FUNCTIONAL EQUATIONS IN THREE VARIABLES

Deok-Hoon Boo*, Chun-Gil Park**, and Hee-Jung Wee***

Abstract. Let r, s be nonzero real numbers. Let X, Y be vector spaces. It is shown that if a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$, and
$s f\left(\frac{x+y \pm z}{r}\right)+f(x)+f(y) \pm f(z)=s f\left(\frac{x+y}{r}\right)+s f\left(\frac{y \pm z}{r}\right)+s f\left(\frac{x \pm z}{r}\right)$,
or
$s f\left(\frac{x+y \pm z}{r}\right)+f(x)+f(y) \pm f(z)=f(x+y)+f(y \pm z)+f(x \pm z)$
for all $x, y, z \in X$, then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$ for all $x \in X$.

Furthermore, we prove the Cauchy-Rassias stability of the functional equations as given above.

1. Introduction

In 1940, S.M. Ulam [7] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers [4] showed that if $\epsilon>0$ and $f: X \rightarrow Y$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

Received by the editors on October 08, 2004.
2000 Mathematics Subject Classifications: Primary 39B52.
Key words and phrases: functional equation, Cauchy-Rassias stability.
for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow$ Y such that

$$
\|f(x)-T(x)\| \leq \epsilon
$$

for all $x \in X$.
Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Th.M. Rassias [5] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Găvruta [3] generalized the Rassias' result.
A square norm on an inner product space satisfies the important parallelogram equality

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [6] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced
by an Abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.

Throughout this paper, assume that r and s are nonzero real numbers.

In this paper, we are going to investigate functional equations of sum type of an additive mapping and a quadratic mapping between vector spaces, and prove the Cauchy-Rassias stability of the functional equations between Banach spaces.

2. Functional equations in three variables

Throughout this section, assume that X and Y are vector spaces.
Theorem 2.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{aligned}
s f\left(\frac{x+y+z}{r}\right)+f(x)+f(y)+f(z) & =s f\left(\frac{x+y}{r}\right)+s f\left(\frac{y+z}{r}\right) \\
& +s f\left(\frac{x+z}{r}\right)
\end{aligned}
$$

for all $x, y, z \in X$, then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$ for all $x \in X$.

Proof. Let $A: X \rightarrow Y$ and $Q: X \rightarrow Y$ be the mappings defined by

$$
\begin{aligned}
A(x) & :=\frac{f(x)-f(-x)}{2} \\
Q(x) & :=\frac{f(x)+f(-x)}{2}
\end{aligned}
$$

for all $x \in X$. It is obvious that $A: X \rightarrow Y$ is an odd mapping and $Q: X \rightarrow Y$ is an even mapping, and that $f(x)=A(x)+Q(x)$ for all $x \in X$.

It follows from (2.i) that

$$
\begin{aligned}
s A\left(\frac{x+y+z}{r}\right)+A(x)+A(y)+A(z) & =s A\left(\frac{x+y}{r}\right)+s A\left(\frac{y+z}{r}\right) \\
& +s A\left(\frac{x+z}{r}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Put $y=z=0$ in (2.1). Then one can obtain that

$$
\begin{aligned}
s A\left(\frac{x}{r}\right)+A(x) & =2 s A\left(\frac{x}{r}\right), \\
A\left(\frac{x}{r}\right) & =\frac{1}{s} A(x)
\end{aligned}
$$

for all $x \in X$. So
(2.2) $A(x+y+z)+A(x)+A(y)+A(z)=A(x+y)+A(y+z)+A(x+z)$
for all $x, y, z \in X$. Replacing z by $-y$ in (2.2), one can get

$$
2 A(x)=A(x+y)+A(x-y)
$$

for all $x, y \in X$. Let $\frac{x+y}{2}=z$ and $\frac{x-y}{2}=w$. Then

$$
\begin{equation*}
2 A(z+w)=A(2 z)+A(2 w) \tag{2.3}
\end{equation*}
$$

for all $z, w \in X$. Let $w=0$ in (2.3). $2 A(z)=A(2 z)$, and so

$$
A(z+w)=A(z)+A(w)
$$

for all $z, w \in X$. Thus the mapping $A: X \rightarrow Y$ is additive.
It follows from (2.i) that

