• Title/Summary/Keyword: product moments

Search Result 37, Processing Time 0.023 seconds

Moments of Order Statistics from Doubly Truncated Linear-Exponential Distribution

  • Saran, Jagdish;Pushkarna, Narinder
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.279-296
    • /
    • 1999
  • In this paper we establish some recurrence relations for both single and product moments of order statistics from a doubly truncated linear- exponential distribution with increasing hazard rate. These recurrence relations would enable one to compute all the higher order moments of order statistics for all sample sizes from those of the lower order in a simple recursive way. In addition, percentage points of order statistics are also discussed. These generalize the corresponding results for the linear- exponential distribution with increasing hazard rate derived by Balakrishnan and Malik(1986)

  • PDF

COMPLEX MOMENTS AND THE DISTRIBUTION OF VALUES OF L(1, χu) IN EVEN CHARACTERISTIC

  • Sunghan Bae;Hwanyup Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.65-81
    • /
    • 2024
  • In this paper, we announce that the strategy of comparing the complex moments of L(1, χu) to that of a random Euler product L(1, 𝕏) is also valid in even characteristic case. We give an asymptotic formulas for the complex moments of L(1, χu) in a large uniform range. We also give Ω-results for the extreme values of L(1, χu).

Recurrence Relations Between Product Moments of Order Statistics for Truncated Distributions and Their Applications

  • Saran, Jagdish;Pushkarna, Narinder
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.391-403
    • /
    • 2002
  • In this paper, some general results for obtaining recurrence relations between product moments of order statistics for doubly truncated distributions are established. These results are then applied to some specific doubly truncated distributions, viz. doubly truncated Weibull, Exponential, Pareto, power function, Cauchy, Lomax and Rayleigh.

Moments and Estimation From Progressively Censored Data of Half Logistic Distribution

  • Sultan, K.S.;Mahmoud, M.R.;Saleh, H.M.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.187-201
    • /
    • 2006
  • In this paper, we derive recurrence relations for the single and product moments of progressively Type-II right censored order statistics from half logistic distribution. Next, we derive the maximum likelihood estimators (MLEs) of the location and scale parameters of the half logistic distribution. In addition, we use the setup proposed by Balakrishnan and Aggarwala (2000) to compute the approximate best linear unbiased estimates (ABLUEs) of the location and scale parameters. Finally, we point out a simulation study to compare between the efficiency of the techniques considered for the estimation.

  • PDF

THE BIVARIATE F3-BETA DISTRIBUTION

  • Nadarajah Saralees
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.363-374
    • /
    • 2006
  • A new bivariate beta distribution based on the Appell function of the third kind is introduced. Various representations are derived for its product moments, marginal densities, marginal moments, conditional densities and conditional moments. The method of maximum likelihood is used to derive the associated estimation procedure as well as the Fisher information matrix.

Recurrence Relations in the Transformed Exponential Distributions

  • Choi, Jeen-Kap;Mo, Kap-Jong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.1031-1044
    • /
    • 2003
  • In this paper, we establish some recurrence relations of the moments, product moments, percentage points, and modes of order statistics from the transformed exponential distribution.

  • PDF

GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS

  • Cho, Il-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.597-609
    • /
    • 2008
  • In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.

Bivariate Dagum distribution

  • Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • v.18 no.2
    • /
    • pp.65-82
    • /
    • 2017
  • Abstract. Camilo Dagum proposed several variants of a new model for the size distribution of personal income in a series of papers in the 1970s. He traced the genesis of the Dagum distributions in applied economics and points out parallel developments in several branches of the applied statistics literature. The main aim of this paper is to define a bivariate Dagum distribution so that the marginals have Dagum distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in closed forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. The maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance-covariance matrix have been obtained. Some simulations have been performed to see the performances of the MLEs. One data analysis has been performed for illustrative purpose.

  • PDF