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Abstract

In this paper, we establish some recurrence relations of the moments, 
product moments, percentage points, and modes of order statistics from 
the transformed exponential distribution.
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1. Introduction

We consider recurrence relations in the transformed exponential distribution. Let 

the random variable Y have a cumulative distribution function

G( t)≡1-
2

1+e
t
μ

, 0≤t<∞,

and a probability density function(pdf)

(1.1)g( t)=
2e

t
μ

μ(1+e
t
μ
)
2

, 0≤t<∞.

Note that g( t) and G( t) satisfy the relations

(1.2)g( t)=
1
μ
G( t){1-G( t)}+

1
2μ
{1-G( t)} 2,
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(1.3)g( t)=
1
μ
{1-G( t)}-

1
2μ
{1-G( t)} 2,

and

(1.4)g( t)=
1
2μ
{1-G 2(t) }.

Let Y 1,Y 2 ,…,Yn be a random sample of size n from (1.1), and let 

Y 1:n≤Y 2:n≤…≤Y n:n
be the corresponding order statistics. Denote the k th 

moment E(Y kr:n) by α
( k)
r:n (1≤r≤n ;k≥0), the product moment E(Y r:nY s:n)  

by α r, s:n (1≤r< s≤n), the 100p-percentage points of Y r:n (1≤r≤n) by

ξ p,r:n, the mode of Y r:n
by m r:n

and the covariance between Y r:n
and Y s:n

by σ r, s:n, (1≤r< s≤n).  For convenience we will use α r:n for α
(1)
r:n, α r,r:n for

α (2)r:n, and σ r,r:n for variance of Y r:n , 1≤r≤n.

Order statistics and their moments are of great importance in many statistical 

problems. Linear functions of the order statistics are extremely useful in the 

estimation of parameters and also in testing hypotheses problems. The application 

of Gauss-Markov theorem of least squares by Lloyd (1952) (also see Sarhan and 

Greenberg, 1962) to derive linear functions of order statistics (termed as linear 

estimators) for estimating the parameters of distributions depending on location 

and scale, is one fine example. Knowledge of the moments of order statistics, in 

particular their means, variances and covariances, allows us to find the expected 

value and variance of the linear function, and hence permits us to obtain 

estimators and their efficiencies.

For the logistic distribution, moments of order statistics have been studied in 

great detail by several authors, for example, see Birnbaum and Dudman (1963), 

Gupta and Shah (1965), Tarter and Clark (1965), Shah (1966, 1970), and Gupta, 

Qureishi and Shah (1967). In particular, Gupta and Shah (1965) has given exact 

moments and percentage points of the order statistics, and Shah (1966, 1970) has 

obtained many recurrence relations for the moments and product moments of order 

statistics. Tarter (1966) has given explicit finite series expressions for the 

moments of order statistics from a doubly truncated logistic distribution. Recently, 

Balakrishnan and Joshi (1983a, b) have obtained several recurrence relations for 

the moments and product moments of order statistics from a symmetrically 

truncated logistic distribution and applied them to tabulate the means, variances 

and covariances. In particular, Balakrishnan(1985) has obtained several recurrence 

relations of the moments and product moments of order statistics from the half 

logistic distribution and have given exact moments and percentage points of the 

order statistics.
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In this paper, we establish similar recurrence relations of the moments, product 

moments and also obtain percentage points and modes of order statistics from the 

transformed exponential distribution. The importance of the logistic and loglogistic 

distributions in survival analysis is well known (for example, see Cox, 1970; 

Bennett, 1983). Plotting the survival functions is a useful tool in the analysis of 

fitting medical data (Gross and Clark, 1975). Analogous to the applications of the 

half normal distribution in plotting the residues in regression analysis, therefore, 

one may find some applications of the transformed exponential distribution in 

plotting the survival functions. These problems need further investigation and are 

currently being studied.

2. Recurrence relations for moments

With g(y) as given in (1.1), the pdf of Y r:n, 1≤r≤n, is

(2.1)f r:n(y)=C r,n {G(y)}
r-1
{1-G(y)}

n- r
g(y), 0≤y<∞,

where C r,n= B(r,n-r+1)
-1, B(a,b)  being the beta function given by

B(a,b)≡Γ(a)Γ(b)/Γ(a+b), a,b> 0.

Then the k th moments α
( k)
r:n
of Y r:n

satisfy the following relations.