$$
\begin{align*}
s Q\left(\frac{x+y+z}{r}\right)+Q(x)+Q(y)+Q(z) & =s Q\left(\frac{x+y}{r}\right)+s Q\left(\frac{y+z}{r}\right) \\
& +s Q\left(\frac{x+z}{r}\right) \tag{2.4}
\end{align*}
$$

for all $x, y, z \in X$. Put $y=z=0$ in (2.4). Then one can obtain that

$$
\begin{aligned}
s Q\left(\frac{x}{r}\right)+Q(x) & =2 s Q\left(\frac{x}{r}\right), \\
Q\left(\frac{x}{r}\right) & =\frac{1}{s} Q(x)
\end{aligned}
$$

for all $x \in X$. So
(2.5) $Q(x+y+z)+Q(x)+Q(y)+Q(z)=Q(x+y)+Q(y+z)+Q(x+z)$
for all $x, y, z \in X$. Replacing z by $-y$ in (2.5), one can get

$$
2 Q(x)+2 Q(y)=Q(x+y)+Q(x-y)
$$

for all $x, y \in X$. Thus the mapping $Q: X \rightarrow Y$ is quadratic.
Therefore, there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$ for all $x \in X$.

Theorem 2.2. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and
$s f\left(\frac{x+y+z}{r}\right)+f(x)+f(y)+f(z)=f(x+y)+f(y+z)+f(x+z)$
for all $x, y, z \in X$, then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that $f(x)=A(x)+Q(x)$ for all $x \in X$.

Proof. The proof is similar to the proof of Theorem 2.1.
Theorem 2.3. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{align*}
s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)+f(z) & =s f\left(\frac{x+y}{r}\right)+s f\left(\frac{y-z}{r}\right) \\
& +s f\left(\frac{x-z}{r}\right) \tag{2.ii}
\end{align*}
$$

for all $x, y, z \in X$, then the mapping $f: X \rightarrow Y$ is quadratic.
Proof. Put $y=z=0$ in (2.ii). Then one can obtain that

$$
\begin{aligned}
s f\left(\frac{x}{r}\right)+f(x) & =2 s f\left(\frac{x}{r}\right), \\
f\left(\frac{x}{r}\right) & =\frac{1}{s} f(x)
\end{aligned}
$$

for all $x \in X$. It follows from (2.ii) that

$$
\begin{equation*}
f(x+y-z)+f(x)+f(y)+f(z)=f(x+y)+f(y-z)+f(x-z) \tag{2.6}
\end{equation*}
$$

for all $x, y, z \in X$. Replacing z by y in (2.6), one can get

$$
2 f(x)+2 f(y)=f(x+y)+f(x-y)
$$

for all $x, y \in X$. Thus the mapping $f: X \rightarrow Y$ is quadratic.
Theorem 2.4. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and
$s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)+f(z)=f(x+y)+f(y-z)+f(x-z)$
for all $x, y, z \in X$, then the mapping $f: X \rightarrow Y$ is quadratic.
Proof. The proof is similar to the proof of Theorem 2.3.
Theorem 2.5. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{aligned}
s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)-f(z) & =s f\left(\frac{x+y}{r}\right)+s f\left(\frac{y-z}{r}\right) \\
& +s f\left(\frac{x-z}{r}\right)
\end{aligned}
$$

for all $x, y, z \in X$, then the mapping $f: X \rightarrow Y$ is additive.
Proof. By a similar method to the proof of Theorem 2.3, one can obtain that

$$
\begin{equation*}
f(x+y-z)+f(x)+f(y)-f(z)=f(x+y)+f(y-z)+f(x-z) \tag{2.7}
\end{equation*}
$$

