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Abstract
Unit distributions are frequently used in probability theory and statistics to depict meaningful variables

having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull
(UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study.
Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength
reliability are among the statistical properties provided for this distribution. To estimate the parameters as-
sociated to the recommended distribution, well-known estimation techniques including maximum likelihood,
maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson–Darling, and
Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According
to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures
than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the
beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various
comparative indicators.

Keywords: inverse exponentiated weibull distribution, stochastic ordering, Arimoto measure, stress
strength model, maximum product spacing

1. Introduction

The weibull distribution is well-known for being the most common distribution for modelling lifetimes
(see Murthy et al., 2004), and it has been widely employed in engineering, reliability, and biological
research throughout the last few decades. The inadequacy of this distribution to accommodate non-
monotone hazard rates is its most significant flaw. As a result, it’s become clear that this approach has
to be more generalized. Mudholkar and Srivastava (1993) proposed a generalization to the weibull
distribution with an extra shape parameter that allows for non-monotone hazard rates. Because of
their simplicity and flexibility, the weibull and exponentiated weibull models are frequently studied in
survival analysis.

The relevance of inverted distributions may be seen in a variety of domains, including biologi-
cal sciences, life testing challenges, and so on. Inverted distributions have a different structure than
non-inverted distributions in terms of density and hazard rate shapes. Several writers have dedicated
a great deal of time and effort to discuss inverted distributions and their applications; such as, the in-
verse weibull distribution (Keller and Kamath, 1982), the inverted Lindley distribution (Sharma et al.,
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2015), the inverted power Lindley distribution (Barco et al., 2017), the inverted Kumaraswamy dis-
tribution (Abd AL-Fattah et al., 2017), inverted exponentiated weibull distribution (Lee et al., 2017),
inverted Nadarajah–Haghighi distribution (Tahir et al., 2018), inverse power Lomax distribution (Has-
san and Abd-Allah, 2019), inverse exponentiated Lomax distribution (Hassan and Mohamed, 2019),
and inverted Topp–Leone distribution (Hassan et al., 2020, 2022) among others.

Our interest here with inverted exponentiated weibull (IEW), presented by Lee et al. (2017) depend
on the transformation Y = 1/X, where X has the EW distribution. The IEW distributions can have
decreasing, increasing, or bathtub-shaped hazard functions. The probability density function (PDF)
and cumulative distribution function (CDF) of the IEW distribution are as below:

G (x) = 1 −
(
1 − e−εx−δ

)φ
; x, δ, ε, φ > 0, (1.1)

g (x) = δεφx−δ−1e−εx−δ
(
1 − e−εx−δ

)φ−1
; x, δ, ε, φ > 0, (1.2)

where, ε is the scale parameter, δ and φ are the shape parameters. The IEW distribution includes
several distributions. For δ = 1, the PDF (1.2) reduces to generalised inverted exponential distribution.
For δ = 2, the PDF (1.2) reduces to generalised inverted Rayleigh distribution. For δ = φ = 1, the
PDF (1.2) provides inverted exponential distribution. For φ = 1, the PDF (1.2) gives the inverted
weibull distribution. For φ = 1, δ = 2, provides inverted Rayleigh distribution.

The creation of new flexible probability distributions to give well-fitting models to datasets with
values ranging from zero to one has recently peaked statisticians’ interest. Statistical distributions
with a bound of (0,1) are useful for modelling proportions, percentages, indices, rates, and ratios.
The beta distribution is the most well-known unit distribution in statistical literature, as it provides a
practical and helpful model in many fields of statistics. Its data modelling capacity, on the other hand,
may be insufficient to explain the data. In addition, unit distributions provide additional flexibility
over the unit interval without adding new parameters to the basic distribution. In the literature, many
of the bounded distributions were created using an appropriate transformation, and they performed
better in data modelling than the beta distribution such as; Johnson SB distribution (Johnson, 1949),
Topp–Leone distribution (Topp and Leone, 1955), log gamma distribution (Consul and Jain, 1971),
unit gamma distribution (Grassia, 1977), the Kumaraswamy distribution (Kumaraswamy, 1980), the
simplex distribution (Barndorff-Nielsen and Jørgensen, 1991), the log-Lindley distribution (Gómez-
Déniz et al., 2014), unit-Birnbaum-Saunders distribution (Mazucheli et al., 2018), unit-Lindley and
unit-Gompertz distributions (Mazucheli et al., 2019a,b), unit-inverse Gaussian distribution (Ghitany
et al., 2019), unit-weibull distribution (Mazucheli et al., 2020), unit-Burr-XII distribution (Korkmaz
and Chesneau, 2021), the unit generalized log Burr XII distribution (Bhatti et al., 2021), the unit-
Gamma/Gompertz distribution (Bantan et al., 2021) and unit exponentiated half logistic distribution
(Hassan et al., 2022).

Parameter estimation is essential in the study of any probability distribution. The maximum like-
lihood (ML) estimation is frequently used to estimate any model’s parameters due to its desirable
qualities. They are asymptotically consistent, unbiased, and normally distributed. Other specific es-
timation techniques that have been developed over time rely on a variety of methodologies, such as
the methods least squares (LS), weighted LS (WLS), maximum product spacing (MPS), Cramer von
Mises (CM), Anderson–Darling (AD), and Bayesian.

The goal of this study is to offer a novel unit flexible probability distribution termed the unit
IEW (UIEW) distribution, which has particular sub models on the (0,1) interval and is based on a
type transformation Z = e−X , where X is the IEW distribution. We provide a thorough comparison
of seven methodologies for estimating the UIEW model’s parameters as well as an analysis of how



Different estimation methods for the unit inverse exponentiated weibull distribution 193

these estimators performed for various parameter values and sample sizes. We particularly contrast
ML, LS, WLS, MPS, CM, AD, and Bayesian estimates. It is difficult to theoretically examine the
characteristics of different estimating approaches, thus we carry out extensive simulation studies to
evaluate the behaviours of different estimates with a bias and mean squared error (MSE). We are
encouraged to create the UIEW distribution because of the following aspects;

(i) The distribution function and quantile function of the UIEW distribution have simple and closed
form expressions.

(ii) It can fit better than other well-known unit interval distributions.

(iii) To derive statistical properties such as random number generators, sub models, moments and
incomplete moments, reliability measures, uncertainty measures, and stochastic ordering.

(iv) Six conventional estimating techniques as well as Bayesian method are used to assess the UIEW
distribution parameters.

(v) Use simulation studies to examine the precision of different estimators.

(vi) To demonstrate the utility of the UIEW model compared with some other models.

The following is an overview of the structure of the paper. The suggested distribution is defined in
Section 2. Section 3 discusses the distributional characteristics that are most important to it. Section
4 discusses the strategies for estimating unknown parameters using various estimation procedures. A
simulation study is undertaken, also in Section 4, to assess the parameter estimates. The results of two
real data study implementations are shown in Section 5, and the conclusion is offered in Section 6.

