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GROUP-FREENESS AND CERTAIN AMALGAMATED
FREENESS

[twoo CHo

ABSTRACT. In this paper, we will consider certain amalgamated free
product structure in crossed product algebras. Let M be a von Neu-
mann algebra acting on a Hilbert space H and (, a group and let « :
G — AutM be an action of (¢ on A, where AutM is the group of all
automorphisms on A. Then the crossed product M = M x, G of M
and G with respect to « is a von Neumann algebra acting on H ® [2(G),
generated by M and {ug}4e¢r, where ug is the unitary representation of g
on 12(G). We show that A X (G1 * G2) = (M Xo G1) ¥y (M X G2).
We compute moments and cumulants of operators in M. By doing that,
we can verify that there is a close relation between Group Freeness and
Amalgamated Freeness under the crossed product. As an application, we
can show that if F'x is the free group with N-generators, then the crossed
product algebra L.;(F,) = M X, F, satisfies that
Laj(Fn) = Lar(Fe,) *a Lar(Fry),

whenever n = k1 + ko forn, k1, Ao € N,

In this paper, we will consider a relation between a free product of groups
and a certain free product of von Neumann algebras with amalgamation over
a fixed von Neumann subalgebra. In particular, we observe such relation when
we have crossed product algebras. Crossed product algebras have been studied
by various mathematicians. Let A be a von Neumann algebra acting on a
Hilbert space H and G, a group. and let Ml = M X, G be the crossed product
of M and G via an action « : G — AutM of G on M, where AutM is the
automorphism group of A/. This new von Neumann algebra M acts on the
Hilbert space H ® I2(G), where [?(G) is the group Hilbert space. Each element
x in M has its Fourier expansion

£ = E mgu, for my € Al
g€G

where u, is the (left regular) unitary representation of g € G on I*(G).
On M, we have the following hasic computations;
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(0.1) If uy is the unitary representation of h € G, as an element in M, then
Ug, Ugy = Ug, g, and uy, = ug-1 for all g, 91,92 € G.

(0.2) If m1, mo € M and g1, g2 € G, then

(Mmatug, ) (Matg,) = M1ty mo (ug;llugl)ugz

= (m1 (ag, (M2))) g, g,-
(0.3) If mu, € M, then
(mug)” = wuim* =ug-1m”* (ugug-1)
= (a;-1(m*)) ug-1 = (@g-21(m*)ul) .
(0.4) If m € M and g € G, then

UgM = UgMUG-1Ug = Qg(M)uy and mug = Ugly—1MUy; = Ug - Ag-1(M).

The element u,m is of course contained in M, since it can be regarded as
UgMUe,, , Where e is the group identity of G, for m € M and g € G.

Free probability has been researched from mid 1980’s. There are two ap-
proaches to study it; the Voiculescu’s original analytic approach and the Spe-
icher’s combinatorial approach. We will use the Speicher’s approach. Let M
be a von Neumann algebra and N, a W*-subalgebra and assume that there
is a conditional expectation E : M — N satisfying that (i) £ is a continuous
C-linear map, (ii) E(n) = n for alln € N, (iii) E(n; m n3) = n1 E(m) na, for
allm € M and ny, ns € N, and (iv) E(m*) = E(m)* forallm € M.If N = C,
then E is a continuous linear functional on M, satisfying that E(m*) = E(m),
for all m € M. The algebraic pair (M, F) is called an N-valued W*-probability
space. All operators in (M, E) are said to be N-valued random variables. Let
T1,...,Ts € (M, E) be N-valued random variables for s € N. Then z,,...,z;
contain the following free distributional data.

o (%1,...,%n)-th joint *-moment : E (a’:?:l X x?n“)
o (§i,---,jm)-th joint *-cumulant : k., (a':;-"ljl ,..,Z: ™) such that
. . def . :
km (T?fl,,xfim) = S By (x?fl,...,x?;m)u(ﬁ, 1)
TeENC(m)

for (41,...,1n) € {1,...,8}™, (J1,.--,Jm) € {1,...,s}™ for n,m € N, and u,,,
uj, € {1, x}, and where NC(m) is the lattice of all noncrossing partitions
over {1,...,m} with its minimal element 0,,, = {(1),...,(m)} and its maximal
element 1, = {(1,...,m)} and g is the Mobius functional in the incidence
algebra and E.(---) is the partition-depending moment of z;,,...,z;,  (See
18)).

