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Moments of Order Statistics from Doubly Truncated
Linear-Exponential Distribution

Jagdish Saran and Narinder Pushkarnal

ABSTRACT

In this paper we establish some recurrence relations for both single and
product moments of order statistics from a doubly truncated linear- expo-
nential distribution with increasing hazard rate. These recurrence relations
would enable one to compute all the higher order moments of order statistics
for all sample sizes from those of the lower order in a simple recursive way.
In addition, percentage points of order statistics are also discussed. These
generalize the corresponding results for the linear- exponential distribution
with increasing hazard rate derived by Balakrishnan and Malik (1986).

Keywords: Order statistics; Single moments; Product moments; Recurrence re-
lations; Linear- exponential distribution; Percentage points; Exponential distri-
bution; Rayleigh distribution.

1. INTRODUCTION

Bain (1974), Gross and Clark (1975) and Lawless (1982) have made certain
suggestions regarding the usage of a distribution with its hazard function be-
ing a lower- order polynomial in the fields of life- testing and reliability. The
linear- exponential distribution with its hazard rate varying as a linear function
is one such distribution. Also, the potential of the linear- exponential distribution
as a survival model has been demonstrated by Broadbent (1958) and Carbone,
Kellerhouse and Gehan (1967).

Balakrishnan and Malik (1986) considered the linear- exponential distribution
with an increasing hazard rate with p.d.f.

F(@) = AN +ve)exp{—(z +vz?/2)}, 0<z <o0; A\ v >0, (1.1)
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and c.d.f.
F(z) =1—exp{—(z +vz?/2)}, 0<z < oo, (1.2)

and established some recurrence relations satisfied by single and product moments
of order statistics.

In this paper, we consider the doubly truncated linear- exponential distribu-
tion (with an increasing hazard rate) with p.d.f.

flz) = { (A +va)ezp{~(Az +ve?/2)}/(P-Q) , i<z <P

0 , otherwise,
Av>0,  (1.3)
and c.d.f.
F(o) = 5 [eep{~(3Qa + vQ}/2)} — esp{~(he + 10?2}, Q1 <& < Py

(1.4)
where Q and 1 — P (0 < @ < P < 1) are, respectively, the proportions of trun-
cation on the left and the right of the standard linear- exponential distribution

in (1.1), and
- _ e T
Q=2 (1 _ M) 1 (1.5)
v| A2 |
and . 7
_A 2vlog(1 — P)
P = ” _(1 - T) ~1 (1.6)

are, respectively, the points of truncation on the left and the right. The trun-
cated form of survival models are often of great interest in reliability studies, for
example, see Cohen (1991).

Let X3, Xo,...,X, be a random sample of size n from the doubly truncated
linear- exponential distribution given in (1.3) and Xi., < X5, < ... < X,,.; be
the corresponding order statistics. Let us denote the single moments F(XE, ) by
u) for 1 <r <mand k=0,1,2,..., and the product moments E(X%, XZ.,) by
,u,(-zsjzz forl<r<s<nandij=0,12, ... . For convenience, let us also use
Jrp for ,u.,(-l,)z and fip .y for ”&15,17)1

Denoting (1 — Q)/(P — @) by Q2 and (1 — P)/(P — Q) by P, it is easy to
see that the characterizing differential equation for the doubly truncated linear-
exponential distribution is

f(@) = (A +vz) (Q2 — F(z)), (L.7)
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or, equivalently,
@)= (A +va) P+ (A+va) (1 Flz)), (18)

for @, < z < P;. We shall use equations (1.7) and (1.8) in the following sections
to establish several recurrence relations satisfied by the single and the product
moments of order statistics. These relations will enable one to compute all the
single and the product moments of all order statistics for all sample sizes in a
simple recursive manner.