2. The unit inverse exponentiated weibull model

Here, we offer the UIEW distribution, a new bounded distribution with support on (0, 1) that emerges
from the transformation of the type Z = e−X where X is the IEW distribution. The IEW distribution’s
CDF may therefore be derived as follows:

H (z) = P (Z ≤ z) = P
(
e−X ≤ z

)
= P (−X ≤ ln (z)) = 1 − P (X ≤ − ln (z)) = 1 − FX (− ln (z)) ,

which simply provides

H (z) =
[
1 − e−ε(− ln z)−δ

]φ
; δ, ε, φ > 0, 0 < z < 1. (2.1)

Hence, we have H(z) = 0, for z ≤ 0, and H(z) = 1, for z ≤ 1. The UIEW distribution PDF may be
acquired as follows:

h (z) = δεφz−1 (− ln z)−δ−1 e−ε(− ln z)−δ
[
1 − e−ε(− ln z)−δ

]φ−1
; δ, ε, φ > 0, 0 < z < 1. (2.2)

A random variable with PDF (2.2) will be denoted by UIEW(δ, ε, φ). The following are the survival
function and hazard function of PDF (2.2)

H̄ (z) = 1 −
[
1 − e−ε(− ln z)−δ

]φ
, 0 < z < 1,

η (z) =
δεφz−1 (− ln z)−δ−1 e−ε(− ln z)−δ

[
1 − e−ε(− ln z)−δ

]φ−1

1 −
[
1 − e−ε(− ln z)−δ

]φ .
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Figure 1: Density and hazard rate of the UIEW distribution with different values.

For a few chosen values of the parameters, Figure 1 illustrates the various forms of the PDF and hazard
function of the UIEW distribution. We can note from Figure 1 that the PDF can be left skewed, right
skewed, asymmetric and unimodal shaped. The hazard function of the UIEW distribution can be,
increasing and J-shaped.

The UIEW distribution is a highly flexible model that recognizes several distributions as particular
sub-models:

(i) For φ = 1, the UIEW distribution reduces to the unit inverse weibull as new sub-model.

(ii) For φ = 1 and δ = 1, the UIEW distribution reduces to the unit inverse exponential distribution
as new sub-model.

(iii) For φ = 1 and δ = 2, the UIEW distribution reduces to the unit inverse Rayleigh distribution as
new sub-model.

3. The UIEW distribution’s features

We looked at some of the structural properties of the UIEW distribution, including quantile function,
moments and incomplete moments, entropy measures, stochastic ordering and stress-strength (SS)
reliability, in this part.

3.1. Quantile function

For q ∈ (0, 1), the quantile function of Z is obtained by inverting (2.1) as follows:

zq = exp

− (
−1
ε

[
ln

(
1 − q

1
φ

)])− 1
δ

 , 0 < q < 1. (3.1)
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Table 1: Moments values of the UIEW distribution

µ′n (i) (ii) (iii) (iv) (v) (vi)
µ′1 0.545 0.277 0.391 0.417 0.391 0.218
µ′2 0.326 0.123 0.172 0.180 0.172 0.072
µ′3 0.206 0.062 0.081 0.080 0.081 0.028
µ′4 0.134 0.033 0.040 0.036 0.040 0.012
σ2 0.029 0.046 0.019 0.006 0.019 0.024
α3 −0.820 0.219 −0.421 −0.507 −0.421 0.407
α4 3.278 1.779 2.697 3.302 2.697 2.252

Putting q = 0.25, 0.5, and 0.75 in (3.1) yields the first, median, and third quantiles. It’s simple to
simulate the random variable. If Q is a uniform variate on the unit interval (0, 1), then Z = zq at q
follows (3.1).

3.2. Moments measures

The nth moment for Z with PDF (2.2) is calculated as

µ′n = δεφ

∫ 1

0
zn−1 (− ln z)−δ−1 e−ε(− ln z)−δ

[
1 − e−ε(− ln z)−δ

]φ−1
dz. (3.2)

Let u = (− ln z)−δ, and using the binomial expansion, then the nth moment of Z, can be expressed as

µ′n =

∞∑
r=0

(−1)r
(
φ − 1

r

)
εφ

∫ ∞

0
e−nu

−1
δ e−ε(r+1)udu.

Use the exponential expansion then, the previous equation is

µ′n =

∞∑
r,i=0

(
φ − 1

r

)
(−1)r+i niεφ

i! (ε (r + 1))1− i
δ

Γ

(
1 −

i
δ

)
,

where, Γ (·) is gamma function. Furthermore, the nth central moment of Z, is defined by

µn = E
(
Z − µ′1

)n
=

n∑
j=0

(−1) j
(

n
j

) (
µ′1

) j µ′n− j.

For specific parameter settings, such as (i) (δ = 1.5, ε = 0.5, φ = 2), (ii) (δ = 2, ε = 0.5, φ = 0.5), (iii)
( δ = 2, ε = 1, φ = 2), (iv) (δ = 3, ε = 1, φ = 3), (v) (δ = 2, ε = 2, φ = 2), (vi) (δ = 1.5, ε = 2, φ = 1.5),
are provided. Table 1 contains values of some moments, variance (σ2), coefficient of skewness (α3)
and coefficient of kurtosis (α4) for the UIEW distribution. As seen in Table 1, the UIEW distribution is
right and left skewed according to values of (α3). Also, the distribution is leptokurtic and platykurtic
according to the values of (α4). Furthermore, the nth lower incomplete moment, say In(t) of the UIEW
distribution is given by:

In (t) = δεφ

∫ t

0
zn−1 (− ln z)−δ−1 e−ε(− ln z)−δ

[
1 − e−ε(− ln z)−δ

]φ−1
dz.
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Let u = (− ln z)−δ, and using the binomial expansion, then the nth incomplete moment of Z, can be
expressed as

In (t) =

∞∑
r=0

(−1)r
(
φ − 1

r

)
εφ

∫ (− ln t)−δ

0
e−nu

−1
δ e−ε(r+1)udu.

After simplification the nth moment is as below:

In (t) =

∞∑
r,i=0

(
φ − 1

r

)
(−1)r+iniεφ

i! (ε (r + 1))1− i
δ

γ

1 − i
δ
,

(
− ln

(
t

ε (r + 1)

))−δ ,
where γ(. . . , t) is lower incomplete gamma function. The first incomplete moment is well-known in
applications such as the Lorenz and Bonferroni curves, which are described as Lo(t) = I1(t)/µ′1 and
Bo(t) = Lo(t)/F(t) respectively. These curves are particularly useful in economics, demography,
insurance, engineering, and medicine.