Theorem 2.1. For n≥1 and k=0,1,2,…,
                  

                  

                  

                  

      (2.2)

α
( k+1)
1:n+1=2 [α ( k+1)1:n -{ μ(k+1)n }α ( k)1:n]

with the convention α ( 0)1:n=1.

proof.

For n≥1  we have from (2.1)

α ( k)1:n =E(Y
k
1:n)

=n⌠⌡

∞

0
yk{1-G(y)} n-1g(y)dy

=n⌠⌡

∞

0
yk{1-G(y)} n-1 [ 1μ {1-G(y)}-

1
2μ
{1-G(y)} 2]dy

=
n
μ [⌠⌡

∞

0
yk{1-G(y)} ndy-

1
2
⌠
⌡

∞

0
yk{1-G(y)} n+1dy].

Now integrating by parts treating yk  for integration and the rest of the 

integrand for differentiation and simplifying the resulting expression, we get (2.2).  

■
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Theorem 2.2. For 1≤r≤n  and k=0,1,2,…,  

α(k + 1)r+ 1 : n + 1 =
1
r









µ (n+ 1 )(k+ 1 )
n− r+ 1

α(k )r : n+
n+ 1
2

α(k + 1)r− 1 : n −
n− 2r+ 1

2
α(k + 1)r : n + 1      (2.3)

with the conventions that α ( k)0:t=0  for t≥1  and k=0,1,2,…,  and α
( 0)
r:t=1  for 

1≤r≤t.
proof.

Using (1.2), we have for 1≤r≤n

(2.4)

α ( k)r:n =E(Y
k
r:n)

=C r,n
⌠
⌡

∞

0
yk{G(y)} r-1{1-G(y)} n- rg(y)dy

=
C r,n

μ
⌠
⌡

∞

0
y
k
{G(y)}

r-1
{1-G(y)}

n- r [G(y){1-G(y)}+ 1
2
{1-G(y)}

2]dy

=
C r,n

μ
(I 1+

1
2
I 2),

where

I 1=
⌠
⌡

∞

0
yk{G(y)} r{1-G(y)} n- r+1dy

and

 I 2=
⌠
⌡

∞

0
yk{G(y)} r-1{1-G(y)} n- r+2dy.

Integrating by parts treating yk  for integration and the rest of the integrand for 

differentiation, we get I 1  

I 1=
1
k+1 [ (n-r+1)⌠⌡

∞

0
y k+1{G(y)} r{1-G(y)} n- rg(y)dy

-r⌠⌡

∞

0
y k+1{G(y)} r-1{1-G(y)} n- r+1g(y)dy]

=
1
k+1 { (n-r+1)C

-1
r+1,n+1 α

( k+1)
r+1:n+1 -rC

-1
r,n+1 α

( k+1)
r:n+1 }

=
1
k+1

C -1r+1,n+2 {α
( k+1)
r+1:n+1 -α

( k+1)
r:n+1 }(n+2).

By changing r  to r-1  in the above expression, we can get

I 2=
1
k+1

C
-1
r,n+2 {α

( k+1)
r:n+1-α

( k+1)
r-1:n+1 }(n+2).

Note that this expression holds good for the case r=1  as well with the 

convention that α ( k)0:t=0  for t≥1  and k=1,2,….  Substituting the above 

expressions for I 1  and I 2  into (2.4) and simplifying, we get
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α(k )r : n =
n− r+ 1

µ (n+ 1 )(k+ 1 )
r  α(k + 1)r+ 1 : n+ 1− α(k + 1)r : n+ 1 +

n− r+ 2
2

α(k + 1)r : n + 1− α(k + 1)r− 1 : n+ 1 .  

(2.5)

Also, using the well-known recurrence relation

rα ( k+1)r+1:n+(n-r)α
( k+1)
r:n =n α ( k+1)r:n-1,

we have

(n-r+2) {α
( k+1)
r:n+1-α

( k+1)
r-1:n+1 }=(n+1) {α

( k+1)
r:n+1-α

( k+1)
r-1:n }.

Finally, substituting this expression into (2.5) and simplifying, we get the 

relation given at (2.3)                                                         ■

3. Recurrence relations for product moments
 

The joint pdf ofY r:n
 andY s:n (1≤r < s≤n)  is given by

(3.1) f r, s:n(x,y)=C r, s,n {G(x)}
r-1{G(y)-G(x)} s- r-1{1-G(y)} n- sg(x)g(y),  

0≤x< y<∞,
where 

(3.2)C r, s,n= B (r,s-r,n- s+1) -1,  

where B (a,b,c)  is the generalized beta function defined by

B (a,b,c)≡Γ(a)Γ(b)Γ(c)/Γ(a+b+c), (a,b,c> 0),  with g(x)  as in (1.1). The 

product moments α r, s:n  satisfy the following relations.