The results established in this paper generalize the corresponding results for
the linear-exponential distribution with increasing hazard rate proved by Bal-
akrishnan and Malik (1986). Similar recurrence relations for moments of order
statistics from logistic and truncated logistic distributions were derived by Shah
(1966, 1970), Balakrishnan and Joshi (1983) and Balakrishnan and Kocherlakota
(1986). Results of this nature are also available for a number of other distribu-
tions, and interested reader may refer to the monograph on this topic by Arnold
and Balakrishnan (1989) and also the survey paper by Balakrishnan, Malik and
Ahmed (1988).

2. RELATIONSHIPS FOR SINGLE MOMENTS

The density function of X,., is given by (David (1981), p.9, Arnold, Balakr-
ishnan and Nagaraja (1992), p. 10)

frn(@) = ConlF (@) ML = F(2)]" 7 f(z), 1 S ¢ < Py, (2.1)
where
n!
Crin = r—ln—r) "’

and f(z), F(z), Q1 and P| are as given in equations (1.3), (1.4), (1.5) and (1.6),
respectively. Then, by making use of the characterizing differential equation (1.8),
we establish in this section several recurrence relations for the single moments of
order statistics.

Theorem 2.1. Fork=20,1,2,...,

; A : k42
™ = (k42) [ulf) - el - Pept op g
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. k+2
+Q2Q5 ! [VQl + )\Ek - 1” ) (2.2)
and, for n > 2,
w+2) _ (k+2) ) (k+2) 1 (k1) pe1] 4 (E+2)
Viig = = " Hin )\Pz(k+1)[ Q } )\(k-i-l)
) [#gif:l) _ lf-l-l] — Py [#gk:_zg _ 1.+2] T UQk+2 (2.3)

Proof: Relations in (2.2) and (2.3) may be proved by following exactly the same
steps as those in proving Theorem 2.2, which is presented next. O

Theorem 2.2. For2<r<n—-1land k=0,1,2,...,

V/.L(k+2) (k + 2) l_L(k . TlAPz (k -+ 2) [ (k—l—l) (k+1) ]
e (n=r+1)""™ (n—r+1)(k+1)

n—1 r—1ln-—1

k+2) k+1 nv Py E+2 k2 B2
A ] - DB a0 ] g

Proof: Forn>1land k=0,1,2,..., let us consider
P

plh = Con [ HPE@ L~ P S (@)
1

= Crn /Pl (A + v2) Py[F (2)]" 7M1 — F(2)]* " de

+Crm / O+ v2)[F(@)]Y L — F(z)] " de
=Crin [)\Pg E(k n — T) +vhP E(k‘ +1,n— T‘)

+A Blkn—r+1)+v E(k+1,n—7r+1)], (2.5)

upon using (1.8), where

Py
E(a,b) = fQ 2F ()] YL - F(z)]dz .

Integration by parts directly gives fora =k,k+landb=n—-r,n—r+1,

(a-+1) (a-+1)
E(a, b) — b :u‘r:b+r-1 _ (T B l) 'U‘r—l:b—i—r—l ,2 <r S n—1.

(CL + 1) C"r:b-f-r—l (a + 1) Or-l:b+r—1

Now substituting for E(k, n—r), E(k+1,n—r), E(k,n—r+1) and E(k+1,n—r+1)
in equation (2.5) and simplifying the resulting expression, we derive the relation
n (2.4). O
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Proceeding exactly on similar lines, one can easily derive the following recur-
rence relation.

Theorem 2.3. Forn>2 end k=0,1,2,...,

(k+2) 7ok kel
v“%k+2) (k +2) ,u nAPy~— 2 (k 0 [PlH-l _ “5z—+1:21_1]
k+2 . ' "
_Agk + lg (WD — 0] =Py [P = 0]+l (26)

Remark 2.1. By letting both the proportions of truncation @ and 1 —~ P — 0
(= Qs — 1,P, — 0) in Theorems 2.1 - 2.3, we deduce the recurrence relations
established by Balakrishnan and Malik (1986) for the single moments of order
statistics from the standard linear- exponential distribution with increasing haz-
ard rate.