3.3. Uncertainty measures

We looked at certain information measures such as, Rényi, Arimoto, Havrda and Charvat, and Tsallis
entropies. All these measures indicate the total quantity of data in the system. The Rényi (see Rényi,
1960) entropy, denoted by<(c) of Z is defined by

< (c) = (1 − c)−1 log
(∫ ∞

0
(h (z))cdz

)
. (3.3)

Using PDF (2.2) in (3.3) gives

< (c) = (1 − c)−1 log
(
(δεφ)c

∫ 1

0
z−c (− ln z)−c(δ+1) e−cε(− ln z)−δ

[
1 − e−ε(− ln z)−δ

]c(φ−1)
dz

)
. (3.4)

Using the binomial and exponential expansions in (3.4), then<(c) transformed to

< (c) = (1 − c)−1 log

 ∞∑
k, j=0

∆k, jΓ

(
c (δ + 1)

δ
−

1
δ
−

j
δ

) ,
where

∆k, j =

(
c (φ − 1)

k

)
(εφ)c δc−1 (−1) j+k (1 − c) j

j! (ε (k + c))
c(δ+1)
δ −

1
δ−

j
δ

.

The Havrda and Charvat (Havrda and Charvat, 1967) entropy, denoted by H(c), of the UIEW distri-
bution is calculated as:

H (c) =
1

21−c − 1

(∫ 1

0
(h (z))c dz

) 1
c

− 1

 , c , 1, c > 0

=
1

21−c − 1


 ∞∑

k, j=0

∆k, jΓ

(
c (δ + 1)

δ
−

1
δ
−

j
δ

)
1
c

− 1

 .



Different estimation methods for the unit inverse exponentiated weibull distribution 197

Table 2: Entropy measures of UIEW distribution

c Measure (i) (ii) (iii) (iv) (v) (vi)

0.2

I(c) −0.166 −0.080 −0.175 −0.217 −0.171 −0.286
A(c) −0.121 −0.069 −0.126 −0.145 −0.124 −0.170
H(c) −0.656 −0.370 −0.678 −0.783 −0.669 −0.919
T(c) −0.156 −0.078 −0.163 −0.199 −0.160 −0.255

0.9
I(c) −4.184 −0.719 −0.773 −1.319 −0.318 −0.646
A(c) −3.346 −0.691 −0.741 −1.227 −0.312 −0.624
H(c) −5.180 −1.070 −1.147 −1.899 −0.483 −0.966
T(c) −3.419 −0.694 −0.744 −1.235 −0.313 −0.626

The Arimoto (see Arimoto, 1971) entropy measure. Represented by A(c), of the UIEW distribu-
tion is calculated as:

A (c) =
c

1 − c

(∫ 1

0
(h (z))c dz

) 1
c

− 1

 , c , 1, c > 0

=
c

1 − c


 ∞∑

k, j=0

∆k, jΓ

(
c (δ + 1)

δ
−

1
δ
−

j
δ

)
1
c

− 1

 .
The Tsallis (see Tsallis, 1988) entropy measure, represented by T(c), of the UIEW distribution is as
below:

T (c) =
1

c − 1

[
1 −

∫ 1

0
(h (z))c dz

]
, c , 1, c > 0

=
1

c − 1

1 −
 ∞∑

k, j=0

∆k, jΓ

(
c (δ + 1)

δ
−

1
δ
−

j
δ

)
 .

Numerical values of I(c),A(c),H(c), and T(c) are given for given parameter values (i) (δ = 0.5, ε =

0.5, φ = 0.5), (ii) (δ = 0.5, ε = 0.5, φ = 1.5), (iii) (δ = 0.5, ε = 0.5, φ = 3), (iv) (δ = 1.5, ε = 0.5, φ =

0.5), (v) (δ = 1.5, ε = 0.5, φ = 1.5), (vi) (δ = 1.5, ε = 0.5, φ = 3) (Table 2). The following may be
seen from Table 2:

1. For all values of the parameters except set (v), the H(c) entropy measure picks the lowest values
among the others, yielding less information.

2. For all considered values of the parameters except at (δ = 0.5, ε = 0.5, φ = 0.5), the A(c) entropy
measure yields the largest values, suggesting more uncertainty.

3. The entropy measures include; I(c),A(c), and T(c) values decrease as the value of c increases,
indicating that we have more knowledge. As the value of c increases, H(c) measure decreases for
all sets except set (v).

3.4. Stochastic ordering

The stochastic ordering is an extensively researched notion in probability distributions and is an es-
sential tool in reliability theory and other domains to examine comparative behaviour of random vari-
ables. Assume that Zi; i = 1, 2 has the UIEW(δi, εi, φi) distribution with PDF h(zi) and CDF H(zi) of
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Table 3: The Biases and MSEs of different estimates of UIEW distribution at (δ = 1.5, ε = 1, φ = 1)

n Measures ML MPS LS WLS AD CM Bayesian

100

Bias(δ̂) 0.1594 0.0652 0.2124 0.1214 0.1097 0.2195 0.0676
MSE(δ̂) 0.3893 0.2864 0.7165 0.3743 0.3271 0.7561 0.0368
Bias(ε̂) 0.2295 0.0402 0.0811 0.0643 0.0682 0.1105 −0.2037
MSE(ε̂) 0.2295 0.2107 0.4398 0.2867 0.2680 0.4798 0.0665
Bias(φ̂) 0.1593 0.1662 0.4341 0.2525 0.2407 0.5327 −0.1488
MSE(φ̂) 0.5786 0.5680 2.8697 1.0149 0.9493 4.5507 0.0410

200

Bias(δ̂) 0.0612 0.0095 0.0927 0.0564 0.0482 0.0972 −0.0423
MSE(δ̂) 0.1207 0.1028 0.278 0.1529 0.1379 0.2817 0.0245
Bias(ε̂) 0.0209 0.0285 0.0475 0.0313 0.0373 0.0568 0.1182
MSE(ε̂) 0.0285 0.0953 0.2109 0.1318 0.1261 0.2151 0.0410
Bias(φ̂) 0.0687 0.0795 0.1863 0.1031 0.1058 0.1985 0.0292
MSE(φ̂) 0.1745 0.1695 0.6876 0.2731 0.2630 0.7258 0.0318

300

Bias(δ̂) 0.0412 0.0015 0.0723 0.0449 0.0381 0.0752 0.1410
MSE(δ̂) 0.0721 0.0638 0.1699 0.0968 0.0878 0.1715 0.0282
Bias(ε̂) 0.0125 0.0217 0.0224 0.0151 0.0202 0.0285 −0.1184
MSE(ε̂) 0.0647 0.0618 0.1384 0.0862 0.0830 0.1402 0.0239
Bias(φ̂) 0.0426 0.0548 0.1068 0.0596 0.0632 0.1138 −0.1488
MSE(φ̂) 0.0990 0.0973 0.3657 0.1531 0.1472 0.3786 0.0312

Zi, respectively. If hZ1 (z)/hZ2 (z) is a decreasing function for all values of z, we may state that Z1 is
stochastically smaller than Z2 in terms of likelihood ratio order (denoted by Z1 ≤lr Z2).

