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COMPLEX MOMENTS AND THE DISTRIBUTION OF
VALUES OF L(1,x.) IN EVEN CHARACTERISTIC

SUNGHAN BAE AND HWANYUP JUNG

ABSTRACT. In this paper, we announce that the strategy of comparing
the complex moments of L(1,xv) to that of a random Euler product
L(1,X) is also valid in even characteristic case. We give an asymptotic
formulas for the complex moments of L(1, X ) in a large uniform range.
We also give Q-results for the extreme values of L(1, xu)-

1. Introduction

The study of distribution of class numbers is an important problem in num-
ber theory. The case of quadratic number fields Q(\/E) has a long history of
investigation that extends back to Gauss. According to the Dirichlet’s class
number formula, the distribution of class numbers hy of Q(v/d) is equivalent to
that of L(1, x4), where L(s, xq) is the Dirichlet L-function associated to a qua-
dratic character yg4. Recently some remarkable progressions on this problem
have been done by Granville and Soundararajan [5] and Dahl and Lamzouri
[4]. Their strategy is to compare the complex moment of L(1, x4) to that of a
random Euler product L(1,X).

Let F,[T] be the polynomial ring over a finite field IF,, where ¢ is odd. For
any square-free monic polynomial D in Fy[T], let L(s,xp) be the Dirichlet
L-function associated to a quadratic character xp. Denote by H, the set of
square-free monic polynomials in F, [T of degree n. In [1], Andrade calculated
the mean value of L(1,xp) averaging over Hog11 by using an approximate
functional equation for L(1, xp). The case of the mean value for L(1, xp) over
Hag+2 was investigated by Jung [6]. This problem is also considered by the
authors in [2] when ¢ is even. In a recent paper [7], motivating by the work of
Granville and Soundararajan [5], Lumley gave an asymptotic formula for the
complex moments of L(1, xp) in a large uniform range by comparing with that
of a random Euler product L(1,X) and showed that the distribution function of
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L(1,xp) is very close to that of a corresponding probabilistic model. She also
obtained Q-results for the extreme values of L(1,xp). In this paper, we show
that the strategy of comparing the complex moments of L(1,x,) to that of a
random Euler product L(1,X) is also valid in even characteristic case. Here,
Xu denotes the character defined by quadratic symbol {%} (see §1.2). We give
an asymptotic formula for the complex moments of L(1, x,,) in a large uniform
range. We also give {d-results for the extreme values of L(1, xy,).

We fix some basic notations. Let k = F,(T) be the rational function field
with a constant field F,, where ¢ is assumed to be even throughout the paper,
and A = F,[T]. Denote by AT the set of monic polynomials in A and by P
the set of monic irreducible polynomials in A. Let A, = {f € A : deg f = n},
Af =ATNA, and P, = PNA, for any positive integer n. The zeta function
Ca(s) of A is defined to be the following infinite series:

=3 =T () - e =1

fea+ PeP

where |f| = ¢4°8/. It is well known that (s(s) = 1/(1 —¢'~*). For f € A*, let
O(f) = [(A/fA)*.

1.1. Quadratic function field in even characteristic

In this subsection, we recall some basic facts on quadratic function field in
even characteristic. For more details, we refer to [2, §2.2, §2.3]. Any separable
quadratic extension of k is of the form K, = k(z,), where x, is a zero of
X2+ X +u =0 for some u € k. Fix an element ¢ € F,\ p(F,), where p : k — k
is the additive homomorphism defined by @(x) = 2% + x. We say that u € k is
normalized if it is of the form

i=1j=1 "1 =1
where P; € P are distinct, A;; € A with deg A;; < deg P;, A;e, # 0, a € {0,&},
ay € Fy and oy, # 0 for n > 0. Let u € k be a normalized one. The infinite
prime (1/T) of k splits, is inert or ramified in K, according asn = 0 and o = 0,
n=0and a =&, or n > 0. Then the field K, is called real, inert imaginary,
or ramified imaginary, respectively. The discriminant D,, of K, is given by

Do [, p¥ if n=0,
I PR (1T if >0,

and the genus g, of K, is given by ¢, = deg D,, /2 — 1.

