

converges. So one can define the mapping Q : X → Y by

(3.14) Q(x) := lim
n→∞

snf(
x

rn
)

for all x ∈ X.

By (3.i), (3.ix) and (3.14),

sQ(
x + y − z

r
) + Q(x) + Q(y) + Q(z) − sQ(

x + y

r
) − sQ(

y − z

r
)

− sQ(
x − z

r
) = 0

for all x, y, z ∈ X. By the same reasoning as in the proof of Theorem

2.3, the mapping Q : X → Y is quadratic. Moreover, letting l = 0

and passing the limit m → ∞ in (3.13), one can obtain that

‖f(x) − Q(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

rj
, 0, 0) = ϕ̃(x, 0, 0)

for all x ∈ X. �
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Corollary 3.6. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y − z

r
) + f(x) + f(y) + f(z) − sf(

x + y

r
) − sf(

y − z

r
)

−sf(
x − z

r
)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exists a quadratic mapping Q : X → Y

such that

‖f(x) − Q(x)‖ ≤
|r|pθ

|r|p − |s|
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.5. �

Theorem 3.7. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) and (3.v) such that

‖sf(
x + y − z

r
) + f(x) + f(y) + f(z) − f(x + y) − f(y − z)

−f(x − z)‖ ≤ ϕ(x, y, z)(3.x)

for all x, y, z ∈ X. Then there exists a quadratic mapping Q : X → Y

such that

‖f(x) − Q(x)‖ ≤ ϕ̃(x, x, 0)

for all x ∈ X.

Proof. It follows from (3.x) that

‖f(x) − sf(
x

r
)‖ ≤ ϕ(

x

2
,
x

2
, 0)

for all x ∈ X. Then

‖snf(
x

rn
) − sn+1f(

x

rn+1
)‖ ≤ |s|nϕ(

x

2rn
,

x

2rn
, 0)
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for all x ∈ X and all n = 1, 2, · · · . So

(3.15) ‖slf(
x

rl
) − smf(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

2rj
,

x

2rj
, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.v) and (3.15) that the sequence {snf( x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf( x
rn

)}

converges. So one can define the mapping Q : X → Y by

(3.16) Q(x) := lim
n→∞

snf(
x

rn
)

for all x ∈ X.

By (3.v), (3.x) and (3.16),

sQ(
x + y − z

r
) + Q(x) + Q(y) + Q(z) − Q(x + y) −Q(y − z)

− Q(x − z) = 0

for all x, y, z ∈ X. It is obvious that Q(−x) = Q(x) for all x ∈ X.

By the same reasoning as in Theorem 2.4, the mapping Q : X → Y

is quadratic. Moreover, letting l = 0 and passing the limit m → ∞ in

(3.15), one can obtain that

‖f(x) − Q(x)‖ ≤

∞∑

j=0

|s|jϕ(
x

2rj
,

x

2rj
, 0) = ϕ̃(x, x, 0)

for all x ∈ X. �

Corollary 3.8. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y − z

r
) + f(x) + f(y) + f(z) − f(x + y)

−f(y − z) − f(x − z)‖ ≤ θ(||x||p + ||y||p + ||z||p)
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for all x, y, z ∈ X. Then there exists a quadratic mapping Q : X → Y

such that

‖f(x) −Q(x)‖ ≤
2|r|pθ

2p(|r|p − |s|)
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.7. �

Theorem 3.9. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) and (3.i) such that

‖sf(
x + y − z

r
) + f(x) + f(y) − f(z) − sf(

x + y

r
) − sf(

y − z

r
)

−sf(
x − z

r
)‖ ≤ ϕ(x, y, z)(3.xi)

for all x, y, z ∈ X. Then there exists an additive mapping A : X → Y

such that

‖f(x) −A(x)‖ ≤ ϕ̃(x, 0, 0)

for all x ∈ X.

Proof. Putting y = z = 0 in (3.xi), one can obtain that

‖f(x) − sf(
x

r
)‖ ≤ ϕ(x, 0, 0)

for all x ∈ X. Then

‖snf(
x

rn
) − sn+1f(

x

rn+1
)‖ ≤ |s|nϕ(

x

rn
, 0, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.17) ‖slf(
x

rl
) − smf(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

rj
, 0, 0)
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for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.i) and (3.17) that the sequence {snf( x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf( x
rn

)}

converges. So one can define the mapping A : X → Y by

(3.18) A(x) := lim
n→∞

snf(
x

rn
)

for all x ∈ X.