Let Z1 ∼ UIEW(δ1, ε1, φ1) and Z2 ∼ UIEW(δ2, ε2, φ2) when relevant assumptions are met, we
shall prove that the UIEW distributions are ordered with regard to likelihood ratio ordering. The
density ratio is

hZ1 (z)
hZ2 (z)

=
δ1ε1φ1 (− ln z)−δ1−1 e−ε1(− ln z)−δ1

[
1 − e−ε1(− ln z)−δ1

]φ1−1

δ2ε2φ2 (− ln z)−δ2−1 e−ε2(− ln z)−δ2
[
1 − e−ε2(− ln z)−δ2

]φ2−1 ,

therefore,

d
dz

log
hZ1 (z)
hZ2 (z)

=
− (δ1 + 1)

z ln (z)
+

(δ2 + 1)
z ln (z)

− ε1δ1z−1 (− ln z)−δ1−1 + ε2δ2z−1 (− ln z)−δ2−1

+
(φ1 − 1) ε1δ1z−1 (− ln z)−δ1−1

eε1(− ln z)−ε1 − 1
−

(φ2 − 1) ε2δ2z−1 (− ln z)−δ2−1

eε2(− ln z)−δ2 − 1
< 0.

If δ1 ≤ δ2, ε1 = ε2 = ε, and φ1 ≤ φ2, we get hZ1 (z)/hZ2 (z) is decreasing in z and hence Z1 ≤lr Z2.
Furthermore, we can conclude for other different ordering, Z1 ≤hr Z2 (hazard rate order), Z1 ≤mrl Z2
(mean residual life order) and Z1 ≤sr Z2 (stochastic order). According to Shaked and Shanthikumar
(2007), these stochastic orders are connected to one another, and the following pattern occurs

Z1 ≤lr Z2 ⇒ Z1 ≤hr Z2 ⇒ Z1 ≤mrl Z2 ⇒ Z1 ≤sr Z2.

3.5. Stress-Strength reliability

The notion “SS reliability” is used in statistical literature to describe the reliability of a system with
random strength Z1 that is exposed to random stress Z2, with the system failing if Z2 exceeds Z1. Let
Z1 ∼ UIEW(δ1, ε1, φ1) and Z2 ∼ UIEW(δ2, ε2, φ2) are two independent random variables. The UIEW
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Table 4: The Biases and MSEs of different estimates of UIEW distribution at (δ = 1, ε = 1, φ = 1.5)

n Measures ML MPS LS WLS AD CM Bayesian

100

Bias(δ̂) 0.0862 0.0371 0.1615 0.0730 0.1097 0.1738 0.0500
MSE(δ̂) 0.1457 0.1168 0.3962 0.1560 0.3271 0.6834 0.0278
Bias(ε̂) 0.0608 0.0631 0.0756 0.0887 0.0682 0.0932 −0.0752
MSE(ε̂) 0.2745 0.2595 0.4845 0.3618 0.2680 0.4892 0.0629
Bias(φ̂) 0.3787 0.3664 0.7010 0.5676 0.2407 0.7344 0.2959
MSE(φ̂) 2.4998 2.5798 7.3016 4.7552 0.9493 6.9530 0.2119

200

Bias(δ̂) 0.0335 0.0062 0.0677 0.0366 0.0482 0.0806 −0.0425
MSE(δ̂) 0.0505 0.0448 0.1211 0.0704 0.1379 0.2803 0.0054
Bias(ε̂) 0.0325 0.0374 0.0473 0.0415 0.0373 0.0536 0.0959
MSE(ε̂) 0.1177 0.1126 0.2498 0.1611 0.1261 0.2438 0.0176
Bias(φ̂) 0.1536 0.1536 0.3362 0.2156 0.1058 0.3329 0.1403
MSE(φ̂) 0.5677 0.5434 2.2895 0.9693 0.2630 1.9155 0.0340

300

Bias(δ̂) 0.0228 0.0020 0.0666 0.0277 0.0381 0.0651 −0.0014
MSE(δ̂) 0.0304 0.0277 0.1764 0.0422 0.0878 0.1859 0.0019
Bias(ε̂) 0.0196 0.0258 0.0160 0.0217 0.0202 0.0239 0.0145
MSE(ε̂) 0.0743 0.0716 0.1624 0.1032 0.0830 0.1644 0.0035
Bias(φ̂) 0.0938 0.0993 0.1742 0.1252 0.0632 0.1933 0.0247
MSE(φ̂) 0.3016 0.2911 0.9977 0.5008 0.1472 1.0433 0.0009

distribution’s SS reliability is then calculated as follows:

R = P (Z2 < Z1) = δε1φ1

∫ 1

0
z−1 (− ln z)−δ−1 e−ε1(− ln z)−δ

[
1 − e−ε1(− ln z)−δ

]φ1−1 [
1 − e−ε2(− ln z)−δ

]φ2
. (3.5)

Using the binomial expansions in (3.5), we get

R =

∞∑
u1,u2=0

δε1φ1 (−1)u1+u2

(
φ1 − 1

u1

) (
φ2
u2

) ∫ 1

0
z−1 (− ln z)−(δ+1) e−(ε1+ε1u1+ε2u2)(− ln z)−δdz. (3.6)

Hence, the UIEW distribution’s SS reliability is as below:

R =

∞∑
u1,u2=0

ε1φ1 (−1)u1+u2

(ε1 + ε1u1 + ε2u2)

(
φ1 − 1

u1

) (
φ2
u2

)
.

4. Parameter estimation

In this section, we discuss the estimation of UIEW distribution parameters using ML, MPS, LS, WLS,
AD, CM, and Bayesian methods. Furthermore, the performance of such estimators will be examined
through simulation study.

4.1. Maximum likelihood estimation

Suppose that a random sample of size n is drawn from a population having a UIEW distribution given
by (2.2) with unknown parameter vector ϑ = (δ, ε, φ)′. Then the log likelihood function for ϑ will be

ln l (ϑ) = n ln (δεφ) −
n∑

i=1

ln zi − (δ + 1)
n∑

i=1

[
ln (− ln zi) + ε (− ln zi)δ

]
+ (φ − 1)

n∑
i=1

ln
[
1 − e−ε(− ln zi)−δ

]
.
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Table 5: The Biases and MSEs of different estimates of UIEW distribution at (δ = 1.5, ε = 1, φ = 1.5)

n Measures ML MPS LS WLS AD CM Bayesian

100

Bias(δ̂) 0.1304 0.0565 0.2177 0.1072 0.1123 0.2373 −0.0260
MSE(δ̂) 0.3286 0.2631 0.6642 0.3477 0.3237 0.6920 0.0602
Bias(ε̂) 0.0598 0.0623 0.0642 0.0890 0.0746 0.0769 −0.0883
MSE(ε̂) 0.2750 0.2600 0.4181 0.3565 0.3133 0.4419 0.0571
Bias(φ̂) 0.3771 0.3652 0.5516 0.5559 0.4569 0.6136 −0.1225
MSE(φ̂) 2.4995 2.5863 4.3676 4.4056 3.1798 4.7414 0.1484

