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THE BIVARIATE F3-BETA DISTRIBUTION

SARALEES NADARAJAH

ABSTRACT. A new bivariate beta distribution based on the Appell
function of the third kind is introduced. Various representations are
derived for its product moments, marginal densities, marginal mo-
ments, conditional densities and conditional moments. The method
of maximum likelihood is used to derive the associated estimation
procedure as well as the Fisher information matrix.

1. Introduction

There have been very few bivariate beta distributions proposed in the
statistics literature, see Chapter 9 in Hutchinson and Lai [6], Chapter 4
in Arnold et al. [3] and Chapter 49 in Kotz et al. [7] for good reviews.
The most recent bivariate beta distribution discussed in Olkin and Liu
[9] is actually a particular case of a multivariate beta distribution in-
troduced by Libby and Novick [8]. These distributions have attracted
useful applications in several areas; for example, in the modeling of the
proportions of substances in a mixture, brand shares, i.e., the propor-
tions of brands of some consumer product that are bought by customers
(Chatfield [4]), proportions of the electorate voting for the candidate
in a two-candidate election (Hoyer and Mayer [5]) and the dependence
between two soil strength parameters (A-Grivas and Asaoka [1]). They
have also been used extensively as a prior in Bayesian statistics (see, for
example, Apostolakis and Moieni [2]).

In this note, we introduce a new bivariate beta distribution and study
its properties. The joint pdf of this new distribution is taken to be

CaP~1yf ~1(1 — g — y)—B-F 1
(1 —ux)*(1 — vy)®

(1) flz,y) =
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for0<z<l,0<y<l0<z+y<l -l<u<l -1<v<l,
a>0,a >0,8>0,8 >0andy > B8+ 03, where C denotes the
normalizing constant. Application of equation (3.1.2.7) in Prudnikov et
al. [10, volume 1] shows that one can determine C as

1 _T(BLE)(y—6-F)

(2) ol ) F3 (a, Oz',ﬁﬁ';v;u,v) :

where Fj is the Appell function of the third kind defined by
' ' a)k; )lzkgl
F3 (a,a,b,b,c,z,f) ZZ (C k:—}—lk'l' )

k=0 1=0

where (f)x = f(f+1)---(f + k — 1) denotes the ascending factorial.
Because of this, we refer to (1) as the F3—beta distribution. Note that if
u =0 and v = 0 then (1) reduces to the usual bivariate beta distribution
with parameters 3, ﬂ’ and v— (- B/. The four additional parameters wu,
v, @ and o can be interpreted by examining the behavior of (1) near the
boundaries of the simplex {(z,y):0<2<1,0<y<1,0<z+y<1}.
Letting x — 0, note that

11— )7 p-4 -1

(1-vy)™
Thus, the distribution of y along the vertical boundary of the simplex
belongs to Libby and Novick [8]’s generalized beta family with the pa-
rameters ﬂ,, v—0B— ﬁ', v and o. The parameters v and o’ provide the
scale variation from the standard beta. Letting y — 0, note that

8
f(@,y) ~ CzP~1Y

f(z,y)~C

Thus, the distribution of 2 along the horizontal boundary of the sim-
plex belongs to Libby and Novick [8]’s generalized beta family with the
parameters 3, y— 3 — B/, u and ¢. The parameters u and « provide the
scale variation from the standard beta.

Let us now briefly discuss the shape of (1). The derivatives of log f
with respect to x and y are

(3) alogf_ﬂ—l vy—0— ﬂ—l ou
or l—xz—y l—ucc
and

Jdlog f ﬁl—l Sy ;g | a'v
4 - -
(4) Oy Yy l—z—y +1—vy’
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respectively. Setting (3) and (4) to zero, one notes that the critical
points of (1) are given by the simultaneous solutions of the two quadratic
equations

(7_ﬁ'_a—2)ux2
{8 Du1 —y) + cu( - )~y +6 +2}

+(B-1)(1-y)=0
and

(ry—ﬁ—a/—2)vy2
+{_ (ﬂ'_1)@(1—{6)-}-0/1}(1—x)—’y-l—ﬁ-l-z}y
+(6-1) -2 =0

Thus, (1) can exhibit up to two critical points. Figures 1, 2 and 3 below
illustrate some possible shapes of (1).
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FIGURE 1. Plots of the pdf of (1) for v = 5, a = 2,
u = 0.5, v = 0.5 and selected values of (ﬂ,ﬁ/).
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o=18&c'=10
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FIGURE 2. Plots of the pdf of (1) for 8 = 3, 8 = 3,
y=9,u=0.5,v=0.5 and selected values of (a, a).

The rest of this note is organized as follows. In Sections 2 to 4,
various representations are derived for the product moments, marginal
densities, marginal moments, conditional densities and the conditional
moments associated with (1). The associated estimation procedure by
the method of maximum likelihood as well as the Fisher information
matrix are presented in Section 5.