For M € A™, write r(M) = [Ipa P and t(M) = M -r(M). For P € P, let
vp be the normalized valuation at P, that is, vp(M) = e, where P¢|M. Let B
be the set of non-constant monic polynomials M such that vp(M) is zero or odd
for any P € P, that is, t¢(M) is a square, and B,, = {M € B : degt(M) = 2n}.
The map B, — A defined by M M = /M is a bijection with the inverse
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N +— N* = N?/r(N). Hence, |B,| = |A}| = ¢". Let £ be the set of rational
functions D/M € k with D € A, M € B and deg D < deg M which can be

written as
lp

D Ap;
M- Z Z p2i-1°
P|M i=1

where deg Ap; < deg P for any P | M and 1 <4 </{p = (vp(M) + 1)/2. Note
that for D/M € &, ged(D, M) =1 if and only if Apy, # 0 for all P | M. Let
F be the subset of £ consisting of all D/M € & such that Apy, # 0 for all
P | M. Under the correspondence u — K,, F corresponds to the set of all
real separable quadratic extensions K, of k. For M € B, let £y be the set of
rational functions u € £ whose denominator is M and Fy; = FNEy. Then F
is the disjoint union of Fj; with M € B. For w € Fj;, the discriminant D,, and
the genus g, of K, are D,, = t(M) and g, = degt(M)/2—1. For n > 1, let F,
be the union of Fj; with M € B,,. Then, under the correspondence u — K,,
Fn corresponds to the set of all real separable quadratic extensions K, of k
with genus n — 1. For M € B,,, there are ®(M) D’s such that D/M € F,,, so
that |Fas| = ®(M) and

| Fnl = Z <I>(]\?[): Z (I)(M):CA(Q)—qun_

MeB, MeAt

For any subset U of k and w € k, write U + w = {u + w : v € U}. Under
the correspondence u — K,, F' = F + £ corresponds to the set of all inert
imaginary separable quadratic extensions K, of k, and for n > 1, F = F,, + &
corresponds to the set of all inert imaginary separable quadratic extensions K,

of k with genus n — 1. For a positive integer s, let G, be the set of polynomials
F(T) € A of the form

F(T)=a+Y aT*",
=1

where @ € {0,£}, ; € Fy and a5 # 0. For any two subsets U, V of k and w € k,
write U4V = {u+v:u € U,v € V}. Let Z = (FU{0})+G, where G = J,~, Gs.
Then, under the correspondence v — K,, I corresponds to the set of all
ramified imaginary separable quadratic extensions K, of k. For w € Fys + G,
the discriminant D,, and the genus g, of K, are D,, = t(M) - (1/T)?® and
gw = degt(M)/2+ s — 1. Let Fop = {0}. For any r > 0 and s > 1, let
Lirsy = Fr+Gs. fw € I, 4, the genus g, of Ky isr+s—1. Forn > 1, let Z,,
be the union of all Z, ), where (r, s) runs over all pairs of non-negative integers
such that s > 0 and r + s = n. Then, under the correspondence u — K, 7,
corresponds to the set of all ramified imaginary separable quadratic extensions
K, of k with genus n — 1. Since |G| = 2(5(2)"1¢* for s > 1, we have

|Zn| = Z [Fa—sl-1Gs] = 2¢a(2) 1>
s=1
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1.2. Hasse symbol and L-functions

For any u € k whose denominator is not divisible by P € P, the Hasse
symbol [u, P) with values in Fy is defined by

fu, P) 0 if X2+ X = umod P is solvable in A,
u, = .
1 otherwise.

For N € A prime to the denominator of u, if N = sgn(N)[];_, P{*, where
sgn(N) is the leading coefficient of N and P; € P are distinct and e; > 1, the
symbol [u, N) is defined to be Y 7_, e;[u, ;).

For u € k and 0 # N € A, the quadratic symbol {§} is defined as follows:

N

{ u } ~ J (=)= if N is prime to the denominator of u,
o otherwise.

This symbol is clearly additive in its first variable, and multiplicative in the
second variable.