200

Bias(δ̂) 0.0520 0.0111 0.1028 0.0528 0.0658 0.1135 0.0575
MSE(δ̂) 0.1143 0.1014 0.2790 0.1480 0.1967 0.2917 0.0186
Bias(ε̂) 0.0308 0.0356 0.0446 0.0410 0.0383 0.0479 0.0723
MSE(ε̂) 0.1182 0.1131 0.2336 0.1599 0.1550 0.2377 0.0167
Bias(φ̂) 0.1506 0.1505 0.3003 0.2139 0.1986 0.3125 0.1688
MSE(φ̂) 0.5681 0.5433 1.6691 0.9713 0.8628 1.8008 0.0675

300

Bias(δ̂) 0.0366 0.0053 0.0890 0.0425 0.0568 0.0887 −0.0450
MSE(δ̂) 0.0692 0.0631 0.1928 0.0952 0.1390 0.1884 0.0126
Bias(ε̂) 0.0171 0.0234 0.0163 0.0207 0.0162 0.0232 0.0351
MSE(ε̂) 0.0747 0.0721 0.1579 0.1031 0.1032 0.1608 0.0128
Bias(φ̂) 0.0893 0.0948 0.1672 0.1233 0.1125 0.1855 0.1363
MSE(φ̂) 0.3014 0.2912 0.8526 0.4996 0.4731 0.9326 0.0673

Differentiate the log likelihood function with respect to δ, ε, and φ respectively,

∂ ln l (ϑ)
∂δ

=
n
δ
−

n∑
i=1

[
ln (− ln zi) + ε (− ln zi)δ

]
+

(φ − 1) ε (− ln zi)−δ ln (− ln zi)(
eε(− ln zi)−δ − 1

) , (4.1)

∂ ln l (ϑ)
∂ε

=
n
ε
− (δ + 1)

n∑
i=1

(− ln zi)δ + (φ − 1)
n∑

i=1

(− ln zi)−δ[
eε(− ln zi)−δ + 1

] , (4.2)

∂ ln (ϑ)
∂φ

=
n
φ

+

n∑
i=1

ln
[
1 − e−ε(− ln zi)−δ

]
. (4.3)

Equate Equations (4.1)-(4.3) to zero and solve for δ = δ̂ML, ε = ε̂ML, and φ = φ̂ML simul-
taneously. However, the obtained equations cannot be solved analytically to obtain δ̂ML, ε̂ML, and
φ̂ML.

4.2. Maximum product of spacings estimation

The MPS estimation method was proposed by Cheng and Amin (1979) and justified by Ranneby
(1984) as an alternative to ML method in the case of having continuous univariate distributions. It
was demonstrated that the MPS technique generates consistent and asymptotically effective estimators
for various distributions where the ML method fails due to unboundedness of the likelihood, such as
a three-parameter gamma, lognormal, or weibull distribution. The MSP estimators are consistent in
situations like mixtures of normal distributions where the ML approach is known to give inconsistent
estimators (see Ranneby, 1984). Ekström (2006) is a good resource for in-depth information. The
MPS method is used primarily for maximising the geometric mean of spacings in the data, which are
the differences between the values of the cumulative distribution function at adjacent data points. In
this method, an ordered sample z(1), . . . , z(n) of size n is drawn from a population having a UIEW distri-
bution given by (2.2), the MPS estimator of set of parameters ϑ = (δ, ε, φ)′ is the value that maximizes
the following MPS(ϑ) where Di(ϑ) = H(z(i), ϑ)−H(z(i−1), ϑ), i = 1, . . . , n + 1, z0 = −∞, z(n+1) = ∞ and
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Figure 2: Plots of MSE(δ̂) (left panel) and MSE(ε̂) (right panel) against n for ML(black), MPS(green), LS(blue),
WLS(cyan), AD(purple), and CM(red) when (δ = 1, ε = 1, φ = 1.5) (solid) and (δ = 1.5, ε = 1, φ = 1) (dashed).
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Figure 3: Plots of MSE(φ̂) against n for ML(black), MPS(green), LS(blue), WLS(cyan), AD(purple), and
CM(red) when (δ = 1.5, ε = 1, φ = 1) (solid) and (δ = 1, ε = 1, φ = 1.5) (dashed) (left panel) and (δ = 1.5, ε = 1,

φ = 1) (solid) and (δ = 1.5, ε = 1, φ = 1.5) (dashed) (right panel).

H(z(i), ϑ) is given by (2.1). Hence, MPS estimates, δ̂MPS, ε̂MPS, and φ̂MPS, are obtained by solving
simultaneously the following non-linear equations:

∂MPS (ϑ)
∂δ

=
1

n + 1

n+1∑
i=1

[
(∂/∂δ)

[
H

(
z(i), ϑ

)]
− (∂/∂δ) H

(
z(i−1), ϑ

)
H

(
z(i), ϑ

)
− H

(
z(i−1), ϑ

) ]
= 0,

∂MPS (ϑ)
∂ε

=
1

n + 1

n+1∑
i=1

[
(∂/∂ε)

[
H

(
z(i), ϑ

)]
− (∂/∂ε) H

(
z(i−1), ϑ

)
H

(
z(i), ϑ

)
− H

(
z(i−1), ϑ

) ]
= 0,

∂MPS (ϑ)
∂φ

=
1

n + 1

n+1∑
i=1

[
(∂/∂φ)

[
H

(
z(i), ϑ

)]
− (∂/∂φ) H

(
z(i−1), ϑ

)
H

(
z(i), ϑ

)
− H

(
z(i−1), ϑ

) ]
= 0,
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Figure 4: Plots of Bias(δ̂) against n for ML(black), MPS(green), LS(blue), WLS(cyan), AD(purple), and CM(red)
when (δ = 1, ε = 1, φ = 1.5) (solid) and (δ = 1.5, ε = 1, φ = 1.5) (dashed) (left panel) and (δ = 1.5, ε = 1, φ = 1)

(solid) and (δ = 1.5, ε = 1, φ = 1.5) (dashed) (right panel).
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Figure 5: Plots of Bias(ε̂) against n for ML(black), MPS(green), LS(blue), WLS(cyan), AD(purple), and CM(red)
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where

∂

∂δ

[
H

(
z(i), ϑ

)]
= −φε

(
1 − e−ε(− ln z(i))−δ

)φ−1
e−ε(− ln z(i))−δ (− ln z(i)

)−δ ln
(
− ln z(i)

)
, (4.4)

∂

∂ε

[
H

(
z(i), ϑ

)]
= φ

(
1 − e−ε(− ln z(i))−δ

)φ−1
e−ε(− ln z(i))−δ (− ln z(i)

)−δ, (4.5)

∂

∂φ

[
H

(
z(i), ϑ

)]
=

(
1 − e−ε(− ln z(i))−δ

)φ
ln

(
1 − e−ε(− ln z(i))−δ

)
. (4.6)

However, the obtained equations cannot be solved analytically, so numerical technique will be em-
ployed using non-linear optimization algorithms to obtain, δ̂MPS, ε̂MPS, and φ̂MPS.
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Figure 6: Plots of Bias(φ̂) against n for ML(black), MPS(green), LS(blue), WLS(cyan), AD(purple), and
CM(red) when (δ = 1.5, ε = 1,φ = 1) (solid) and (δ = 1, ε = 1,φ = 1.5) (dashed) (left panel) and
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Figure 7: TTT plot for the UIEW distribution for data I (left panel) and data II (right panel).