Remark 2.2. Letting v — 0 (doubly truncated exponential distribution case) in
Theoremms 2.1 - 2.3, we deduce the recurrence relations established by Joshi (1979)
for the single moments of order statistics from the doubly truncated exponential
distribution.

Remark 2.3. Setting A — 0 (doubly truncated Rayleigh distribution case) in
Theorems 2.1 - 2.3, we deduce the following recurrence relations for the single
moments of order statistics from the doubly truncated Rayleigh distribution:

(k 2)

#1 1 = Q:Qf— PP+ - M ) (2.7)
() _ (k) L (k=2) 5
(k) _ (k) k (k—2) _ nbs (k) (k)

B = Hrl1in + (n —_p 4 1) Hrop (Tl — L 1) [/‘Lr n—1 Aur—l:n—l] ’ (29)

k k (k- ; k
I'Lnkr)z = :u‘gz—)l:n + ;“1(11‘:77. 2 P [Plk - /'1'57.—)1:11—1] . (210)

These results generalize the corresponding results obtained by Balakrishnan
and Malik (1986, p.186) for the case of untruncated Rayleigh distribution.
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3. RECURSIVE COMPUTATIONAL ALGORITHM FOR
EVALUATION OF SINGLE MOMENTS

Since the values of ,u,(nl,)1 = fipm, 1 £ 17 < n, are needed as initial values for the

recursive process, we first derive an exact expression for p,.,. Consider
P
-1
prn = [ FE) (@)
1

/P1 [A _ e—(/\x+m2/2)]n-1 (A + vz)e—(a+va?/2)
=n T

1 P-Q
upon using (1.3) and (1.4), where

dz

P-Q ’

A = e~ OQ11vQ/2)

Now expanding binomially the factor [4 — exp{—(Az + vz?/2)}]"~! gives

_ n_\~(n-1 n—l—t; 1\t
/—Ln:n—(P_Q)ng( . )A (-1, (3.1)

where
I;= / ' (A + ua:)e_(Hl)()‘zJ””?/g)d:):.
Q

1
Integration by parts now yields

Py
= —(t+1)(/2)[(z+(A/w)) = (3 /u?)]
It B+(t+l)/1€ dzx
1)A2/2
- B+ el /2 / P D)D) gy
(t+1) Jou
22 /2w v v
3 eltt1)A%/ (Py+(M/v))+/ (t+1) _yz/zdy

- B+
(t + 1)/ (t + Dv J(@u+(t/v)/GF1)v

(o INTE) 1 (0 )

(3.2)

where

o 1 [Qle_(t—}_l)()\Ql_HjQ%/z) 3 Ple—(t+1)(AP1+qu/2)] : (3.3)

(t+1)
and @(-) is the c.d.f. of a standard normal distribution. Now substituting the
value of I; from (3.2) in (3.1), we derive the exact expression for pi,., -
The values of uy., for n > 1 can be computed from the above result either
by using the extensive tables of normal distribution function prepared by Owen
(1962), Pearson and Hartley (1966, 1972), Rao, Mitra and Mathai (1966), or by
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using the computational algorithms given by Ibbetson (1963), Adams (1969) and
Hill (1969). Hence, the values of ppn(1 < r < n — 1) can easily be obtained by
using the following well-known recurrence relation (David (1981), p.48):

T .
P j—1 7
= 17 s l<r<n—1.
Hrn ]§< ) (T_1><j)/—‘j.] <r<
Now, by using recurrence relations given in equations (2.2), (2.3), (2.4) and
(2.6) in a simple recursive way, one can easily obtain all the single moments s+,
of all order statistics for any sample size and for any value of £ = 1,2,... .

4. RELATIONSHIPS FOR PRODUCT MOMENTS

The joint density function of X,., and X.,(1 < 7 < 5 < n) is given by (David
(1981), p.10, Arnold, Balakrishnan and Nagaraja (1992), p.16)
Frin(@,y) = CranlF(2)]"HE(y) = F@) 71 = Fy)]"*f(=) f(y),

h<z<y<h, (4.1)

where "
(r—=Ds—r—=Hn-3s)!"
and f(z), F(z),@; and Py are as given in equations (1.3), (1.4), (1.5) and (1.6),
respectively. Then, by making use of the characterizing differential equations in
(1.7) and (1.8), we establish in this section several recurrence relations for the
product moments of order statistics.