for all $x, y, z \in X$. Replacing z by y in (2.7), one can get

$$
2 f(x)=f(x+y)+f(x-y)
$$

for all $x, y \in X$. Let $\frac{x+y}{2}=z$ and $\frac{x-y}{2}=w$. Then

$$
\begin{equation*}
2 f(z+w)=f(2 z)+f(2 w) \tag{2.8}
\end{equation*}
$$

for all $z, w \in X$. Let $w=0$ in (2.8). $2 f(z)=f(2 z)$, and so

$$
f(z+w)=f(z)+f(w)
$$

for all $z, w \in X$. Thus the mapping $f: X \rightarrow Y$ is additive.
Theorem 2.6. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and
$s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)-f(z)=f(x+y)+f(y-z)+f(x-z)$
for all $x, y, z \in X$, then the mapping $f: X \rightarrow Y$ is additive.
Proof. The proof is similar to the proofs of Theorems 2.3 and 2.5.

3. Stability of functional equations in three variables

Throughout this section, assume that X is a normed vector space with norm $\|\cdot\|$ and that Y is a Banach space with norm $\|\cdot\|$.

Theorem 3.1. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ such that

$$
\begin{align*}
& \| s f\left(\frac{x+y+z}{r}\right)+f(x)+f(y)+f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y+z}{r}\right) \tag{3.i}\\
& \text { ii) } \quad-s f\left(\frac{x+z}{r}\right) \| \leq \varphi(x, y, z) \tag{3.ii}
\end{align*}
$$

for all $x, y, z \in X$. Then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& \left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \widetilde{\varphi}(x, 0,0) \tag{3.iii}\\
& \left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| \leq \widetilde{\varphi}(x, 0,0) \tag{3.iv}
\end{align*}
$$

for all $x \in X$.
Proof. Let $f_{1}: X \rightarrow Y$ be the mapping defined by $f_{1}(x):=$ $\frac{f(x)-f(-x)}{2}$. It follows from (3.ii) that

$$
\begin{align*}
\left\|f_{1}(x)-s f_{1}\left(\frac{x}{r}\right)\right\| \leq \frac{\varphi(x, 0,0)+\varphi(-x, 0,0)}{2} & =\varphi(x, 0,0) \\
\| s f_{1}\left(\frac{x+y+z}{r}\right)+f_{1}(x)+f_{1}(y)+f_{1}(z)-s f_{1}\left(\frac{x+y}{r}\right) & -s f_{1}\left(\frac{y+z}{r}\right) \\
-s f_{1}\left(\frac{x+z}{r}\right) \| & \leq \varphi(x, y, z) \tag{3.1}
\end{align*}
$$

for all $x, y, z \in X$. Then

$$
\left\|s^{n} f_{1}\left(\frac{x}{r^{n}}\right)-s^{n+1} f_{1}\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{r^{n}}, 0,0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f_{1}\left(\frac{x}{r^{l}}\right)-s^{m} f_{1}\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right) \tag{3.2}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.i) and (3.2) that the sequence $\left\{s^{n} f_{1}\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f_{1}\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} s^{n} f_{1}\left(\frac{x}{r^{n}}\right) \tag{3.3}
\end{equation*}
$$

for all $x \in X$.

By (3.i), (3.1) and (3.3),

$$
\begin{aligned}
s A\left(\frac{x+y+z}{r}\right)+A(x)+ & A(y)+A(z)-s A\left(\frac{x+y}{r}\right) \\
& -s A\left(\frac{y+z}{r}\right)-s A\left(\frac{x+z}{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. It is obvious that $A(-x)=-A(x)$ for all $x \in X$. By the same reasoning as in the proof of Theorem 2.1, the mapping $A: X \rightarrow Y$ is additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.2), one can obtain that

$$
\left\|f_{1}(x)-A(x)\right\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right)=\widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$. That is, the inequality (3.iii) holds for all $x \in X$.
Now let $f_{2}: X \rightarrow Y$ be the mapping defined by $f_{2}(x):=\frac{f(x)+f(-x)}{2}$. It follows from (3.ii) that