2. Product moments

Theorems 1 and 2 derive two representations for the product moments
of (1). The first is expressed in terms of the Appell function of the
third kind while the second representation is an infinite series of Gauss
hypergeometric functions.



The bivariate Fs-beta distribution 367

u=001&v=0.99 u=028&v=08

3

ol

s

oty

>

RS
% ==

&

&2

3

FIGURE 3. Plots of the pdf of (1) for 8 = 3, 8 = 3,
v=9 a=2 o =2 and selected values of (u,v).

THEOREM 1. The product moment of X and Y associated with (1)
is given by

mymy _ CT(m+ BT (n+ )y - 8- 8)
BX™Y™) = Fm+n+1v)

X F3 (a,o/,m+ﬁ,n+ﬂ';m+n+7;u,v)

(5)

for any real m > 0 and n > 0.

Proor. One can write

E(X™Y™)
6 1 plez gmtf-1,n+6 ~1(1 _ o N7—B—F —1
(6) :C// 2y A e ) dyde.
0 Jo (1 —uz)*(1 - vy)*

The result of the theorem follows by applying equation (3.1.2.7) in Prud-
nikov et al. {10, volume 1} to calculate the integral in (6). ]
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THEOREM 2. The product moment of X and Y associated with (1)
is given by

E(X™Y")=CB (n+ﬁ' v—ﬁ-ﬁ’)

o0

7 n-l—ﬂ )uvF B
(7) kz g ﬁ) TB(m+Bntk+y-p)

X oF1 (m+B,a5m+n+k+vu)

for any real m > 0 and n > 0, where oF} is the Gauss hypergeometric
function defined by

oF (a,b;¢;) = i (a)g (b)g l”_k

— (c) K
for |z |< 1.

ProoF. Consider the integral with respect to y in (6). Applying
equation (2.2.6.15) in Prudnikov et al. [10, volume 1], one can reduce
(6) to

1 :L'm+ﬂ_1(1 _ x)n+'y—ﬁ~1

E(X™Y") = CB (nw’,y—ﬁ—ﬁ’)/

0 (1 —ux)®

(8)
x o] (n+ﬂ/,a';n+7—ﬁ; (1 —x)v) dz

Using the definition of the Gauss hypergeometric function, (8) can be
rewritten as

1 xm-{—ﬁ—l(l _ x)n+fy—ﬁ~1
(1 —uz)®

By = CB (n+ 4 v-8-5) [

= (n+ B )k(e)r(1 — z)*o*
XZO (n+~v — B)kk! e

(9) ! /
(n+ 8 (e )sv*
=CB(n+f,7-5- ﬂ>§?ﬂ+vig)lk;
1 xm+ﬁ—1(1 _ x)n+k+’)’—ﬁ—1
% /0 (1 - ux)® dz.

The result in (7) follows by another application of equation (2.2.6.15) in
Prudnikov et al. [10, volume 1] to calculate the integral in (9). O



The bivariate Fz-beta distribution 369
3. Marginal pdfs and moments

Theorems 3 and 4 derive the marginal pdfs and marginal moments of
(1). Expressions for the pdfs involve the Gauss hypergeometric function
while the moments are expressed in terms of the Appell function.

THEOREM 3. If X and Y have the joint pdf (1) then the marginal
pdfs are given by

fx(z) = CB (ﬂ,a’)’ -B- 5/) P N1 = )P — uz) @

(10) o
X oFy (B,a;v—ﬁ;(l—w)v)

and

oy -0 (By=8-8)y -y ey

X oF} (B,a;v—/)";(l—y)U)
forO<z<land0<y<l1.

PROOF. The marginal pdf of X can be written as

8—1 1-x ﬁl_l ’Y—ﬁ—ﬁ’_l
(12) fx(z) (1 — uz)® /0 (1—wy)®

The result in (10) follows by applying equation (2.2.6.15) in Prudnikov
et al. [10, volume 1] to calculate the integral in (12). The result in (11)
follows similarly. O

dy.

THEOREM 4. The moments of the marginal pdfs in (10) and (11) are
given by

CL(m + BT (B)L(y—B-6)
L'(m+7)
X F3 (aaalam+/6a/6,;m+7;u,v)

E(X™) =

and

CT(BT(n+ )T (y~B—5)
T(n +%)

for any real m > 0 and n > 0.

E(X™) =

F3 (a,a/,ﬂ,n-f—,@l;n—l—'y;u,v)

PROOF. set m =0 (n = 0) into (5) and simplify. O
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The pdfs in (10) and (11) belong to a generalized beta family. If
u = v = 0 then both (10) and (11) reduce to standard beta pdfs. Writing
(10) and (11) as

fx(@) = B(ﬂ, -8~ ﬁ)

and
friw)=CB(8,y-8-4)
o (Br(a)su® 5, Y e = V-
X,;,—-(v—ﬁ')kk!y (1-y) (1—wy)™,

respectively, one notes that the marginal pdfs are infinite mixtures of
pdfs which belong to Libby and Novick [8]’s generalized beta family.
Also, if u = 0 (respectively, v = 0) then (11) (respectively, (10)) reduces
to Libby and Novick [8]’s generalized beta family.