For the field K,, we associate a character Y, on AT which is defined by
Xu(f) = {¥%}, and let L(s, xu) be the L-function associated to the character
Xu: for s € C with Re(s) > 1,

o« () Xu(P)\
L) = 3 T =11 <1‘ |P|s> '

fea+ PeP

It is known that L(s, x,,) is a polynomial in ¢—* of degree 2g,, + (14 (—1)5(") /2,
where e(u) = 1 if K, is ramified imaginary and e(u) = 0 otherwise.
For any z € C, the generalized divisor function d,(f) is defined on its prime
powers as
I'(z+a)
[(z)a! ’
and is extended to all monic polynomials multiplicatively. We have

dZ u u P _Z
o= 30 SR =TT (1257
feAt PeP

1.3. A random Euler product L(1,X)

d.(P?) =

Let {X(P)} be a sequence of independent random variables indexed by P €
P, and taking the values 0, =1 as follows:

X(P) 0 with probability \Plﬁ’
| #1 with probability 5rpri-

The reason for defining X(P) is different from odd characteristic case. There
are |P| + 1 values modulo P including co = (1/7"). Among these values one
value a including oo has { £} = 0, |P|/2 values have {£} = 1, and |P|/2 values
have {#} = —1. We extend the definition of X multiplicatively as follows:
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X(1) =1 and X(f) = X(P)X(Py)e2 - - X(P.)er if f = P{*Ps*--- P is the
prime power factorization of non-constant polynomial f € AT. The random

Euler product L(1,X) is defined as

X X(P)\
rux =Y 2 g <1_(>) |
feAt |1 PP P

Aside from the reason of definition, the random variables X(P) have the same
values with the same probability as those of odd characteristic case. Thus the
random Euler product L(1,X) in this paper shares the same properties with
the ones in [7]. For example, it satisfies Lemma 3.6 in [7], that is, the mean
value E(X(f)) of X(f) is given as follows:

0 if f is not a square,
-1
(1.1) E(X(f)) = I1 (1 + |]13|) if f is a square.
PIf

Hence, we also have

2 —1
(1.2) E(L(1,X)%) = > dT}{Q) 1T <1+|1£|> .

feAt PIf

For the remainder of this article, log denotes the base ¢ logarithm, log; repre-
sents the j-fold iterated logarithm and In is the natural logarithm. Write

E(L(1,X)*) = H Ep(z), where Ep(z)=E (( — X|EP]T)> )

PeP
and
L(z) =IE(L(1,X)*) = > InEp(2).
pPecP
Let
B In cosh() ifo<t<1,
1) = Incosh(t) —t ift>1.

Then we have the following proposition.

Proposition 1.1 ([7, Proposition 4.2]). Let ¢, > ¢ be a positive constant
depending on g and r be a real number such that r > c¢4. Let k € Z be the
unique positive integer such that ¢* < r < ¢*t' and let t = r/q*. Then we
have

r rlogy
=r(Inl —
L(r) r(nogr+’y)+long1(t)+O<(logr)2),

where
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Furthermore, we have

ron 1 logy
L'(r) =Inlogr +v+ —k)ngg(t) +0 ((1ogr)2 )

where

1 oo
Ga(t) = 3~ logt Jre; f'(tq").
Moreover, for all real numbers x, y such that |y| > ¢4 and |y| < |z| we have

1
L' (y) < and L"(y) x ———.
W)= Ty W)= LIy

For 7 > 0, define

Oy (1) =P(L(1,X) > e?’7) and ¥x(r)=P <L(1,X) < ((2)) )

err

Then we have the following theorem concerning the asymptotic behaviours of
Ox (1) and Ux(7).

Theorem 1.2 ([7, Theorem 1.3]). For any large 7 we have

7= Co (g5~ () 1
Tx(7) = exp (—cl(qlog““))q (1 +0 ( OgT))) ,
T T

where k(T) is the unique solution of L'(r) = InT + v, Co(t) = Ga(t) and
Cy(t) = Ga(t) — G1(t). The same estimate also holds for Ux (7). Moreover, if
0 < A<e 7, then we have

Dy (e M) = Ox(7) (14+O0(\e™)) and Ux(e 1) = Ux(7) (1 +O(XeT)).
1.4. Results

We have the following lower and upper bounds of L(s, x,,), which is an even
characteristic analogue of [7, Proposition 1.4].

Proposition 1.3. Let u € k be normalized one and g, be the genus of K,.
For any complex number s € C with Re(s) = 1, we have

Ca(2)
2e7

We have the following result concerning the complex moments of L(1, x,)
as u varies over JF,, or Z,.

(1.3) (log g + O(1)) ™" < |L(s, xu)| < 2¢”log g, + O(1).