Theorem 3.1. For 1≤r≤n-1,  we have

(3.3)α r,r+1:n+1=α
(2)
r:n+1+

2(n+1)
n-r+1 {α r,r+1:n-α (2)r:n-

μα r:n
n-r }.   

proof. 

For 1≤r≤n-1,  write

(3.4)

α r:n= E(Y r:nY
0
r+1:n )

= ⌠
⌡

∞

0

⌠
⌡

∞

x
xC r,r+1,n{G(x)}

r-1{G(y)-G(x)} 0{1-G(y)} n- r-1g(x)g(y)dydx

= C r,r+1,n
⌠
⌡

∞

0

⌠
⌡

∞

x
x{G(x)} r-1{1-G(y)} n- r-1g(x)g(y)dydx

= C r,r+1,n
⌠
⌡

∞

0
x{G(x)} r-1g(x)[⌠⌡

∞

x
{1-G(y)} n- r-1g(y)dy]dx,

where C r,r+1,n  is as in (3.2). Now consider
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D= ⌠
⌡

∞

x
{1-G(y)} n- r-1g(y)dy

=
1
μ
⌠
⌡

∞

x
{1-G(y)} n- rdy-

1
2μ
⌠
⌡

∞

x
{1-G(y)} n- r+1dy,

using (1.3). Integrating by parts now, we get

D=
1
μ [ (n-r)⌠⌡

∞

x
y {1-G(y)} n- r-1g(y)dy-x{1-G(x)} n- r

+
x
2
{1-G(x)} n- r+1-

n-r+1
2

⌠
⌡

∞

x
y{1-G(y)} n- rg(y)dy].

Finally, substituting this expression into (3.4) and simplifying the resulting 

expression, the relation at (3.3) follows immediately.

Theorem 3.2. For n≥2,

(3.5)α 2,3:n+1=α
(2)
3:n+1+(n+1){μα 2:n- n

2
α
( 2)
1:n-1 }   

and for 2≤r≤n-1,

(3.6)α r+1,r+2:n+1=α
(2)
r+2:n+1+

n+1
r(r+1) {2μα r+1:n+n(α r-1,r:n-1-α

(2)
r:n-1 )}.

proof. 

For 1≤r≤n-1,

(3.7)

α r+1:n= E(Y0r:nY r+1:n)

= C r,r+1,n
⌠
⌡

∞

0
y{1-G(y)} n- r-1g(y)[⌠⌡

y

0
{G(x)} r-1g(x)dx]dy

= C r,r+1,n
⌠
⌡

∞

0
y{1-G(y)} n- r-1g(y)

×
1
2μ [⌠⌡

y

0
{G(x)} r-1dx-⌠⌡

y

0
{G(x)} r+1dx]dy,

where C r,r+1,n  is defined in (3.2).

i) r=1

α 2:n =C 1, 2,n
⌠
⌡

∞

0
y{1-G(y)}

n-2
g(y)×

1
2μ [⌠⌡

y

0
dx-⌠⌡

y

0
{G(x)}

2
dx]dy

=
1
2μ (nα

( 2)
1:n-1-

2
n+1

α
( 2)
3:n+1+

2
n+1

α 2,3:n+1),
therefore α 2,3:n+1=α

(2)
3:n+1+(n+1)(μα 2:n- n

2
α
( 2)
1:n-1 ).
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ii) 2≤r≤n-1

α r+1:n= C r,r+1,n
⌠
⌡

∞

0
y{1-G(y)} n- r-1g(y)

×
1
2μ [y{G(y)}

r-1-(r-1)⌠⌡

y

0
x{G(x)} r-2g(x)dx-y{G(y)} r+1

+(r+1)⌠⌡

y

0
x{G(x)} rg(x)dx]dy

hence

α r+1,r+2:n+1=α
(2)
r+2:n+1+

n+1
r(r+1) {2μα r+1:n+n(α r-1,r:n-1-α

(2)
r:n-1)}.          ■

In particular, setting r=n-1  in (3.6), we get the relation

(3.8)α n,n+1:n+1=α
(2)
n+1:n+1+

n+1
(n-1)n {2μα n:n+n(α n-2,n-1:n-1-α

(2)
n-1:n-1 )}   

for n≥3.  Also for any arbitrary continuous distribution, we have

α 1,2:2=α
2
1:1

(Govindarajulu, 1963). Along with this, the relations in (3.3), (3.5) and (3.6) give 