For instance, 7 = {(1, 4), (2, 3)} is in NC(4). We say that the elements (1,
4) and (2, 3) of 7 are blocks of w, and write (1, 4) € 7 and (2, 3) € «. In this
case, the partition-depending moment E(z;,,...,z;,) is determined by

Er(xj,,%5,,%55,%5,) = B (xj, E(x;,75,)T5,) -
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The ordering on NC(m) is defined by
7 < § <> for any block B € x, thereis V € 6 such that BC V

for m, 8 € NC(m), where “C” means the usual set-inclusion.

Suppose M; and M, are W *-subalgebras of M containing their common
subalgebra N. The W*-subalgebras A/; and A, are said to be free over N in
(M, E), if all mixed cumulants of A/ and M, vanish. The subsets X; and
Xy of M are said to be free over N in (M, E), if the W*-subalgebras vIN (X,
N) and vN (X4, N) are free over N in (M, E), where vN (S, S3) is the von
Neumann algebra generated by arbitrary sets S; and S3. In particular, we say
that the N-valued random variables r and y are free over N in (M, F) if and
only if {x} and {y} are free over N in (A, E). Notice that the N-freeness is
totally depending on the conditional expectation F. If A, and My are free over
N in (M, E), then the N-free product von Neumann algebra M; xy M, is a
W*-subalgebra of A, where

M +n My = N 6 (ee?:_l ( . (M - ® MY )))
i1 ioFi3....ln _1F 0y
with
Z\I{; =M, ONforallj=1,...,n.

Here, all algebraic operations «:, X and ¢ are defined under W*-topology.
Also, if (M, E;) and (Ms, Ey) are N-valued W *-probability space with

their conditional expectation E; : Al; — N for j = 1, 2. Then we can construct,

the free product conditional expectation £ = Ey| % Fy : My xn My — N making

its cumulant kg,,E}(- -+ ) vanish for mixed n-tuples of M; and M2 (See [18]).

The main result of this paper is that if Gy * G is a free product of groups
(1 and G3, then

(0.5) M X o (G] * GQ) = (A[ X o Gl) * Af (A[ X a GQ),

where M is a von Neumann algebra and a : G; * Gy — AutM is an action.
This shows that the group-freeness implies a certain freeness on von Neumann
algebras with amalgamation. Also, this shows that, under the crossed product
structure, the amalgamated freeness determines the group freeness.

Acknowledgment. The author specially thanks to Prof. F. Radulescu, who
is his Ph. D. thesis advisor in Univ. of Iowa, for the valuable discussion and
advice. Also, the author appreciate all supports from St. Ambrose Univ.. In
particular, the author thanks to Prof. V. Vega and Prof. T. Anderson, for the
useful discussion and for the kind encouragement and advice.

1. Crossed product probability spaces

In this chapter, we will introduce the free probability information of crossed
product algebras. Throughout this chapter, let A be a von Neumann algebra
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and G, a group and let a : G — AutM be an action of G on M, where AutM
is the automorphism group of M.

Denote the group identity of G by eg. Consider the trivial subgroup Go =
(eg) of G and the crossed product algebra My = M X4 Gp. Then this algebra
My is a W*-subalgebra of M and it satisfies that

(1.1) Mo = M,

where the equality “=" means “x-isomorphic”. Indeed, there exists a linear
map sending m € M to m u., in My. This is the *-isomorphism from M onto

My, since

(M1mMo)Uey = M1Qeg (M2)Ueg
(1.2) mime —> = M Uex MoUes Ueg
= (M1 tleg ) (T2eg)

for all my, my € M. The first equality of the above formula holds, because a.,,
is the identity automorphism on M satisfying that a..(m) = m for all m €
M. Also, the third equality holds, because ue, ey = Uez = Ueg 0D Go (and
also on G).

Proposition 1.1. Let Gy = (eg) be the trivial subgroup of G and let My = M
X o Go be the crossed product algebra, where « is the given action of G on M.
Then the von Neumann algebra My and M are x-isomorphic, i.e., My = M.

From now, we will identify M and Mj, as *-isomorphic von Neumann alge-
bras.