Theorem 1.4. Let n be a positive integer and z € C be such that |z| <
n/(260lognlnlogn). Then we have

7 5 o= 2SR ) (100G

wEF, fea+ P|f
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and

g S = SR ) (o).

u€el, feAt P|f

We can prove that the distribution of L(1, x,) is well-approximated by the
distribution of L(1,X) uniformly in a large range.

Theorem 1.5. Let n be large. Uniformly in 1 <7 <logn — 2log,n — logsn
we have

ﬁH“ € Fp: L(1,xu) > €7} = Dx(r) (1 +0 <W>)

" () (1+O <eT(logn)2log2n>>'

n

. Ca(2)
A {u e Fn: L1, xu) < :;T}

Furthermore, the same result also holds for L(1,x,) over I,.

Let O, denote the integral closure of A in K, and h, be the ideal class
number of O,. If u € Z,,, since g, = n — 1, we have (see (2.8) in [2])
(1.4) L(1,xu) = ¢ "ha.
Then from Theorem 1.4 with (1.4), we get the following complex moment of

h, over Z,.

Corollary 1.6. Let z € C be such that |z| < n/(260lognlnlogn). Then we

have
1 _ d.(f?) 1\ 1
hZ = ¢z z 1+ = 1 — -
Wz u =4 > T 11 +\P| +0( o
u€ly feat PIf

For any u € Z,, by (1.4), we have that h,, > eY7¢" ! if and only if L(1, x.) >
e¥r, and h, < ¢"1Ca(2)/(e77) if and only if L(1,x.) < Ca(2)/(e77). Thus
Theorem 1.5 together with the asymptotic behaviors of ®x(7) and ¥x(7) in
Theorem 1.2 implies the following corollary.

Corollary 1.7. Let n be large and 1 < 7 < logn — 2logyn — logsn. The
number of u € I,, such that

hy > €eTg" !

r—Co(g"= (") ]
| Zn] - exp (—Cl(ql"g“(”)q <1 +0 ( OgT))) ,
T T

where k() is the unique solution of L' (r) =In7+~, C1(¢"°¢*7)) and Cy(q"°8*(7))
are positive constants depending on T given in Theorem 1.2. Similar estimate
holds for the number of u € Z,, such that

CA(2) n—1

o< o

equals
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For any v € F,,, we have
hy Ry,

(1.5) L1, xu) = X!

where R, is the regulator of O,. From Theorem 1.4 with (1.5), we get the
following complex moment of h, R, over F,.

Corollary 1.8. Let z € C be such that |z| <n/(260lognlnlogn). Then

L nrr=(G55) S SR m) (o)

uEF, fea+ P|f

|JT |
Finally, we also obtain Q-results for the extreme values of L(1, x,,), which is
an even characteristic analogue of [7, Theorem 1.6].

Theorem 1.9. Let n be a large positive integer. There are monic irreducible
polynomials Q1 and Q2 of degree n such that

L(1, xy) > € (logn +loglogn) + O(1)
for some v € Fg,, and

2 _
L(1,x0) < C‘i& ) (log n + log log n + O(1)) !
for some v € Fg,.
Note that | F,,| = (a(2)~1¢?", which is the same as the number of square-free

monic polynomials in A of degree 2n. We can follow almost the same arguments
of [7] in odd characteristic, replacing xp by Xu, D € Ha, by u € F,, log|D|
by n, etc, to get Theorems 1.4 and 1.5, which are even characteristic analogues
of Theorems 1.1 and 1.2 of [7], respectively. The proofs for Z,, are almost the
same as those for F,,. We will give a sketch of a proof of Proposition 1.3 and
proofs of Theorem 1.4 for F,, and of Theorem 1.9 in §3. More care is needed for
Theorem 1.9, because there does not exist reciprocity law for Hasse symbols.

2. Two key lemmas

In this section, we give two key lemmas which are necessary ones in proofs.
We first give the following orthogonality relations for character sums over
Fn and Z,, which are even characteristic analogue of [7, Lemma 2.4].