the moments α r,r+1:n (1≤r≤n-1).  After computing α 1,2:2,  α 1,2:3  and α 2,3:3  

could be computed using (3.3) and (3.5) respectively. Next, α 1,2:4  and α 2,3:4  could 

be computed by (3.3) and (3.8) could be used to evaluate α 3,4:4.  Thus in a 

systematic recursive way, for a sample of size n,  the product moments

α r,r+1:n (1≤r≤n-1)  can all be calculated. Note that this is sufficient for the 

evaluation of all the product moments α r, s:n  as the remaining moments,

α r, s:n ( s-r≥2)  can all be computed by using the well-known recurrence 

relation:

(3.9)(r-1)α r, s:n+(s-r)α r-1, s:n+(n-s+1)α r-1, s-1:n=nα r-1, s-1:n-1.

However, for the sake of completeness, we establish some more recurrence 

relations satisfied by the product moments α r, s:n ( s-r≥2),  which can be proved 

by following an exactly similar approach.

Theorem 3.3. For 1≤r≤n-2  and s-r≥2,

α r, s:n+1=α r, s-1:n+1+
2(n+1)
n-s+2 {α r, s:n-α r, s-1:n-

μα r:n
n-s+1 }.

proof. 

For 1≤r≤n-2,
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α r:n =E(Y r:nY
0
s:n)

=C r, s,n
⌠
⌡

∞

0

⌠
⌡

∞

x
x{G(x)} r-1{G(y)-G(x)} s- r-1{1-G(y)} n- sg(x)g(y)dxdy

=C r, s,n
⌠
⌡

∞

0
x{G(x)} r-1g(x)[⌠⌡

∞

x
{G(y)-G(x)} s- r-1{1-G(y)} n- sg(y)dy]dx,

where C r,s,n  is defined in (3.2). Now consider

D= ⌠
⌡

∞

x
{G(y)-G(x)}

s- r-1
{1-G(y)}

n- s
g(y)dy

=
1
μ
⌠
⌡

∞

x
{G(y)-G(x)}

s- r-1
{1-G(y)}

n- s+1
dy

-
1
2μ
⌠
⌡

∞

x
{G(y)-G(x)}

s- r-1
{1-G(y)}

n- s+2
dy

=
1
μ [ (n-s+1)⌠⌡

∞

x
y{G(y)-G(x)}

s- r-1
{1-G(y)}

n- s
g(y)dy 

-(s-r-1)⌠⌡

∞

x
y{G(y)-G(x)}

s- r-2
{1-G(y)}

n- s+1
g(y)dy]

-
1
2μ [ (n-s+2)⌠⌡

∞

x
y{G(y)-G(x)}

s- r-1
{1-G(y)}

n- s+1
g(y)dy

-(s-r-1)⌠⌡

∞

x
y{G(y)-G(x)}

s- r-2
{1-G(y)}

n- s+2
g(y)dy].

Therefore 

α r:n =
1
μ [⌠⌡

∞

0

⌠
⌡

∞

x
(n-s+1)C r, s,nxy{G(x)}

r-1
{G(y)-G(x)}

s- r-1

{1-G(y)}
n- s
g(x)g(y)dydx-⌠⌡

∞

0

⌠
⌡

∞

x
(s-r-1)C r, s,nxy

{G(x)}
r-1
{G(y)-G(x)}

s- r-2
{1-G(y)}

n- s+1
g(x)g(y)dydx]

-
1
2μ [ ⌠⌡

∞

0

⌠
⌡

∞

x
(n-s+2)C r, s,nxy{G(x)}

r-1
{G(y)-G(x)}

s- r-1

{1-G(y)}
n- s+1

g(x)g(y)dydx-⌠⌡

∞

0

⌠
⌡

∞

x
(s-r-1)C r, s,nxy

{G(x)}
r-1
{G(y)-G(x)}

s- r-2
{1-G(y)}

n- s+2
g(x)g(y)dydx]

=
1
μ
{ (n-s+1)α r, s:n-(n-s+1)α r, s-1:n}

-
1
2μ {

(n-s+1)(n-s+2)
n+1

α r, s:n+1-
(n-s+1)(n-s+2)

n+1
α r, s-1:n+1}.
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Hence

α r, s:n+1=α r, s-1:n+1+
2(n+1)
n-s+2 {α r, s:n-α r, s-1:n-

μα r:n
n-s+1 }.                  ■

Theorem 3.4. For 3≤s≤n,

α 2, s+1:n+1=α 3, s+1:n+1+(n+1){μα s:n- n
2
α 1, s-1:n-1}

and for 2≤r≤n-2  and s-r≥2,

α r+1, s+1:n+1=α r+2, s+1:n+1+
n+1
r(r+1)

{2μα s:n-n(α r, s-1:n-1-α r-1, s-1:n-1)}.

proof. 