Definition 1. Let M = M X, G be the given crossed product algebra. Define
a canonical conditional expectation Ejps : M — M by

(1.3) En ngug = m,, for all ngug c M.
gei geG

By (0.4), we have e, m = Qeg (M) Uey, = M Ue, . S0, indeed, the C-linear
map E is a conditional expectation; By the very definition, £ is continuous

and
(i) Ep (m) = Ep (mue,) = Epp (tegem) =m for all m € M,
(i) Epr (my(mugy)me) = miEp(mgug)me

mimgoma = mi1Ey(mug)ms if g =eqg

Opr = my Epr(mugy)mo otherwise
for all m;, mes € M and mu, € M. Therefore, we can conclude that

Eu (mizmsa) = my Epr(x)ms for mp, me € M and x € M.
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(iii) For }_ mgu, € M,
ged

Ev | (Y _mguy)™ | = Ex | Y _uim;

9€G gc@

Eag Zo:g(m;)ug_l

ged

{

*

. N (TTLE:(;) ~ m:(; ~ EM ngug
geG

Il
=
A

Therefore, by (i), (ii) and (iii), the map E,; is a conditional expectation. Thus
the pair (M, Ey;) is a M-valued W*-probability space.

Definition 2. The M-valued W *-probability space (M, Ejs) is called the M-
valued crossed product probability space.

It is trivial that C-1,; is a 1 *-subalgebra of M. Consider the crossed product
Mg = C x4, G, as a W*-subalgebra of M. Recall the group von Neumann
algebra L(G) is defined by

LG) =CG]
Since every element y in Mg has its Fourier expansion y = >  t4u, and

since every element in L(() has its Fourier expansion ) . .7,ug, there exists
a *-isomorphism, which 1s the generator-preserving linear map, between M

and L(G).

Proposition 1.2. Let M = C- 1 X, G be the crossed product algebra. Then
Mg = L(G).

2. Moments and cumulants on (M, Ej;)

In the previous chapter, we defined an amalgamated W *-probability space
for the given crossed product algebra M = M X, G. As in Chapter 1, through-
out this chapter, we will let A/ be a von Neumann algebra and G, a group and
let o : G = AutM be an action of G on M. We will compute the amalgamated
moments and cumulnats of operators in M. These computations will play a key
role to get our main results (0.3), in Chapter 3. Let (M, Ejs) be the M-valued
crossed product probability space.

Notation. From now, we denote a,(m) by m? for convenience.

Consider group von Neumann algebras L{(), which are *-isomorphic to Mg
= C X, G, with its canonical trace tr on it. On L{G), we can always define
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its canonical trace tr as follows,

(2.1) tr ngug = r¢ for all ngug € L(G),

geG geG

where r, € C, for ¢ € G. So, the pair (L(G), tr) is a C-valued W*-probability
space. We can see that the unitary representations {u,},eq in (M, E) and
{ug}gseq in (L(G), tr) are identically distributed.

By using the above new notation, we have

(mg, Ugl) (mgzugz) - (my, Ug, )

— 919192 ... yp9192 gn-1
- (m91m92m93 Mg, )Ugl'“gn

(2.2)

for all mg,u,, € M, j = 1,...,n, where n € N. The following lemma shows
us that a certain collection of M-valued random variables in (M, Ejs) and the
generators of group von Neumann algebra (L(G), tr) are identically distributed
(over C).

Lemma 2.1. Letug,,..., Uy, € M (i€, ug, = 1pr-ug, inM fork=1,...,n).
Then

(2.3) En (g, - -ty ) = tr (g, -ty ) - I,
where tr is the canonical trace on the group von Neumann algebra L(G).
Proof. By definition of Fy,
En (ugy - ug, ) = Ep ((Lar - 195 - 19572 - 15727 gy ogn )
= Enr (tg,...q,)

— Iy ifgri--gn =eg
Ops otherwise,

since 19, = uglpUg-1 = Uglty—1 = Uyy—1 =Uee = Iy forallg € Gandn e N
By definition of tr on L(G), we have that

{ 1 ifgr---g9,=¢eq

tr (ugl T ugn) — tr (ug] Qn) = 0 Otherwise

foralln € N. ]

We want to compute the M-valued cumulant k2% (mg u,,, ..., mg, u,, ), for
all mgy, u,, € M and n € N. If this M-valued cumulant has a “good” relation
with the cumulant k£ (ug,,...,u,, ), then we might find the relation between

a group free product in G and M-valued free product in M. The following
three lemmas are the preparation for computing the M-valued cumulant kZ»

(Mg Ugys -5 Mg, Uy, ).
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Lemma 2.2. Let (M, Ej;) be the M -valued crossed product probability space

and let mg ug,,...,my, u,, be M-valued random variables in (M, Ep) for n
€ N. Then
Eﬂ‘/j (mglugl T Tn’gn ugn)
: g1gno1 .
(24) mglmgé mgégz Trcilg, if g1 gn = €g
Oars otherwise,

in M.