Lemma 2.1. Let f € AT. If f is a square in A, then

(2.1) > xulf) =1FI]] <1+ |P|) +0 (|fn|%<1+6>)

ueF, P|f

(2.2) > xulh) =Tl ] <1 + |P|> +0 <|In|%<1+e>> _

u€Ly P|f
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Furthermore, if f is not a square in A, then

(2.3) 3 xulf) < 20812 /| F|

u€F,

and

(2.4) > xulf) < 208720y /IT,,].
u€eLy,

Proof. The case of f being non-square in A follows immediately from Propo-
sition 3.15 and Proposition 3.20 in [2] since |F,| = (a(2)71¢*" and |Z,,| =

ZCA( ) 1 2n 1
Now we con51der the case of f being a square in A. Since JF,, is a disjoint

union of the Fy;’s, where M runs over B,, and |Fys| = ®(M), we have

-1
S o= ¥ eun=m] (14 ) 0 (IF1E),
ueFy, MeA} PIf
(M, f)=1

where the second equality follows from Lemma 3.3 in [2]. To prove (2.2), write

S =% Y w0

u€ely, r=0u€L(y n_r)

Note that I(O,n) =G, For M e B, withl1 <r<n-—1,let Zyy = Fpr + Gnr.
Then Z, ,_,) is the disjoint union of the Zy;’s, where M runs over B,. Thus
we have

n—1 n—1
Dol =3 14> 3 =G+, > |Twl
u€ly, UEGy r=1 MeB, u€In r=1 MEeB,
(M, f)=1 (M, f)=1

Since |G| = 2¢a(2)"tq™ and |Zas| = | Farl - |Grner| = 2¢a(2)"1g" "R(M ) for
M € B,., we have

D xulf) =2¢a(2) g™ + 2Ga( Zq’” > o)

u€Tl, MeAS
(M, f)=1
—1 L
@I (14 )+ ().
PIf
which completes the proof. O

For any f € AT and M € B, define

o= 3 (i - 3 (5}

u€Enr uEF
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Note that if ged(f, M) =1 and {$} = —1 for some u € &, then 'y pr = 0.

Thus, we have that Ty = 0 or Ty = |[Ear| = |M] for any f € AT, Tt is
known [2, Lemma 3.8] that if deg f < degt(M), ged(f, M) =1 and f is not a
perfect square in A, then I'y 5y = 0.

We have the following lemma, which is an even characteristic analogue of
[7, (2.5)].

Lemma 2.2. For any non-square f € AT, we have

> Y v« Caes

QEP, ueFq

Proof. For @ € P,, with @ | f, since {%} =0 for all u € Fg, we have

Z Xu(f) =0.

uEFQ

For @ € P, with @ { f, if {$} = —1 for some u € &g, then I';o = 0, and
;o =|Q| = ¢" otherwise. Let Q1,...,Qs € P, be distinct primes such that
Iro, #0for 1 <i<s For M =Q1- Qs if deg f < degt(M) = sn, then
't ar =0 by Lemma 3.8 in [2]. But 'y ps =T'f 0, ---T'f,0. # 0 by Lemma 3.10
in [2], so s < deg f/n, that is, there are at most deg f/n @’s in P, such that
I'rjg # 0. For Q € P, with Q { f, we have Ty o = ¢" — 1 if I'; o # 0 and
Tt.g = —1 otherwise. Thus we have

Yod o= > Tre+ Y. Tro

QEP, ueFq QEP, QEP,
Q1f.Ts,#0 Qtf.Ly.@=0
de n n
<98 1)+ T C e,
n n n
which completes the proof. (I
3. Proofs

For any positive real number r, let A; ={f € A" i degf < r} and
Py = PﬂA;. We also let AL, = {f € At :deg f > r} and P~, = PNATL,.
3.1. Sketch of proof of Proposition 1.3

Let u € k be normalized one and g, be the genus of K,. We have (see

3, (32))
(3.1) > P <

n
PeP,

S

)

Gu,

which is an even characteristic analogue of [7, (2.5)]. For a positive integer n
and any complex number s € C with Re(s) = 1, we follow the same argument
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as in the proof of [7, Lemma 2.2] with (3.1) to obtain that

(3.2) InL(s,x,)=— Y. In <1 - XIZE]:)) +0 (qj gu> .

PGPSn

The rest are straightforward by taking n = [2logg,] and using Lemma 2.3 in
[7] to complete the proof.

3.2. Proof of Theorem 1.4

We will only give a proof for the complex moments of L(1, x,,) over JF,, since
the case over Z,, is almost the same.