For 3≤s≤n,

α s:n= E(Y0r:nY s:n)

= C r, s,n
⌠
⌡

∞

0

⌠
⌡

y

0
y{G(x)} r-1{G(y)-G(x)} s- r-1{1-G(y)} n- sg(x)g(y)dxdy

= C r, s,n
⌠
⌡

∞

0
y{1-G(y)} n- sg(y)[⌠⌡

y

0
{G(x)} r-1{G(y)-G(x)} s- r-1g(x)dx]dy

= C r, s,n
⌠
⌡

∞

0
y{1-G(y)} n- sg(y)

1
2μ [⌠⌡

y

0
{G(x)} r-1{G(y)-G(x)} s- r-1dx

-⌠⌡

y

0
{G(x)} r+1{G(y)-G(x)} s- r-1dx]dy.

i) r=1

α s:n=
1
2μ
⌠
⌡

∞

0
C 1, s,ny{1-G(y)}

n- s
g(y)[⌠⌡

y

0
{G(y)-G(x)}

s-2
dx

-⌠⌡

y

0
{G(x)}

2
{G(y)-G(x)}

s-2
dx]dy

=
1
2μ
⌠
⌡

∞

0
C 1, s,ny{1-G(y)}

n- s
g(y)[ (s-2)⌠⌡

y

0
x{G(y)-G(x)}

s-3
g(x)dx

+2⌠⌡

y

0
xG(x){G(y)-G(x)}

s-2
g(x)dx

-( s-2)⌠⌡

y

0
x{G(x)} 2{G(y)-G(x)} s-3g(x)dx]dy

=
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(s-2)C 1, s,n xy{G(y)-G(x)}

s-3{1-G(y)} n- sg(x)g(y)dxdy

+
1
μ
⌠
⌡

∞

0

⌠
⌡

y

0
C 1, s,nxyG(x){G(y)-G(x)}

s-2{1-G(y)} n- sg(x)g(y)dxdy

-
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(s-2)C 1, s,n xy{G(x)}

2{G(y)-G(x)} s-3{1-G(y)} n- sg(x)g(y)dxdy.
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Thus 

μα s:n=
1
n+1

(α 2, s+1:n+1-α 3, s+1:n+1)+
n
2
α 1, s-1:n-1

and hence α 2, s+1:n+1=α 3, s+1:n+1+(n+1){μα s:n- n
2
α 1, s-1:n-1}.

ii) 2≤r≤n-2

α s:n=
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(s-r-1)C r, s,n xy{G(x)}

r-1{G(y)-G(x)} s- r-2

×{1-G(y)} n- sg(x)g(y)dxdy-
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(r-1)C r, s,n xy{G(x)}

r-2

×{G(y)-G(x)} s- r-1{1-G(y)} n- sg(x)g(y)dxdy

+
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(r+1)C r, s,nxy {G(x)}

r{G(y)-G(x)} s- r-1

×{1-G(y)} n- sg(x)g(y)dxdy

-
1
2μ
⌠
⌡

∞

0

⌠
⌡

y

0
(s-r-1)C r, s,n xy{G(x)}

r+1{G(y)-G(x)} s- r-2

×{1-G(y)} n- sg(x)g(y)dxdy.
Therefore

α r+1, s+1:n+1=α r+2, s+1:n+1+
n+1
r(r+1)

{2μα s:n-n(α r, s-1:n-1-α r-1, s-1:n-1)}.    ■

4. Computations of means, variances, and covariances

The recurrence relations derived in sections 2 and 3 allow us to compute the 

means, variances and covariances of order statistics. Starting with α 1:1= ln4  and

α ( 2)1:1=
π2

3
,  relations in (2.2) and (2.3) were used to compute the first two 

moments of all order statistics. These moments were calculated to 10 significant 

digits, and were checked by using the identities

∑
n

r=1
α ( k)r:n=n α

( k)
1:1, k=1,2.

For variances and covariances, the product moments α r, s:n  were all obtained in a 

systematic manner. First, the diagonal elements α r,r:n (=α
(2)
r:n)  were filled up. 