$$
\begin{align*}
\left\|f_{2}(x)-s f_{2}\left(\frac{x}{r}\right)\right\| & \leq \frac{\varphi(x, 0,0)+\varphi(-x, 0,0)}{2}
\end{aligned}=\varphi(x, 0,0), ~ \begin{aligned}
& \| s f_{2}\left(\frac{x+y+z}{r}\right)+f_{2}(x)+f_{2}(y)+f_{2}(z)-s f_{2}\left(\frac{x+y}{r}\right) \\
&-s f_{2}\left(\frac{y+z}{r}\right)-s f_{2}\left(\frac{x+z}{r}\right) \| \leq \varphi(x, y, z)
\end{align*}
$$

for all $x, y, z \in X$. Then

$$
\left\|s^{n} f_{2}\left(\frac{x}{r^{n}}\right)-s^{n+1} f_{2}\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{r^{n}}, 0,0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f_{2}\left(\frac{x}{r^{l}}\right)-s^{m} f_{2}\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right) \tag{3.5}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.i) and (3.5) that the sequence $\left\{s^{n} f_{2}\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy
sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f_{2}\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} s^{n} f_{2}\left(\frac{x}{r^{n}}\right) \tag{3.6}
\end{equation*}
$$

for all $x \in X$.
By (3.i), (3.4) and (3.6),

$$
\begin{aligned}
s Q\left(\frac{x+y+z}{r}\right)+Q(x)+Q(y)+Q(z) & -s Q\left(\frac{x+y}{r}\right)-s Q\left(\frac{y+z}{r}\right) \\
& -s Q\left(\frac{x+z}{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. It is obvious that $Q(-x)=Q(x)$ for all $x \in X$. By the same reasoning as in the proof of Theorem 2.1, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.5), one can obtain that

$$
\left\|f_{2}(x)-Q(x)\right\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right)=\widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$. That is, the inequality (3.iv) holds for all $x \in X$.
Corollary 3.2. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y+z}{r}\right)+f(x) & +f(y)+f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y+z}{r}\right) \\
& -s f\left(\frac{x+z}{r}\right) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \frac{|r|^{p} \theta}{|r|^{p}-|s|}\|x\|^{p}, \\
& \left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| \leq \frac{|r|^{p} \theta}{|r|^{p}-|s|} \|\left. x\right|^{p}
\end{aligned}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.1.

Theorem 3.3. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y, z):=\sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{y}{2 r^{j}}, \frac{z}{2 r^{j}}\right)<\infty, \tag{3.v}\\
\| s f\left(\frac{x+y+z}{r}\right)+f(x)+f(y)+f(z)-f(x+y)-f(y+z) \\
-f(x+z) \| \leq \varphi(x, y, z) \tag{3.vi}
\end{gather*}
$$

for all $x, y, z \in X$. Then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& \left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \widetilde{\varphi}(x, x, 0) \tag{3.vii}\\
& \left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| \leq \widetilde{\varphi}(x, x, 0) \tag{3.viii}
\end{align*}
$$

for all $x \in X$.
Proof. Let $f_{1}: X \rightarrow Y$ be the mapping defined by $f_{1}(x):=$ $\frac{f(x)-f(-x)}{2}$. It follows from (3.vi) that

$$
\begin{array}{r}
\left\|f_{1}(2 x)-s f_{1}\left(\frac{2 x}{r}\right)\right\| \leq \frac{\varphi(x, x, 0)+\varphi(-x,-x, 0)}{2}
\end{array}=\varphi(x, x, 0), ~ \begin{aligned}
& \| s f_{1}\left(\frac{x+y+z}{r}\right)+f_{1}(x)+f_{1}(y)+f_{1}(z)-f_{1}(x+y) \\
&-f_{1}(y+z)-f_{1}(x+z) \| \leq \varphi(x, y, z)
\end{aligned}
$$

for all $x, y, z \in X$. So

$$
\left\|f_{1}(x)-s f_{1}\left(\frac{x}{r}\right)\right\| \leq \frac{\varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)+\varphi\left(-\frac{x}{2},-\frac{x}{2}, 0\right)}{2}=\varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)
$$