Proposition 3.1. For f € A*, we have
1 R
T 2 ) =B +0 ().
mouer,

Proof. If f is a square in A, by Lemma 2.1 and (1.1) with the fact that |F,| =

¢a(2)71g?", we have
ﬁ > oxa=1] (1 + }13>_ L0 (anﬂ))
= E(X(/) + 0 (")

ueFp P|f
If f is not a square in A, by Lemma 2.1 and (1.1), we have

|]i | Z Xu(f) =0 (q‘”2degf/2) -0 (q_"|f|%)
" uer,

since q7n2degf/2 _ q7n|f‘ln2/(21nq) < q7n|f|1/2. Since qn(71+e) < qfn‘f|1/2,
the result follows. O

Lemma 3.2 ([7, Lemma 3.1]). Let v € F,. Let a > 4 be a constant, z € C
such that |z] < n/(10alognlnlogn) and m = alogn. Then we have

L(1,xu)* = <1+O<;b)> 3 dz(f);lu(f)’

n
feAl,, s

P|f=deg P<m
where b= a/2 — 2.
Using Proposition 3.1 and Lemma 3.2, we get the following proposition.

Proposition 3.3. Let a,b,m and z € C satisfy the conditions of Lemma 3.2.
We have

|]ln\ 2 Lllx) = (1 o (%)) > dT;-{)E(X(f)) +0 (¢n149)

u€Fn feals, s
P|f=deg P<m



76 S. BAE AND H. JUNG

Proof. By Proposition 3.1 and Lemma 3.2, we have

1
|]-"|Z (o= (140 (5)) 2 i fnzf
feAl,, s

P|f=deg P<m

:(”0(%)) 2 %P(E(xu))m(q-"\f\%))

fEA<2'n./3
P|f=deg P<m

Since |f| < ¢**/3 for any f € A<2n/3, we have
n d.(f _n d.(f _n P
Y B ey ED ),
ME fene |12

f€A<2'n/3
P|f=deg P<m

Note that (4 (3/2) = ¢ for some constant ¢ so that

nlogc

(CA(%))‘Z‘ < ClOalog:,lnlogn qT0aTogninTogn & q"6

for n large enough. Hence, we have the desired the result. ([l

Lemma 3.4. Let a, z and m be as in Lemma 3.2. Then for co some positive
constant we have

v EWpxgy= Y dZ(f)E(X(f>)+O(q*ﬁ)~

feat fe A<2n/3 ‘ |
P|f=deg P<m P|M=>deg P<m

Proof. By Proposition 3.1, we have

d.(f) _ d:(f) (1 g
> SRR = X S <f xal)+0 (a7"1] ))

eat FeAt
P|f=deg P<m P|f=deg P<m

d=(f)xu(f) - d.(f)

> oy ol y o iy

| "‘uef feat /] eAt 712
P|f=deg P<m P|f=>deg P<m

By Lemma 3.2 in [7] and Proposition 3.1, we have

1 d: (f)xu(f)
P|f=-deg P<m
d=(f)xu(f) ~woteEw
Y, X T ao(a )

u€Fn f€A<2n/3
P|f=deg P<m

\f\



COMPLEX MOMENTS AND THE DISTRIBUTION OF VALUES OF L(1,xu) 7

- 3 dTJ(cf) (E(X(f))JrO(q*"\fI%)) +0(q_“°1%)
feAt

<2n/3
P|f=deg P<m

for some positive constant c¢g. As in the proof of Proposition 3.3, we have

S dZ(Jf) < g"mEr,
fenty, ), ME
P|f=deg P<m

Hence, we get the result. O

Proof of Theorem 1.4. From the random Euler product definition we have

E(L(LX)") = [ Er(2),

PeP
oro+{(-5))
‘wﬁ1+m51n<0‘;>ﬁ+(“w;yj'

Now, we notice if deg P > m, then we can use the following Taylor expansions

1\ 77 z z
oL :H+O()
( IPI) 1P| |P[?
1\ 7 z z
1+> =1—+O<>.
( 1P| 1P| |P|?