4.3. LS and WLS estimation

Here, the LS and the WLS (Swain et al., 1988) for estimating the unknown parameters are regarded.
Let z(1), . . . , z(n) an ordered sample of size n is drawn from UIEW distribution (2.2), so the LS estima-
tors of δ, ε, and φ for the UIEW distribution, denoted by δ̂LS, ε̂LS, and φ̂LS respectively, are obtained
by minimizing the following function:

B (ϑ) =

n∑
i=1

Si
[
H

(
z(i), ϑ

)
− E

(
H

(
z(i−1), ϑ

))]2, (4.7)

with respect to ϑ, where, E(H(z(i−1), ϑ)) = i/(n + 1), i = 1, 2, . . . , n. We can get the LS estimators
designated by δ̂LS, ε̂LS, and φ̂LS by setting Si = 1, whereas we can get the WLS estimators denoted
by δ̂WLS, ε̂WLS, and φ̂WLS by setting Si = ((n + 2)(n + 1)2)/i(n − i + 1), i = 1, 2, . . . , n. These
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Table 6: ML estimates, SE, CAIC, BIC, HQIC and KS with its p-value for the both data

Data Model δ̂ML ε̂ML φ̂ML AIC CAIC HQIC
KS

(p-value)

I

UIEW
0.6928

(0.1855)
2.0870

(0.7614)
8.9635

(7.0311) −50.6131 −50.3801 −47.3625 0.0595
(0.8216)

Kum
2.1949

(0.2224)
3.4363

(0.5820) −46.7894 −46.6740 −44.6223
0.0763

(0.5372)

Beta
2.4125

(0.3145)
2.8297

(0.3744) −43.5545 −43.4391 −41.3874
0.0910

(0.3189)

UG
2.1194

(0.8675)
0.3877

(0.1144) −6.9774 −6.8620 −4.81035
0.1835

(0.0013)

UL
0.5405

(0.0324)
44.2958

(42.9907) 3.8927 4.0081 6.0597
0.2461

(0.000004)

CUW
0.4738

(0.0214)
1.7809

(0.1355) −51.0080 −50.8926 −48.8410
0.0663

(0.7343)

II

UIEW
0.5727

(0.0532)
8.3027

(0.4928)
91.3615
(33.433) −302.7727 −302.576 −299.3159 0.0573

(0.8028)

Kum
1.0544

(0.0801)
8.8952

(1.5727) −300.2396 −300.142 −297.935
0.0809

(0.3813)

Beta
1.1412

(0.1282)
9.0719

(1.2295) −301.1047 −301.007 −298.8001
0.0832

(0.3477)

UG
0.1386

(0.0362)
0.6857

(0.0510) −272.4598 −272.362 −270.1552
0.1214

(0.0488)

UL
0.1634

(0.0266)
112.6454
(72.5011) −162.1871 −162.089 −159.8825

0.3381
(6 × 10−3)

CUW
0.0846

(0.0082)
1.0264

(0.0667) −299.9292 −299.831 −297.6246
0.0779

(0.4285)

estimators can also be obtained by solving the equations stated below:

∂B (ϑ)
∂δ

= 2
n∑

i=1

S i

[
H

(
z(i), ϑ

)
−

i
n + 1

]2 ∂

∂δ
H

(
z(i), ϑ

)
= 0,

∂B (ϑ)
∂ε

= 2
n∑

i=1

S i

[
H

(
z(i), ϑ

)
−

i
n + 1

]2 ∂

∂ε
H

(
z(i), ϑ

)
= 0,

∂B (ϑ)
∂φ

= 2
n∑

i=1

S i

[
H

(
z(i), ϑ

)
−

i
n + 1

]2 ∂

∂φ
H

(
z(i), ϑ

)
= 0,

where ∂/∂δ H(z(i), ϑ), ∂/∂ε H(z(i), ϑ) and ∂/∂φ H(z(i), ϑ) are given in (4.4)-(4.6). As can be observed,
the resultant equations cannot be solved analytically, hence a numerical method will be used with
non-linear optimization techniques.

4.4. Anderson–Darling estimation

The AD method was introduced by Anderson and Darling (1952). Let z(1), . . . , z(n) an ordered sample
of size n is drawn from UIEW distribution (2.2), so the estimators δ̂AD, ε̂AD, and φ̂AD of δ, ε, and φ
respectively, are obtained by minimizing the following function:

AD (ϑ) = −n −
n∑

i=1

2i − 1
n

[
log H

(
z(i), ϑ

)
+ log

(
H

(
1 − z(n+1−i), ϑ

))]
,

with respect to ϑ. Hence δ̂AD, ε̂AD, and φ̂AD are solutions for the following equations:
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Figure 8: Plots of the estimated pdfs (left panel) and estimated cdfs (right panel) for the data I.
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Figure 9: Plots of the estimated pdfs (left panel) and estimated cdfs (right panel) for the data II.
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Figure 10: PP plots for the UIEW distribution for data I (left panel) and data II (right panel).
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∂AD (ϑ)
∂δ

= −

n∑
i=1

2i − 1
n

[
(∂/∂δ) H

(
z(i), ϑ

)
H

(
z(i), ϑ

) −
(∂/∂δ)

(
H

(
1 − z(n+1−i), ϑ

))
H

(
1 − z(n+1−i), ϑ

) ]
= 0,

∂AD (ϑ)
∂ε

= −

n∑
i=1

2i − 1
n

[
(∂/∂ε) H

(
z(i), ϑ

)
H

(
z(i), ϑ

) −
(∂/∂ε)

(
H

(
1 − z(n+1−i), ϑ

))
H

(
1 − z(n+1−i), ϑ

) ]
= 0,

∂AD (ϑ)
∂φ

= −

n∑
i=1

2i − 1
n

[
(∂/∂φ) H

(
z(i), ϑ

)
H

(
z(i), ϑ

) −
(∂/∂φ)

(
H

(
1 − z(n+1−i), ϑ

))
H

(
1 − z(n+1−i), ϑ

) ]
= 0,

where ∂/∂δ H(z(i), ϑ), ∂/∂ε H(z(i), ϑ), and ∂/∂φ H(z(i), ϑ) are given in (4.4)-(4.6). Due to the difficulty
of solving the resulting equations, non-linear optimization strategies will be used.