for all $x \in X$. Then

$$
\left\|s^{n} f_{1}\left(\frac{x}{r^{n}}\right)-s^{n+1} f_{1}\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{2 r^{n}}, \frac{x}{2 r^{n}}, 0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f_{1}\left(\frac{x}{r^{l}}\right)-s^{m} f_{1}\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right) \tag{3.8}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.v) and (3.8) that the sequence $\left\{s^{n} f_{1}\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f_{1}\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} s^{n} f_{1}\left(\frac{x}{r^{n}}\right) \tag{3.9}
\end{equation*}
$$

for all $x \in X$.
By (3.v), (3.7) and (3.9),
$s A\left(\frac{x+y+z}{r}\right)+A(x)+A(y)+A(z)-A(x+y)-A(y+z)-A(x+z)=0$
for all $x, y, z \in X$. It is obvious that $A(-x)=-A(x)$ for all $x \in X$. By the same reasoning as in the proof of Theorem 2.1, the mapping $A: X \rightarrow Y$ is additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.8), one can obtain that

$$
\left\|f_{1}(x)-A(x)\right\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right)=\widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$. That is, the inequality (3.vii) holds for all $x \in X$.
Now let $f_{2}: X \rightarrow Y$ be the mapping defined by $f_{2}(x):=\frac{f(x)+f(-x)}{2}$. It follows from (3.vi) that

$$
\begin{align*}
& \left\|f_{2}(x)-s f_{2}\left(\frac{x}{r}\right)\right\| \leq \frac{\varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)+\varphi\left(-\frac{x}{2},-\frac{x}{2}, 0\right)}{2}=\varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right), \\
& \| s f_{2}\left(\frac{x+y+z}{r}\right)+f_{2}(x)+f_{2}(y)+f_{2}(z)-f_{2}(x+y) \\
& -f_{2}(y+z)-f_{2}(x+z) \| \leq \varphi(x, y, z) \tag{3.10}
\end{align*}
$$

for all $x, y, z \in X$. Then

$$
\left\|s^{n} f_{2}\left(\frac{x}{r^{n}}\right)-s^{n+1} f_{2}\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{2 r^{n}}, \frac{x}{2 r^{n}}, 0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f_{2}\left(\frac{x}{r^{l}}\right)-s^{m} f_{2}\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right) \tag{3.11}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.v) and (3.11) that the sequence $\left\{s^{n} f_{2}\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f_{2}\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} s^{n} f_{2}\left(\frac{x}{r^{n}}\right) \tag{3.12}
\end{equation*}
$$

for all $x \in X$.
By (3.v), (3.10) and (3.12),
$s Q\left(\frac{x+y+z}{r}\right)+Q(x)+Q(y)+Q(z)-Q(x+y)-Q(y+z)-Q(x+z)=0$
for all $x, y, z \in X$. It is obvious that $Q(-x)=Q(x)$ for all $x \in X$. By the same reasoning as in the proof of Theorem 2.1, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.11), one can obtain that

$$
\left\|f_{2}(x)-Q(x)\right\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right)=\widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$. That is, the inequality (3.viii) holds for all $x \in X$.

Corollary 3.4. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y+z}{r}\right)+f(x)+ & f(y)+f(z)-f(x+y)-f(y+z) \\
& -f(x+z) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \frac{2|r|^{p} \theta}{2^{p}\left(|r|^{p}-|s|\right)}\|x\|^{p} \\
& \left\|\frac{f(x)+f(-x)}{2}-Q(x)\right\| \leq \frac{2|r|^{p} \theta}{2^{p}\left(|r|^{p}-|s|\right)}\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.3.