4. Conditional pdfs and moments

Theorems 5 and 6 derive the conditional pdfs and conditional mo-
ments of (1). Expressions for both the pdfs and the moments involve
the Gauss hypergeometric function.

THEOREM 5. If X and Y have the joint pdf (1) then the conditional
pdf of X given Y =y is given by

xiy(z | y)
(13) _ P11 =g — )P F 1 (1 — ug)~@
B(By-8-5) -y " oF (Baiy - 55 (1= y)u)
for 0 < z < 1. The conditional pdf of Y given X = z is given by
frix(y | z)
(14) _ A O ) L (e
B(8,v—8-8)1—a 2R (8,07 - B (1))
for0 <y < 1.

PROOF. follows immediately from (1) and Theorem 3. g
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THEOREM 6. The moments of the conditional pdfs in (13) and (14)
are given by

E(X™y)
(15) B(m+ﬁ,7—ﬁ—ﬁ') 21 (m+ﬂ,a;m+7—ﬂ';(1—y)u)
B (Br-8-8) 2R (Bar— 50— y)

and
E(Y"|x)
a6) B(n+87=B=8) 2B (n+8 o in+7—B1—ap)
 B(F-8-8) 2R (6.0 - B (- 2p)

for any real m > 0 and n > 0.

Proor. Using (13), one can write

EX™|y)
N 1

- B (5,7 -3 - ﬁ/) (1- y)'y_’g,_1 2y (ﬁ,a;’Y -4 (1- Z/)U)

1-y ’
X / g™ — g — )BT (1 - uz) T da
0

The result in (15) follows by applying equation (2.2.6.15) in Prudnikov
et al. [10, volume 1] to calculate the integral in (17). The result in (16)
follows similarly. O

5. Estimation

The basic model of the paper is (1) parameterized by (a, o, 8,8, ~, U,
v). Here, we consider estimation of the seven parameters by the method
of maximum likelihood. We also compute the associated Fisher infor-
mation matrix.
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Suppose (x1,1), - - -, (Tn, Yn) is a random sample from (1). The log-
likelihood can be expressed as:

log L (a,0', 8,8, 7, u,0)

=nlogC+(B—1))_logz; + (ﬂ' - 1) > logy;
j=1 =1
+(7—5—ﬂ540§:bﬁl—%—yﬁ
j=1

n n
—aZlog(l—umj) —a,Zlog(l—vyj).

The first-order derivatives of this with respect to the seven parameters

are:
dlogL noC &
%0~ Cda ;log(l — uzj),
OlogL n oC -
— = = — log (1 —vy;),
P C 90 J; g ( y])
dlogL. ndC =
25 6%+;log% ;log(l—xj—y]),
J= J=
dlog L oC &
Og, ~ﬁ—+ logy; — Zlog 1-2z;—y5),
aB =
8logL ndC <&
hhdhddt log (1 — 25 — 1
OlogL noC - z;
ou  Cou az 1 —ux;
and

OlogL noC y Yy
ov  Cov ta ;l—vyj'

The maximum likelihood estimators of (a,a',ﬁ,ﬂ/,'y,u,’v) are the si-
multaneous solutions of the equations dlog L/0a = 0, dlog L/Ba' =0,

dlog L/8B = 0, Blog L/8B = 0, dlog L/dy = 0, dlog L/Ou = 0 and
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dlog L/0v = 0. The associated Fisher information matrix requires the
second-order derivatives of log L which can be calculated as:
n

8logL _n 8°C  n dCOC P
dadu ~ COabu C?da Ou 1—wuz;’

Jj=1

n

B2logL__£ o*C _igga_c Z Yj
da B Coa'dv C?da’ Ov e 1—vy;’

OloglL nd*C n [0C\? - F
e L R e

and

Plogl nd’C n [(8C\? - Y;
: =C 2”53(;7) +a' Y
ov ov v o (L —oyy)
All of the remaining second-order derivatives of log L can be expressed
as:

Pl _n 0°C 9000
00;,00;  C 06,00; C280;80;
Thus, the elements of the Fisher information matrix follow by noting
that

X _C’(a+1,al,ﬁ+1,ﬂ','y,u,v)
(1 —UX) C(a,a/,ﬁ,ﬁ’,%u,v) ,

y

vy _C’(a,al—i—l,ﬁ,ﬁ'—i-l,%u,v)
(1_UY> - C(a,a’,ﬂ,ﬁ/,'y,u,v)

X2 C(a+2,a’,ﬂ+2,6',7,u,v)
<(1 _UX)2> B C (a,a/,ﬁ,ﬁ/,fy,u,v)

and

y2 _C(a,a’+2,ﬁ,ﬂl+2,'y,u,v)
((1*UY)2) - C(a,a/,ﬂ,,ﬁl,’y,u,v) .
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