Proof. By the straightforward computation, we can get that
En (mg,ug, -+ my, ug, )
= Fy (mglmg;mg;” st IR g g, ugn) by (0.2)
= Eum ((mQI mg;nlg;gg o 'Tn'gimgn—l)ugl'“gn)
= (mglmg;mg;gg o 'mg:“gn"l) Ey (“m---gn)
since Ep : M — Al = M x, {eq) is a conditional expectation

g1°-"Yn—1 : .
mglm‘gé ...mgrl. 1f gl '.‘gn - BG
Oarr otherwise,
by the previous lemma. [

Based on the previous lemma, we will compute the partition-depending mo-
ments of M-valued random variables. But first, we need the following obser-
vation.

Lemma 2.3. Let mu, € (M, Eu) be a M-valued random variable. Then
Eny (ugm) = mIEp (ug) .

Proof. Compute

Euy (ugm) = Epg (ugmug_lug) = Epn (muy) = mIEpm (uy).

O]

Since Ej; is a conditional expectation, Eu (ugm) = Ejr (ug) m, too. So,
by the previous lemma, we have that

(2.6) Enx(ug)ym = E (uym) =mIE (ug).

In the following lemma, we will extend this observation (2.6) to the general
case. Notice that since E,; 1s a M-valued conditional expectation, we have to
consider the insertion property (See [18]), i.e., in general,

E}\.fj‘n- (.’L’l g oo ey ’I’n) # l-"IEIwEAII’V (33'1, ey IEn)
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for z1,...,2, € M, where Epr v (---) is the block-depending moments. But, if
Ty = ug, = lpr-ug, in M, then we can have that
En, « (g, - - S Ug,) = Bl_elﬁEM,V (tUgy,- - , Ug,,)
since
[ 1eC -1y it g =eqg
Ent (u) = { 0eC 1y otherwise,
and hence

En, oz (Ugyy-o-yUg,) = BIEI7T (try (wg,,---,uq,) - 1ar) by (2.3).

Suppose that # € NC(n) is a partition which is not 1,, and by [V € 7], denote
the relation [V is a block of 7]. We say that a block V' = (j,...,J,) is inner
in a block B = (41,...,%), where V, B € 7, if there exists kg € {2,...,k — 1}
such that i, < j; < tg,+1 for all £ = 1,...,p. In this case, we also say that B
1s outer than V. Also, we say that V is innerest if there is no other block inner
in V. For instance, if we have a partition

m = {(1,6),(2,5),(3,4)} in NC(6).
Then the block (2, 5) is inner in the block (1, 6) and the block (3, 4) is inner
in the block (2, 5). Clearly, the block (3, 4) is inner in both (2,5) and (1, 6),

and there is no other block inner in (3, 4). So, the block (3, 4) is an innerest
block in m. Remark that it is possible there are several innerest blocks in a
certain noncrossing partition. Also, notice that if V' is an innerest block, then
there exists j such that V = (5,7 + 1,...,j5 + |V| — 1), where |V| means the
cardinality of entries of V.

Lemma 2.4. Letn € N and w € NC(n), and let my ug,,...,my ug, € (M,
Ear) be the M -valued random variables. Then

Epmn (Mg Uy, ..., Mg, Ug,)

— (mglmg; s -mgl”'g"—l) trr (Ugyy e n s Ug, ),

(2.7)

where tr is the canonical trace on the group von Neumann algebra L(G).

Proof. f m = 1,,, then Eprq (---) = Enm(---) and try, (---) = tr(---), and
hence we are done, by (2.3) and (2.4). Assume that # # 1,, in NC'(n). Assume
that V. = (7,5 + 1,...,7 + k) is an innerest block of «. Then

def
Ty = EM, V (mglugu---amgn“gn)

= Em (mgj Ug; Myg; 1 Ugj44 "'m9j+k“93‘+k)

— g; 9iGi+1 .. o di9i+1 " 954k~1 Y ( )
(mgjmgj+1m9j+2 m9j+k tr U’Qj“'Qj-l—k .