Theorem 3.5. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ and (3.i) such that

$$
\begin{align*}
& \| s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)+f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y-z}{r}\right) \\
& \text { ix) } \quad-s f\left(\frac{x-z}{r}\right) \| \leq \varphi(x, y, z) \tag{3.ix}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$.
Proof. Putting $y=z=0$ in (3.ix), one can obtain that

$$
\left\|f(x)-s f\left(\frac{x}{r}\right)\right\| \leq \varphi(x, 0,0)
$$

for all $x \in X$. Then

$$
\left\|s^{n} f\left(\frac{x}{r^{n}}\right)-s^{n+1} f\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{r^{n}}, 0,0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f\left(\frac{x}{r^{l}}\right)-s^{m} f\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right) \tag{3.13}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.ix) and (3.13) that the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} s^{n} f\left(\frac{x}{r^{n}}\right) \tag{3.14}
\end{equation*}
$$

for all $x \in X$.
By (3.i), (3.ix) and (3.14),

$$
\begin{aligned}
s Q\left(\frac{x+y-z}{r}\right)+Q(x)+Q(y) & +Q(z)-s Q\left(\frac{x+y}{r}\right)-s Q\left(\frac{y-z}{r}\right) \\
& -s Q\left(\frac{x-z}{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 2.3, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.13), one can obtain that

$$
\|f(x)-Q(x)\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right)=\widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$.

Corollary 3.6. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y-z}{r}\right)+f(x) & +f(y)+f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y-z}{r}\right) \\
& -s f\left(\frac{x-z}{r}\right) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exists a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{|r|^{p} \theta}{|r|^{p}-|s|} \|\left. x\right|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.5.

Theorem 3.7. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ and (3.v) such that

$$
\begin{align*}
\| s f\left(\frac{x+y-z}{r}\right)+f(x)+ & f(y)+f(z)-f(x+y)-f(y-z) \\
-f(x-z) \| & \leq \varphi(x, y, z) \tag{3.x}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$.
Proof. It follows from (3.x) that

$$
\left\|f(x)-s f\left(\frac{x}{r}\right)\right\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)
$$

for all $x \in X$. Then

$$
\left\|s^{n} f\left(\frac{x}{r^{n}}\right)-s^{n+1} f\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{2 r^{n}}, \frac{x}{2 r^{n}}, 0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f\left(\frac{x}{r^{l}}\right)-s^{m} f\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right) \tag{3.15}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.v) and (3.15) that the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} s^{n} f\left(\frac{x}{r^{n}}\right) \tag{3.16}
\end{equation*}
$$

for all $x \in X$.
By (3.v), (3.x) and (3.16),

$$
\begin{aligned}
s Q\left(\frac{x+y-z}{r}\right)+Q(x)+Q(y)+Q(z) & -Q(x+y)-Q(y-z) \\
& -Q(x-z)=0
\end{aligned}
$$

for all $x, y, z \in X$. It is obvious that $Q(-x)=Q(x)$ for all $x \in X$. By the same reasoning as in Theorem 2.4, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.15), one can obtain that

$$
\|f(x)-Q(x)\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right)=\widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$.
Corollary 3.8. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y-z}{r}\right) & +f(x)+f(y)+f(z)-f(x+y) \\
& -f(y-z)-f(x-z) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exists a quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{2|r|^{p} \theta}{2^{p}\left(|r|^{p}-|s|\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.7.

Theorem 3.9. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ and (3.i) such that

$$
\begin{align*}
\| s f\left(\frac{x+y-z}{r}\right)+ & f(x)+f(y)-f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y-z}{r}\right) \\
\text { xi) } & -s f\left(\frac{x-z}{r}\right) \| \leq \varphi(x, y, z) \tag{3.xi}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$.
Proof. Putting $y=z=0$ in (3.xi), one can obtain that

$$
\left\|f(x)-s f\left(\frac{x}{r}\right)\right\| \leq \varphi(x, 0,0)
$$

for all $x \in X$. Then

$$
\left\|s^{n} f\left(\frac{x}{r^{n}}\right)-s^{n+1} f\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{r^{n}}, 0,0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f\left(\frac{x}{r^{l}}\right)-s^{m} f\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right) \tag{3.17}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.i) and (3.17) that the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} s^{n} f\left(\frac{x}{r^{n}}\right) \tag{3.18}
\end{equation*}
$$