4.5. The Cramér-von Mises estimation

Let z(1), . . . , z(n) an ordered sample of size n is drawn from UIEW distribution (2.2), hence the CM
estimators δ̂CM, ε̂CM, and φ̂CM of δ, ε, and φ, respectively, are obtained by minimizing the following
function:

CM (ϑ) =
1

12n
+

n∑
i=1

[
H

(
z(i), ϑ

)
−

2i − 1
2n

]2

,

with respect to ϑ. Hence δ̂CM, ε̂CM, and φ̂CM are obtained by solving simultaneously the following
non-linear equations after putting them with zero

∂CM (ϑ)
∂δ

= 2
n∑

i=1

∂

∂δ

(
H

(
z(i), ϑ

)) [
H

(
z(i), ϑ

)
−

2i − 1
2n

]
= 0,

∂CM (ϑ)
∂ε

= 2
n∑

i=1

∂

∂ε

(
H

(
z(i), ϑ

)) [
H

(
z(i), ϑ

)
−

2i − 1
2n

]
= 0,

∂CM (ϑ)
∂φ

= 2
n∑

i=1

∂

∂φ

(
H

(
z(i), ϑ

)) [
H

(
z(i), ϑ

)
−

2i − 1
2n

]
= 0,

where ∂/∂δ H(z(i), ϑ), ∂/∂ε H(z(i), ϑ), and ∂/∂φ H(z(i), ϑ) are provided in (4.4)-(4.6). non-linear opti-
mization techniques will be applied due to the complexity of the resultant equations.

4.6. Bayesian estimators

The Bayesian estimator of the UIEW distribution parameters is provided here. The Bayesian estima-
tors of δ, ε and φ are taken into consideration, under the squared error loss function (SELF), which is
defined by the following formulas,

L
(
δ̃, δ

)
=

(
δ̃ − δ

)2
, L (ε̃, ε) = (ε̃ − ε)2, L

(
φ̃, φ

)
=

(
φ̃ − φ

)2
.

Suppose that the prior distributions of parameters have an independent gamma distribution. The joint
gamma prior density of δ, ε and φ can be written as

π0 (δ, ε, φ) ∝ δc1−1εc2−1φc3−1e−d1δe−d3φe−d2ε; ci, di > 0, i = 1, 2, 3. (4.8)
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Table 7: The ML, MPS, LS, WLS, AD, CM and Bayesian estimates for both data sets

Method δ̂ ε̂ φ̂ KS

Data I

ML 0.6928 2.0870 8.9635 0.0595
MPS 0.6520 2.1547 9.4299 0.0691
LS 0.8072 1.8464 7.2607 0.0468

WLS 0.8778 1.5611 5.1940 0.0499
AD 0.8343 1.6756 5.8797 0.0508
CM 0.8083 1.8753 7.5551 0.0499

Bayesian 0.7166 2.0227 8.6662 0.9986

Data II

ML 0.5727 8.3027 91.3615 0.0573
MPS . . . . . . . . . . . . . . . . . . . . . . . .
LS 0.6450 8.8541 87.6791 0.0353

WLS 0.6557 8.4966 69.9389 0.0407
AD 0.6269 8.5694 82.8390 0.0428
CM 0.6596 8.7633 78.4349 0.0352

Bayesian 0.5789 8.2724 91.4097 0.0672

The joint posterior of the UIEW distribution with parameters δ, ε and φ is obtained using the likelihood
function and joint prior density (4.8) as:

π•
(
δ, ε, φ | z

)
∝ π0 (δ, ε, φ) L

(
z | δ, ε, φ

)
.

Then the joint posterior can be written as

π•
(
δ, ε, φ | z

)
∝ δc1+n−1εc2+n−1φc3+n−1e−δ(d1+

∑n
i=1 ln(− ln zi))e−ε(d2+

∑n
i=1(− ln zi)−δ)e

−d3φ+(φ−1)
∑n

i=1 ln
[
1−e−z(− ln z)−δ

]
.

The following processes result in the conditional posterior densities of δ, ε and φ

π••1
(
δ | z

)
= K−1δn+c1−1e−δ(d1+

∑n
i=1 ln(− ln zi))

×

∫ ∞

0

∫ ∞

0
φn+c3−1εn+c2−1e−ε(d2+

∑n
i=1(− ln zi)−δ)e

−d3φ+(φ−1)
∑n

i=1 ln
[
1−e−z(− ln z)−δ

]
dφ dε, (4.9)

π••2
(
ε | z

)
= K−1εn+c2−1e−εd2

×

∫ ∞

0

∫ ∞

0
δn+c1−1φn+c3−1e−δ(d1+

∑n
i=1 ln(− ln zi))e−ε

∑n
i=1(− ln zi)−δe

−c3φ+(φ−1)
∑n

i=1 ln
[
1−e−z(− ln z)−δ

]
dφ dδ,

(4.10)

π••3
(
φ | z

)
= K−1φn+c3−1e−d3φ

×

∫ ∞

0

∫ ∞

0
δn+c1−1εn+c2−1e−δ(d1+

∑n
i=1 ln(− ln zi))e−ε(d2+

∑n
i=1(− ln zi)−δ)e

(φ−1)
∑n

i=1 ln
[
1−e−z(− ln z)−δ

]
dδ dε,

(4.11)

where

K =

∫ ∞

0

∫ ∞

0

∫ ∞

0
δn+c1−1εn+c2−1φn+c3−1

× e−δ(d1+
∑n

i=1 ln(− ln zi))e−ε(d2+
∑n

i=1(− ln zi)−δ)e
−d3φ+(φ−1)

∑n
i=1 ln

[
1−e−z(− ln z)−δ

]
dφ dε dδ.

Equations (4.9)-(4.11) are hard to be solved analytically, hence the Markov chain Monte Carlo (MCMC)
method can be used to obtain such Bayesian estimates numerically based on SELF.
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Figure 11: MCMC trace (upper panel) and posterior distribution (lower panel) of the UIEW parameters for data
I.
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Figure 12: MCMC trace (upper panel) and posterior distribution (lower panel) of the UIEW parameters for data
II.

4.7. Simulation study

Here, the ML, MPS, LS, WLS, AD, and CM estimates of the UIEW distribution are calculated nu-
merically by using non-linear optimization algorithms to examine their performance with varying
sample size n. For each method, one thousand random samples of sizes n = 100, 200, and 300 are
generated from the UIEW distribution. The true parameter values are (a) (δ = 1.5, ε = 1, φ = 1) (b)
(δ = 1, ε = 1, φ = 1.5) and (c) (δ = 1.5, ε = 1, φ = 1.5). For the ML, MPS, LS, WLS, AD, and
CM estimates, the average of each parameter estimate is calculated by computing the mean of the
one thousand replicates. Moreover, MSE and the bias of each estimate were calculated as well. The
MSE of each estimate is calculated by computing the mean of squares of the differences of the one
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thousand replicates of the estimates from the true value of the parameters, whereas the estimate of the
bias is calculated by computing the difference between the average estimate and the true value of the
parameter.