Suppose V' is inner in a block B of # and B is inner in all other blocks B’,
where V' is inner in B'. Let B = (i1,...,%t) and assume that there is ky €
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{2,...,k — 1} such that i, < t < dpy4q forallt =34, 7+ 1,...,7 + k. Then
the B-depending moment goes to

Em (mg'zr1 Ug,, "My, Ug,, (Tl')mgko.+ s Ugrg g " Mgy, Ug,, )

gil gil ”.‘gik()-—l
EM((mgil Mg, ~ " Mgy,

[l

giy iy i Gi 95 Yy Gig, 95954k -1
) (mgj mgj'+1 T 7”’934—1 )
gll...gtkog‘}...g,]"{"k gil"'g}'.‘gj“!"l‘.‘gik_]
'mgi "‘?719' )ug NS¢ b 9594 g. g )
kQ ke i1 g Y3 kg 4 T Ty,
iy gi1 " Gigy - Gy Gy GipGig 9 9017 Gy 957 G5k -1
= (mgz.l mg:-,z T mgko (T?ng- 7ngj+1 s Tngj+1 )
iy Qi 95 d5+k iy Gy 100Gy
g, Tt )Eu )
mgfk»o 7”’9:',‘_. EM ugq°°°gik,09j"'9j+k9fko+l'"gz'k :

By doing the above process for all block-depending moments in the -
depending moments, we can get that

— 41,9192 , grgn-—1
Enx (mgyttg, ... ,mg, g, ) = (mg,milmil m3J! ) Er (tgys---ug,).

By (2.3), we know E; (ug,,...,u,,) = trz(ug,,...,uy,) - 1as, where tr is
the canonical trace on the group von Neumann algebra L(G). O

By the previous lemmas and proposition, we have the following theorem.

Theorem 2.5. Let my uy,,....my, u,, € (M, Exr) be the M -valued random
variables for n € N. Then

E
(2.8) koM (mg,ug,,...,mg, Ug, )
= (g, miIimILyz..omIIn=) B (g g, )
Proof. Observe that

M
k' (mg,ug,,...,my, Uy, )

N Z ij’ " (7ngl Ugyseooy My, Ug, ) ﬂ(ﬂ', 1’!1)
)

TeENC(n
= Z ((mg,m3! eI Tt (Ug,y, - g, ) mm, 1,) by (2.7)
reNC(n)
= (mglmg;mg;gz o mﬂiwgn_l) Z tra(tg,, ..\ Ug, )T, 15)
TENC(n)

= (mgymgumg e - -mg It} Ky (ugys g, ) -
u

The above theorem shows us that there is close relation between the M-
valued cumulant on (M, Fj;) and C-valued cumulant on (L(G), tr).

Example 1. In this example, instead of using (2.7) directly, we will compute
the w-depending moment of m,, wugy,...,m,, u,, in M, only by using the



606 ILWOO CHO

simple computations (0.1)~(0.4). By doing this, we can understand why (2.7)
holds concretely. Let 7 = {(1,4),(2,3),(5)} in N C(5). Then

Er,n (Mg gy, ,My Uy, )

= By (mgl Ug, B (mgzugzmgs Ugs) Mg, Ugs) Enr (mgsugs)

- mglEM ('u,glEM (m92m92u92g3) mg4ug4) (mgs Enr(ugy))

= (“91 Mg, Mg2 ) Enr (Ugy g5 )y, ug4) (mgs Enr (uys))
(m91 Migs g, Epr(Ug,gs )My, U94) (mgs En(ugs))

= mglEM (migymigy? g, m:% Bt (g g5 )thga ) (Mags Ena (tgs))

= mglmglmgleM (Ugl m9293 Enr (nggs)ug4) (mgsEM(u%))

= mglmg;mg;ngM (mg1gzg3ugl EM ugzgs u94) m95EM u95))

)

= My, mg;mg;gzmgim% Enr (U91 En (u9293 )ug4m95) (EM (Ug5 ))

= Mgy Mig, Mg **mig, 7% Eing (g, Enr (Ugags Jg,) Mgs (Enr(ugs

= Mg, M mg 92mg. 2% By (U91EM (tgags )2 ug4) (Em(ugs))

= mglmglmﬁ” mglgzgS Enm (um m92g3g4 Eyp (U9293)u94) (B (ugs))

— mglm91 mg;gzmglgwa EM (m919293g4ug1 EM (ugzg3)ug4) (EM (Ug5))

= (mg,mmei2mg, 2 mie99) ((Ey(ug, Enr(Ugytgs Jthgs)) (En (tgs)))

- (mgl mgl mg; 92 mgi 7298 mﬁ;”“g“ ) (tr (ug, tr(ug,ug, )u9,4 ) (tr(ugs)))

— (mglmglm9192m919293mg;929394) (trﬁ(ugl,ugz,ug3,ug4,ug5)).