Then starting from α 1,2:2=α
2
1:1,  the relations at (3.3), (3.5) and (3.8) were used 

to evaluate the elements just above the diagonal, viz., α r,r+1:n (1≤r≤n-1).  

After that, α r,r+2:n  were calculated by using the recurrence relation given at (3.9) 
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and so on. Finally, α 1,n:n  was calculated by using (3.9). The variance-covariance 

matrix ( (σ r, s:n)),  where

σ r, s:n=α r, s:n-α r:nα s:n ,  was then computed to 10 significant digits. These were 

checked for their accuracy by the known identity

∑
n

r=1
∑
n

s=1
σ r, s:n=n σ 1,1:1

and the identities

∑
n

s= r+1
σ r, s:n+∑

r

i=1
σ i,r+1:n=(rα 1:1- ∑

r

i=1
α i:n)(α r+1:n-α r:n)

which have been recently established by Joshi and Balakrishnan(1982) for an 

arbitrary continuous distribution.

5. Percentage points and modes of order statistics

The cumulative distribution function of Y r:n
 is given by

F r:n(y)≡I G( y)(r,n-r+1), 1≤r≤n,

where I α(a,b)  is the regularized incomplete beta function defined by

I α(a,b)≡{B(a,b)}
-1⌠
⌡

α

0
t
a-1
(1-t)

b-1
dt, a,b> 0.

Therefore, the 100p-percentage points ofY r:n (1≤r≤n) ξ p,r:n  can be obtained 

by solving the equation

(5.1)I G( ξ p,r:n)(r,n-r+1)= p.   

  

Now note that the percentage points can be calculated from (5.1) either by 

using the tables of regularized incomplete beta function prepared by Pearson 

(1934), or by using the algorithm given by Cran et al.  (1977).  However, from 

(5.1), one can obtain an exact and explicit expression for the 100p-percentage point 

of the smallest order statistic as

ξ p,1:n=μ ln {2(1-p)
-
1
n
-1}  

and of the largest order statistic as

ξ p,n:n=μ ln { (1+p
1
n )/(1-p

1
n )}.

For r=1,  (2.1) reduces to

f 1:n(y) =n{1-G(y)}
n-1
g(y)

=
n
μ [ {1-G(y)}

n
-
1
2
{1-G(y)}

n+1], 0≤y<∞,
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using (1.3). Now for n≥2,  we see that the derivative of f 1:n(y)  is less than 

zero which implies that f 1:n(y)  is a monotonically decreasing function of y  in 

[0,∞).  Consequently, m 1:n=0  gives the mode of Y 1:n.   Next for r=n,  (2.1) 

gives

f n:n(y) =n{G(y)}
n-1
g(y),

=
n
2μ
[ {G(y)}

n-1
-{G(y)}

n+1
], 0≤y<∞,

using (1.4). Differentiating and equating to zero, we get the mode of X n:n,  for 

n≥1,  as                   

m n:n=μ ln { (1+h)/(1-h)},

where h={ (n-1)/(n+1)}
1
2 .   Finally, for 2≤r≤n-1,  (2.1) on using (1.2) 

gives

f r:n(y)=
C r,n

μ
[ {G(y)}

r
{1-G(y)}

n- r+1

+
1
2
{G(y)}

r-1
{1-G(y)}

n- r+2], 0≤y<∞.
Upon differentiating and equating to zero, we have

(n+1)G 2 (y)+(n-r)G(y)-(r-1)=0.

This is a quadratic equation in G(y),  with solutions

(5.2)G(y)=
1

2(n+1)
[-(n-r)±{ (n-r) 2+4(r-1)(n+1)}

1
2
].

Clearly one of these is negative. Further, starting with the inequality

r-1
n-r

< 1+
n+1
n-r

for 2≤r≤n-1,  it can be easily shown that the other root, viz., 

1
2(n+1)

[ { (n-r) 2+4(r-1)(n+1)}

1
2
-(n-r)],  

(say,=H), lies between 0  and 1. So by considering the root H  in (5.2) and 

solving for y, we get the mode of Y r:n (2≤r≤n-1)  as

m r:n=μ ln { 1+H1-H }.
Noting that H=0  for r=1  and H= h  for r=n,  we can combine all the 

cases and say that the distribution of Y r:n
 is uni-modal with mode of 

Y r:n (1≤r≤n)  given by

m r:n=μ ln { 1+H1-H },
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where

 H=
1

2(n+1)
[ { (n-r) 2+4(r-1)(n+1)}

1
2
-(n-r)].
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