The MCMC method is used to generate Bayesian estimates. The MCMC approaches like Gibbs
sampling and the more general metropolis within Gibbs samplers are crucial. Two well-known MCMC
applications are the metropolis hastings (MH) algorithm and Gibbs sampling. In this context, samples
of δ, ε, and φ can be easily generated by their joint posterior distribution using the metropolis (M)
algorithm which is a special case of the MH algorithm when the proposal function is symmetric
(Metropolis et al., 1953; Robert, 2015). The M algorithm is as follows:

Step 1 : Initialize starting state (δ◦, ε◦, φ◦) and set t = 1, where t = 1 : N (number of iterations).

Step 2 : Sample proposal values δ∗, ε∗, and φ∗ from symmetric proposal distributions which are normal
for δ, and ε, and uniform for φ.

Step 3 : Compute acceptance probability r as follows

r =
π•

(
δ∗, ε∗, φ∗ | z

)
π•

(
δt−1, εt−1, φt−1 | z

) .
Step 4 : Generate random value u from uniform (0, 1).

Step 5 : Compare u and min(r, 1) : If u < min(r, 1), then δt+1 = δ∗, εt+1 = ε∗ and φt+1 = φ∗, otherwise
δt+1 = δt, εt+1 = εt and φt+1 = φt,

Step 6 : t = t + 1, and repeat Steps 2–5 until reach the needed iterations number which is N in this
context.

Step 7 : We obtain (δ1, δ2, . . . , δT ), (ε1, ε2, . . . , εT ), and (φ1, φ2, . . . , φT ).

Step 8 : The Bayes estimates of δ, ε, and φ under SELF are the average of (δ1, δ2, . . . , δT ), (ε1, ε2, . . . , εT ),
and (φ1, φ2, . . . , φT ), in Step 7 respectively.

Step 9 : The bias and MSE are computed as previously mentioned.

The MSE and bias of each estimate utilising various methodologies are provided in Tables 3–5 for
different values of parameters.

Tables 3–5 show that the MSE and biasedness of all estimates decrease with increasing sample
size as expected except for the Bayesian method there is no clear pattern in the biasedness. In addition,
according to the simulation studies, the amount of MSEs of the ML, LS, WLS, AD, CM, and MPS
estimates are bigger than those of Bayesian estimates except possibly for some . Hence, we conclude
that the Bayesian method performs quite well in estimating the model parameters for these sample
sizes. Furthermore, Figures 2–6 illustrate the following observations:

• The ML, MPS, WLS methods produce larger MSE(δ) with increasing δ and decreasing φ, whereas
there is no change when applying AD method.

• If δ increases and φ decreases, MSE(ε̂) decreases except for AD method, there is no change.
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• All methods of estimation produce larger MSE(φ̂) with increasing φ and decreasing δ except AD
method, there is no change and Bayesian method when the sample size is 300.

• If δ is fixed, all methods of estimation produce larger MSE(φ̂) with increasing φ.

• If φ is fixed and δ increases, Bias(δ̂) increases for sample sizes 200 and 300 .

• If δ is fixed and φ increases, Bias(δ̂) increases for LS, AD and CM.

• If δ is fixed and φ increases, Bias(ε̂) increases for ML, MPS and WLS whereas decreases for
Bayesian method.

• If δ increases and φ decreases, Bias(ε̂) decreases for ML, MPS, and WLS and increases for Bayesian
method, whereas it does not change for AD.

• If φ increases and δ decreases, Bias(φ̂) increases except for Bayesian method. Furthermore, there
is no change in Bias(φ̂) for AD method.

• If δ is fixed and φ increases, Bias(φ̂) increases for all methods except for Bayesian method.

• A negative relationship between φ and δ suggests no change in the MSE of δ̂, ε̂, and φ̂. In addition,
there is no change in the biasedness of ε̂ and φ̂.

5. Data analysis

This section will analyze two actual data sets to demonstrate the applicability of the suggested distri-
bution. The first application is about the proportion of total milk production in the first birth of 107
cows (Carnaúba farm, Brazil, Cordeiro and dos Santos (2012)). Whereas the second data set repre-
sents remission times (in months) of a random sample of 126 bladder cancer patients reported in Lee
and Wang (2003). The two data sets are converted to the interval (0, 1) by applying the transformation
(data-datamin)/(datamax-datamin). For a comparison, we shall consider five models in addition to the
UIEW, namely, Kumaraswamy (Kum), beta, unit Gompertz (UG), unit Lomax (UL) and the com-
plementary unit weibull distribution (CUW). We compute the estimate of parameters for all models
accompanied with their standard errors (SEs), Akaike information criterion (AIC), corrected Akaike
information criterion (CAIC), Hannan-Quinn information criterion (HQIC). Moreover, the values for
the Kolmogorov Smirnov (KS) statistic and its p-value are presented.

Figure 7 shows the total time on test (TTT) graph for data sets I and II. We can detect a concave
curve in both TTT graphs, which suggests that the hazard function behind the data could be increasing.
For some values, this specificity also applies to the hazard function for the UIEW distribution, which
supports its consideration for these data sets (for more information on the TTT plots, see (Aarset,
1987)). It is shown from Table 6 below that the UIEW distribution is the best model for data I and II
since all its statistics values are smaller than the others. This result is confirmed in Figures 8 and 9.
Additionally, Figure 10 includes the PP-graphs of the UIEW model for both sets of data. The plots
of PP therefore closely fit the proposed model. Further, as shown in Table 7 and using both real data,
several approaches are employed to estimate the UIEW parameters. Due to several observations’
equivalence in data II, the MPS method is not applicable. The results in Table 7 indicate that all
estimates provide a good fit to data I. In addition, it is observed that the LS has the lowest value of KS.
For data II, the CM and LS give the lowest value of KS. Figures 11 and 12 illustrated trace plots of the
posterior distributions of the parameters to track the convergence of the MCMC outputs. Additionally,
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they display the histograms for the marginal posterior density estimates of the parameters to show how
well the MCMC process converges.

6. Summary and conclusion

In probability theory and statistics, relevant variables with values between zero and one are often
represented by unit distributions. The unit-inverse exponentiated weibull distribution, which is useful
for modelling data on the unit interval, is proposed in this study. The characteristics of this distribution,
such as quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering,
and stress-strength reliability are provided. Utilizing Bayesian and several classical techniques to the
suggested distribution are calculated. The classical methods include ML, MPS, LS, WLS, AD, and
CM. We assessed the performance of different estimates in terms of their bias and MSE. The results
of the simulation show that the MPS method performs well most of the time. The Bayesian method
performs quite well in estimating the model parameters for these sample sizes. The MSE reduced
for each estimate as the sample size grew, indicating demonstrating the consistency of the estimates.
Two real data applications demonstrate that the UIEW model frequently offers superior fits than some
other competing models.
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