By (3.i), (3.xi) and (3.18),

sA(
x + y − z

r
) + A(x) + A(y) − A(z) − sA(

x + y

r
) − sA(

y − z

r
)

− sA(
x − z

r
) = 0

for all x, y, z ∈ X. By the same reasoning as in the proof of Theorem

2.5, the mapping A : X → Y is additive. Moreover, letting l = 0 and

passing the limit m → ∞ in (3.17), one can obtain that

‖f(x) − A(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

rj
, 0, 0) = ϕ̃(x, 0, 0)

for all x ∈ X. �

Corollary 3.10. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y − z

r
) + f(x) + f(y) − f(z) − sf(

x + y

r
) − sf(

y − z

r
)

−sf(
x − z

r
)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exists an additive mapping A : X → Y

such that

‖f(x) − A(x)‖ ≤
|r|pθ

|r|p − |s|
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.9. �
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Theorem 3.11. Let f : X → Y be a mapping satisfying f(0) = 0

for which there exists a function ϕ : X × X × X → [0,∞) satisfying

ϕ(x, y, z) = ϕ(−x,−y,−z) and (3.v) such that

‖sf(
x + y − z

r
) + f(x) + f(y) − f(z) − f(x + y) − f(y − z)

−f(x − z)‖ ≤ ϕ(x, y, z)(3.xii)

for all x, y, z ∈ X. Then there exists an additive mapping A : X → Y

such that

‖f(x) − A(x)‖ ≤ ϕ̃(x, x, 0)

for all x ∈ X.

Proof. It follows from (3.xii) that

‖f(x) − sf(
x

r
)‖ ≤ ϕ(

x

2
,
x

2
, 0)

for all x ∈ X. Then

‖snf(
x

rn
) − sn+1f(

x

rn+1
)‖ ≤ |s|nϕ(

x

2rn
,

x

2rn
, 0)

for all x ∈ X and all n = 1, 2, · · · . So

(3.19) ‖slf(
x

rl
) − smf(

x

rm
)‖ ≤

m−1∑

j=l

|s|jϕ(
x

2rj
,

x

2rj
, 0)

for all nonnegative integers m and l with m > l and all x ∈ X. It

follows from (3.v) and (3.19) that the sequence {snf( x
rn

)} is a Cauchy

sequence for all x ∈ X. Since Y is complete, the sequence {snf( x
rn

)}

converges. So one can define the mapping A : X → Y by

(3.20) A(x) := lim
n→∞

snf(
x

rn
)

for all x ∈ X.
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By (3.v), (3.xii) and (3.20),

sA(
x + y − z

r
) + A(x) + A(y) − A(z) − A(x + y) −A(y − z)

− A(x − z) = 0

for all x, y, z ∈ X. It is obvious that A(−x) = A(x) for all x ∈ X.

By the same reasoning as in Theorem 2.6, the mapping A : X → Y

is additive. Moreover, letting l = 0 and passing the limit m → ∞ in

(3.19), one can obtain that

‖f(x) − A(x)‖ ≤
∞∑

j=0

|s|jϕ(
x

2rj
,

x

2rj
, 0) = ϕ̃(x, x, 0)

for all x ∈ X. �

Corollary 3.12. Let p and θ be positive real numbers with |r|p >

|s|, and f : X → Y a mapping satisfying f(0) = 0 and

‖sf(
x + y − z

r
) + f(x) + f(y) + f(z) − f(x + y)

−f(y − z) − f(x − z)‖ ≤ θ(||x||p + ||y||p + ||z||p)

for all x, y, z ∈ X. Then there exists an additive mapping A : X → Y

such that

‖f(x) −A(x)‖ ≤
2|r|pθ

2p(|r|p − |s|)
||x||p

for all x ∈ X.

Proof. Define ϕ(x, y, z) = θ(||x||p + ||y||p + ||z||p), and apply The-

orem 3.11. �
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