for all $x \in X$.
By (3.i), (3.xi) and (3.18),

$$
\begin{aligned}
s A\left(\frac{x+y-z}{r}\right)+A(x)+A(y)-A(z) & -s A\left(\frac{x+y}{r}\right)-s A\left(\frac{y-z}{r}\right) \\
& -s A\left(\frac{x-z}{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By the same reasoning as in the proof of Theorem 2.5 , the mapping $A: X \rightarrow Y$ is additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.17), one can obtain that

$$
\|f(x)-A(x)\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{r^{j}}, 0,0\right)=\widetilde{\varphi}(x, 0,0)
$$

for all $x \in X$.
Corollary 3.10. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y-z}{r}\right)+f(x) & +f(y)-f(z)-s f\left(\frac{x+y}{r}\right)-s f\left(\frac{y-z}{r}\right) \\
& -s f\left(\frac{x-z}{r}\right) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{|r|^{p} \theta}{|r|^{p}-|s|}\|x\|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.9.

Theorem 3.11. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X \times X \times X \rightarrow[0, \infty)$ satisfying $\varphi(x, y, z)=\varphi(-x,-y,-z)$ and (3.v) such that

$$
\begin{align*}
& \| s f\left(\frac{x+y-z}{r}\right)+f(x)+f(y)-f(z)-f(x+y)-f(y-z) \\
& \text { i) } \quad-f(x-z) \| \leq \varphi(x, y, z) \tag{3.xii}
\end{align*}
$$

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$.
Proof. It follows from (3.xii) that

$$
\left\|f(x)-s f\left(\frac{x}{r}\right)\right\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)
$$

for all $x \in X$. Then

$$
\left\|s^{n} f\left(\frac{x}{r^{n}}\right)-s^{n+1} f\left(\frac{x}{r^{n+1}}\right)\right\| \leq|s|^{n} \varphi\left(\frac{x}{2 r^{n}}, \frac{x}{2 r^{n}}, 0\right)
$$

for all $x \in X$ and all $n=1,2, \cdots$. So

$$
\begin{equation*}
\left\|s^{l} f\left(\frac{x}{r^{l}}\right)-s^{m} f\left(\frac{x}{r^{m}}\right)\right\| \leq \sum_{j=l}^{m-1}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right) \tag{3.19}
\end{equation*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (3.v) and (3.19) that the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{s^{n} f\left(\frac{x}{r^{n}}\right)\right\}$ converges. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} s^{n} f\left(\frac{x}{r^{n}}\right) \tag{3.20}
\end{equation*}
$$

for all $x \in X$.

By (3.v), (3.xii) and (3.20),

$$
\begin{aligned}
s A\left(\frac{x+y-z}{r}\right)+A(x)+A(y)-A(z) & -A(x+y)-A(y-z) \\
& -A(x-z)=0
\end{aligned}
$$

for all $x, y, z \in X$. It is obvious that $A(-x)=A(x)$ for all $x \in X$. By the same reasoning as in Theorem 2.6, the mapping $A: X \rightarrow Y$ is additive. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.19), one can obtain that

$$
\|f(x)-A(x)\| \leq \sum_{j=0}^{\infty}|s|^{j} \varphi\left(\frac{x}{2 r^{j}}, \frac{x}{2 r^{j}}, 0\right)=\widetilde{\varphi}(x, x, 0)
$$

for all $x \in X$.
Corollary 3.12. Let p and θ be positive real numbers with $|r|^{p}>$ $|s|$, and $f: X \rightarrow Y$ a mapping satisfying $f(0)=0$ and

$$
\begin{aligned}
\| s f\left(\frac{x+y-z}{r}\right) & +f(x)+f(y)+f(z)-f(x+y) \\
& -f(y-z)-f(x-z) \| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
\end{aligned}
$$

for all $x, y, z \in X$. Then there exists an additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-A(x)\| \leq \frac{2|r|^{p} \theta}{2^{p}\left(|r|^{p}-|s|\right)} \|\left. x\right|^{p}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y, z)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)$, and apply Theorem 3.11.

References

1. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
3. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
4. D.H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
6. F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
7. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
```
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: dhboo@math.cnu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: cgpark@math.cnu.ac.kr
***
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
```