Cr,s:n =

Theorem 4.1. Forl<r<n-—2andi, j =0,
(9+2) _ ) (i+5+2) | (j+2) [ L) A { (Gj+1) u(i+j+1)}]

rr+lin — Hemn v (n — T‘) Hrptlm — (_7 + 1) Hypri1in rin
nhy (A (G+2) ¢ Gy (i+3+1) (i.5+2) (i+5+2)
- (TL _ T‘) [; ’ (.7_+1_) { rz,rj—t—l:n-l — Frin-1 } + {“LT',T‘—}—].‘.TI—]_ — Hrin2a } ’
(4.2)
and, for 1< r<s<n—-1s8—r>2andi,j >0,
iG2 i) | (U +2) 1 X A il (i,5+1)
:Uﬂ(",sj:: ) = :u"s'z,sj—l:g'l. + v (72. st 1).”‘5',5]21 - m {/J‘g',s]: ) - :u’rz,s]—l:n}

nPy A (G+2) 1 G+ i1 Li+2 42
(n—s+ 1) [; ) G+ 1) { g'z,sj;n—)l - /J‘S-fsj—l:z)'l—l} + {:ugs]:n—)l - uf*fs]—l,r)z-—l} -

(4.3)
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Proof: From equatlon (4.1), we have for 1 <r < s<nandi,j=>0

Witk = G [ [ B @I PP 1 FO (5} )y

:Cr,s.n /Q1 [F(w)]r lf( ) ( )da’)

(4.4)
where

P
Ky (z) = / () - F@) 1 - F)"* f(y)dy.

Making use of the relation in (1.8) and splitting the integral accordingly into four,
we have

K1 (1‘) = )\PQK]"Q(:E) + )\Kj’]_(l‘) + U.PQKjJ,_]_’O(.T) + Z/Kj+1,1(1)),

(4.5)
where P,
Kop(@) = [ 4" (F () = F@) 7 1= F)I"dy.
Integration by p?rts yields, for+sb =r+1,

_ P I-FE)Pr (n —s+b) [P, r—s b
Kop(z) = — @il Ly /l_ YT L=F ()" f(y)dy,
and, for s — 7 > 2, R
Kosle) == S22 (2 ynm) - P20 - PP )y

(n—s5+8b)

P
) TR - F@ET - P )y

Upon substituting for K;o(z), Kj1(z), Kj11,0(z) and K1 1(z) in (4.5) and then
substituting the resulting expression for Ki(z) in equation (4.4) and simplifying,
we derive the relations in (4.2) and (4.3). O

Proceeding exactly on similar lines, one can easily derive the following recur-
rence relation.

Theorem 4.2, Forl<r<n-1andij>0,

, J+2 (J+ ) i 1
W = 3+ LR et - 2 (i — i )

A (G+2) (o 6) (ij+1) j+2 (4) (6,+2)
—nPy [;(]‘1—1) {P Brn 1= Hep_1in— 1} {P ,U‘rn 1~ Hppn-lin— 1}]
(4.6)
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Now, we derive some more recurrence relations for product moments.