Example 2. We can compute the following A -valued cumulant, by applying
(2.8).
kBEM (Mg, gy s Mgy Ugy, Mgy Ugy )
= (mglmg;mg;f’?) k" (g, Ugy s Ugs)
— (mgl Mg, mg;gz) (tr (ug, gags) — tr(ugy ) tr(ug,ug,)

—tr(ug, gy Jtr(Ug, ) + 2tr(ug, Jtr(ug, )tr(ug,)) -

3. The main result (0.5)

In this chapter, we will prove our main result (0.5). Like before, throughout
this chapter, let M be a von Neumann algebra and G, a group and let « : M
— AutM be an action of G on M. Assume that a group G is a group free
product G; * Gy of groups G; and G5. (Also, we can assume that there is a
subgroup G1 * G in the group G, and M x, (G; * G3) is a W*-subalgebra
of ML) Recall that, by Voiculescu, it is well-known that

L (G, xGq) = L(G1) * L(G2),

where in the left-hand side is the group free product and “*” in the right-
hand side is the von Neumann algebra free product, where L(K) is a group

CC 33 b
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von Neumann algebra of an arbitrary group K. This says that the C-freeness
on (L(G), tr) is depending on the group freeness on G = G, * G2, whenever tr
is a canonical trace on L(('). In other words, if the groups G1 and G4 are free
in G = Gy * G, then the group von Neumann algebras L{G;) and L(G5) are
free in (L(G), tr). Also, if two group von Neumann algebras L(G1) and L{G})
are given and if we construct the C-free product L(G,) * L(G3) of them, with
respect to the canonical trace tr¢; = trg, * trg,, where trg, is the canonical
trace on L(Gy), for k = 1, 2, then this C-free product is *-isomorphic to a
group von Neumann algebra L(G), where G is the group free product G1 * G
of Gl and GQ.

Theorem 3.1. Let Ml = M x, G be a crossed product algebra, where G = G4
x Gy 1s the group free product of G and G4. Then

(31) M = (i‘\[ Xao Gl) AT (A[ Xa G?) 3
where “xpr” is the M-valued free product of von Neumann algebras.

Proof. Let G = G1 * G5 be the group free product of G| and G5. By Chapter 1,
the crossed product algebra M has its 11"*-subalgebra

M =AM X a (6(;),

where (eg) is the trivial subgroup of G generated by the group identity eq €
(G. Define the canonical conditional expectation Ey; : M — M by

En E Mgty | = me, for all E mgu, € M.

ge@ ge;
By (2.8), if mg,uy,,....my, u,, € (M, Ezr) are M-valued random variables,
then
By — 91y 9192 g1 gn-1\) ptr
koM (g, g, , ... mg, Uy, ) = (g, milmdi9...m9 ) kiF (ugyy- ., ug,)

for all n € N, where tr is the canonical trace on L(G). As we mentioned in the
previous paragraph, the C-freeness on L(G) is completely determined by the
group freeness of G1 and Gy on G and vice versa. By the previous cumulant
relation, the M -freeness on M is totally determined by the C-freeness on L(G).
Therefore, the M-freeness on M is determined by the group freeness on G.
Thus, we can conclude that

M X0 (G % Go) = (M X0 G1) #11 (M x4 Go).

Recall that, if F)y is the free group with N-generators, then
L(Fn) = *Q;IL(Z)ks

where L(Z), = L(Z) for all k = 1,....] [ (see [22]). Also, L(Fn) = L(F},) *
L(F,.,) for all ki, ky € N such that &y + ky = N.
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Corollary 3.2. Let F be the free group with N -generators for N € N. Then

(3.2) M xoq FN = (M XoZ)*pr-+-%p (M Xo Z)
) N-times .

and

(3.3) M xo Fn = (M Xqo Fr,) %30 (M X4 F,),

whenever ki + ko = N for ki, ko € N.

(1]
(2]
(3]

[4]

[20]
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