Theorem 4.3. Forn > 2 andi,j >0,
u(i+2,y‘) (i +2) [ (4.9) nAQs { (i+j+1) Qi*‘lu(j) }}

1,2 — - 1in—1 1,n—-1

v 1,2:n (Z + 1)

" o U N 41 "
nQ [P — Q)]+ 2 SB[ i) L) g

and, for2<r<n-—1andi,j>0,
vz _ GF2) [ (i) PAQ2 ([ (it5+1)  (i+1,)
{# r— rn—l}

rr+lin rv r,or+lin (Z 4 1) rin—1 1,r:

—

_nQ2 [ (i45+2)  (i4+2.9)
™

i+2) it i+1,7 it q
G -+ 2 (60750 — D]+ ulHED . (as)

7: + 1) /_LT'—I—].ZTZ - lur,r-i-].:ﬂ. +I_Lr+]‘:n

A
v

—

Proof: From equation (4.1), we have for 1 <r <n-1andi,; >0
Iy By _ N
pPn = G [ [ WP~ F)™ " £ () () dody
1 1

P
= Crri1m /Q Pl - T @)Ky, (4.9)

where

Koly) = [ S F@] T (2)dz

Making use of the relation in (1.7) and splitting the integral in K5 (y) accordingly
into four, and then following the similar steps as those used earlier in proving
Theorem 4.1, one can easily establish the relations in (4.7) and (4.8). O

Proceeding exactly on similar lines, one can establish the following recurrence
relation.

Theorem 4.4. Forl<r<s<n, s—r>2andi,7 >0 ,

ir2) _ B2 T uay A2 [ (i1 i+1,5
/—L1(~1,'I721’J) = T Mg'f:sjzz - (z + 1) {#5:3—11;21—1 - “1(}—1,.;711:11—1}
nQz i+2,5 42, A (E42) 1 G41g) i+1,7 {(i+2.7)
_T [ 1(*115—1]:21—1 - E‘z—l,jll:n—ljl + ; ’ (Z + 1) [ r-i-l,sj:n - /J‘g',s:nj)] + r+1,8m°

(4.10)
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Remark 4.1. By letting both the proportions of truncation @ and
1-P—0

(= Q2 — 1,P> — 0) in Theorems 4.1 - 4.4, we deduce the recurrence relations
established by Balakrishnan and Malik (1986) for the product moments of order
statistics from the standard linear-exponential distribution with increasing hazard
rate.

Remark 4.2. Letting » — 0, as in the case of single moments, we would de-
duce the recurrence relations established by Balakrishnan and Joshi (1984) for
the product moments of order statistics from the doubly truncated exponential
distribution.

Remark 4.3. Setting A — 0 (doubly truncated Rayleigh distribution case) in
Theorems 4.1 - 4.4, we deduce the relations for doubly truncated Rayleigh dis-
tribution.

5. RECURSIVE COMPUTATIONAL ALGORITHM FOR
EVALUATION OF PRODUCT MOMENTS

Since the values of ,u$ ;,Z = frsiny L <7 <8 < n are needed as initial values

for the recursive process, we first derive an exact expression for py ,41.,. Consider

P, B
prrin = Crrsrn | [ sl F] 1= PP 1)1 ) dyd

(Pr r+£2n /' /Pl 2y[Qs — _(Az+ym2/2)]
[(P = Q — Q) + e~ Owrw?/2)]n=r=1
(X A+ vz)() + py)e” Qatva®/2) o=t /2) g g (5.1)
upon using (1.3) and (1.4), where
Q5 = e~ OQT1Q/2)

-1 —r—
Now expanding [Qg - e‘(/\”w«"z/?)]r and [(p ~Q—Q3) + e—(z\y+uy2/2)}n Tl
binomially, we get

Hrr+1lm = rr+1ni_z_(7""_l)<n_7"_l)Qr1t

u

'P 2
[P —Q— @)ty (-1)! / 1 z(\ +vz)e Metve 2N (2)de,  (5.2)
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where

P
Ii(z) = / ' YO\ + vy)e D02 gy
Integration by parts yields

P1P§‘+1 pe—(utr)(Aztvz?/2) L(z)

hiz) =~ (u+1) (u+1) (u+1)’ (53)
where
Py = e~ (APLHVPE/2)
and
Py 9
Iz(il?) — / e—(u—i—l)()\y-l-uy /2)dy
We now hz}ve ) )
[ (u+ 1w A A
Ir(z) —/m erp —_2——{(y+ U) - V2H dy
o [Ty 2gy
— e(ut1)A?/2v /Pf =222,
{v(u+1)}2 Jo
e(u+1))s2/21/ . .
= W[@(Pﬂ — ®(z*)]v2r,
(5.4)

where z* = {(u + L)v}}/?(z + \/v) and P} = {(u + 1)v}/?3(P, + A/v), and &(")
1s the ¢.d.f. of a standard normal distribution. Substituting this expression for
I1(z) from (5.4) in equation (5.3), we get

Il(SD) =

P, Pu+1 we—(u+1)()\w+uw2/2) D 1/2 e(u+1)/\2/2u s .
1 Eea 2(P)-8(")]

( +1) (u+1) viu+1 (u+1)

Upon substituting this expression for I1(z) in equation (5.2) and splitting the
integral accordingly into three, we get

r—=ln—-r-1 . -
T——— i’"’"g;nz > ( 1 )( 1) SR Q-QerT

t=0 wu=0 U
p, putl o 1/2 g(u+1)A? /20
1yt |ttty o(P*
(=1 [ (u+1) {(u—l—l)u} (u+1) (PL)| %1
. Jo o }1/2 e(u+1))\2/2u ; (55
(u+1) {(u+1)u (w+1) |7 2
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where P
J1 = / ' z(A+ ua:)e_(Hl)()‘x“Lmz/z)dm,
Q1

P
Jo = / ' (X + vw)e'(t+”+2)(’\I+”I2/2)d:c,
Q1

P 3
J3 = / 1 z®(z*) (A + vz)e~ (tHDAz+ve®/2) g

1
First, consider J;. Integration by parts immediately yields
t+1 t+1
7= Q3 — PP 1 /Pl (1) (Aztvz?/2) g
(t+1) (t+1) Jo, ’
where Q3 = e~ (MQ1+vQ1/2) Solving the integral as in I3(z), we get

1
(t+1)

2 }1/2 e(t+1))\2/2u

(t+ 1)v t+1) [®(P])—2(Q1)], (5.6)

5= [Q1Q§+1—P1P§+l]+{

where
P{ ={(t+ L)w}/3(P 4+ A/v) and @} = {(¢ + Dw}/2{Q1 + \/v}.
Next, consider Js. Integration by parts yields

1

o= Qe - BR
b [P0 v — A0 gy
v(t+u+2) Jo
1 20yt+u+2_ p2 pt+u+2 2
1 _p2p — _(H-)\H
(t+ut2) it T g M)
(5.7)
where ,
Hy :/ 1()\ + u:c)e_(t+u+2)(f\w+”’2/2)d:c
1
1
= e oA
(5.8)
and P, ,
H, z/ g~ (trut2)(Az+va®/2) 5,
Q1
2 2T 1/2
R e LR CH
(5.9)

where
Py={v(t+u+2)}2(P + A\/v) and Q4 = {v(t +u+ 2)}Y/3(Qy + M/v).
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Substituting these expressions for H; and Hz in equation (5.7), we get

2 2 2 2 2
J2 [Ql g+u+ _ Pl PéH—u—l— ]+ (Qt3+u+2 _ P;-HH' )

:(t+u+2) v(t+u+2)?

v [ ey —a@a) 510
v(t+u+2) ¢ 4l '

Finally, consider Js. Integration by parts yields

B = G QBQDET — PR(PR + o+ 10} V6 + Gl
(5.11)

where P
G = / ! $¢($*)e—(t-l-l)()\m—l-umz/Z)dx

o}

and p
G2 — : @(w*)e—(t+1)()\z+uzz/2)dx :

@1

gt = {(u+ WP+ Afv), QF = {(uw+ 1W}VQu +N/v), P} = {(u+
Du}/2(P + M/v) and ¢(-) and &(-) are, respectively, the p.d.f. and c.d.f of a
standard normal distribution. First, we have

Gy = _;.. /Pl me—(u+1)u(m+)\/v)2/2ew(t+1)(/\z+um2/2)dm
Vam J1
_ 2
_ e (w+DA*/2v Py o (tHu D Aatua?j2) 5
Ve Q1
e~ (ut1)A?/2v (H, — AH]
- v ,_27'{ 1 2]

where Hy and H; are defined in (5.8) and (5.9), respectively. Thus, we have

emwHDN 2y s thut2
G = - P -
YT 27r(t+u+2)[Q3 5]

Ae(t+1)A% /20
v{(t+u+2)v}/2

[8(Py) ~ 2(Q4)]-
(5.12)

Next, we have

P
G2 — ! @($*)E_(t+1)(>‘w+yw2/2)d$
931

P
= QN2 [T gyl 2,
o5
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v(t+1)

where g = {(u + 1)/(t +1)}*/? and P| and Q] are the same as defined in (5.6).
Thus,

. - /2 [ pP Q]
Gy = el /2 {U(T2+1_)} VO ®(gy)o(y)dy —/0 @(gy)fb(y)dy}

y 27 1/2 pP|
= et [ [ aleoay (5.13)

1/2 1 1
_(t+1)A2 /2w 2777} [( ! o 1o _)
e {u(t 1) V(P, Pig) + 2‘1’(})1) 1

_ (v(@'l,@ag) +52(Q4) - i)]

2 T 1/2
= et {2 (VP Plo) - V(@1 @ha)) + 3 (8(P) - 3(@D)
(5.14)

where
1 rh rkz/h
V(h,k):—/ / exp{—(z? +v*)/2}dydz .
2r Jo Jo

The quantities V (h, k) have been very extensively tabulated by Nicholson (1943),
National Bureau of Standards (1959) and Yamauti (1972).

Upon substituting for G; and Gy in (5.11) and then substituting the result-
ing expressions for Ji,J; and Js in (5.5), we derive the exact expression for
prrt1n(l € 7 < n—1). Remaining product moments p, ;.n(s — 7 > 2) can be
computed by making use of the well-known relation (David, 1981, pp. 48-49)

(T — 1)/-‘r,s:n + (3 - T)#r—l,s:n + (n — s+ 1),“1"—1,3—1:71 =MNlr_15-1:n—1- (515)

Now, by using recurrence relations given in equations (4.2), (4.6), (4.7), (4.8)
and (4.10) in a simple recursive way, one can easily obtain all the product mo-

ments MSJS’“% of all order statistics for any sample size and for any values of

G k=1,2,3,... .

6. PERCENTAGE POINTS OF ORDER STATISTICS
The c.d.f of X,.,(1 <r < n)is given by (David, 1981, p.8)
Fr:n(m) = IF(J:)(T',TL—T'—I— 1)5 (61)
where I,(a,b) is the incomplete beta function defined by

Tg(a,b) = B(i,b)

q
/ta—lu—t)b—ldt, (a,b > 0),
0
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and F(z) is the c.df. of the doubly truncated linear- exponential distribution
given in equation (1.4). Therefore, the 100p - percentage points of X,., can be
obtained by solving the equation

Ipg)(r,n —r+1) =p. (6.2)

The percentage points of X,.,(1 < r < n) can be calculated from (6.2), in
general, by using either the extensive tables for the incomplete beta function by
Karl Pearson (1968) or by using the computational algorithm given by Cran et
al. (1977).
However, explicit expressions for the percentage points of the extreme order
statistics can be obtained from equation (6.2). For r = 1, we have from (6.2)
1-1-F(z)"=p

= (1-p)"=H(Q)+

where

o~ (e+ua?/2)
Pr-Q) "’
e~ (AQ1+vQ%/2)
S
= E:r, +Az4+e¢=0,
where

c =log[(1 — p)t/™ — H(Q)(P - Q).

A VA2 =2
= r=-"4 X2

14 14
which is the 100p- percentage point of the smallest order statistic X7.,. Similarly,
the explicit expression for the percentage point of the largest order statistic X,,.,
can also be obtained.
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