That is to say, for P € P~,, we have Ep(z) = 1+ O(z/|P|?), so that

1 1
H Ep(z) < exp | |2] Z PE :1+O(nb>’

PEP~m PEP>m

where

and

where the last equality follows from the relative sizes of |z| and m = alogn,
and we choose a large enough to provide the desired error term above. Thus,
by Lemma 3.4, we have

E(L(l,x)z):<1+0(nlb>) II Er(»)

PEP<m

(@) T e

feat
P|f=deg P<m
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sy =(o(5))| X E¥swun+ow

£l
fe A<2n/3
P|M=-deg P<m

From Proposition 3.3 and (3.3) with (1.2), we get that

|fl|zf s = (1+0( &) ) Ba.x)
~(o() S HRI (o m)

feat PIf

and completes the proof of Theorem 1.4 by taking a = 26 and b = 11. (]

3.3. Proof of Theorem 1.9

For each P € P, let dp € {—1,1}. Define Sy(n,{dp}) to be the set of
u € Fg with @ € Py such that {5} = 0p for all P € P<,,. We also let P(n)
denote the product of all monic irreducible polynomials P with deg P < n. Let
mg(n) = [Pn| and Iy (n) = 37, my(j). Note that degP(n) = D27, jmy(j) =<

J
n

q-.

Lemma 3.5. Let N be large, and n be a positive integer such that 1 < n <
(log N)2. Then we have

T N _
|Sn(n, {dp})| = % +0 (V).

Proof. For f € At, let 65 = lef dp. For any u € Fg with @ € Py, we have
u 2Ma(m) if 4 € Sn(n, {0p})
Zaf{}n1+ap:{ s oe ),
17 f PP, ( {P }> 0 otherwise.
Thus, we deduce that

S(n oDl =gy & 5 X X {4

fIP(n) QEPN ucFq

(3.5) o) D Zl+2H(n) P Z{ }

QGPN uEFq 1£f|P(n)  QEPN uEFq
Since |Fg| = ¢ — 1 for all Q € Py, we have

N)(¢™ -1
(3.6) ot, (n) Z Z 17W'

QEPN ueFq
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Since all the divisors of P(n) are square-free, we obtain from Lemma 2.2 that

>y { }«quegf<<qN+"

QEPN ueFq

for all 1 # f | P(n) because deg f < degP(n) < ¢". Hence, we have

(37) SoBD IS DD DR L4 B ie

1#£f|P(n) QEPN ueFqg

since the number of divisors of P(n) is 2M«("). Finally, by inserting (3.6) and
(3.7) into (3.5), we complete the proof. O

Proposition 3.6. Let N be large, and n be a positive integer such that 1 <
n < (log N)2. We have

(3.8)
Z L(l,Xu)ZCA(Q)%q:;_U H (1+‘5p> 10 (quN+2n).

eSn(n,{ép}) PeP ‘P‘
ueSN (n,{0p <n

Proof. Note that L(s, x.) is a polynomial in ¢~* of degree 2N — 1 for u € Fg
with @ € Pyn. Thus for any m > 2N, we have

Xu(F)

+
FeAl

Let a = 2N deg P(n) < Ng". Then, from (3.4), we obtain

(3.9) > L) =g (n) > o Z Z ) {;}

u€SN(n,{é6p}) f1P(n)  Feal, QEPN ueFQ

If Ff is a square, that is, F = fh? for some h € AT, then
(3.10)

D { } D)y (V) + O@(E)) = (¢ — 1)(my(N) + O(a)),

QEPN ueFq

where w(F') is the number of monic irreducible divisors of F, and w(F) <
deg F' < a. Furthermore, if F'f is not a square in A, then by Lemma 2.2, we
get

(3.11) > Z{ }«quegFf<<aq

QEPN ueFq



80 S. BAE AND H. JUNG

because of deg F'f < a + degP(n) = a + a/(2N) < a. Inserting (3.10) and
(3.11) into (3.9), we get

(3.12)
_ (¥ =Dmy(N) of 1 2 N
Z L(l,Xu)—W Z m Z ‘hz‘-l-O(aq );
weSy (n,{6p}) fIP(n) heAt

<(a—deg f)/2
since 3 ¢p(ny 1 = 2Ma(7) and ZFGAZI 1/|F| = a. For any f | P(n), we have

1 —-N
(3.13) > f|h2|=<A(2>+o(q ),
hEAL (o _ies )72

which follows from that

1 1
> w2 = > R

h’EAi(afdeg /2 heAia/zl
Inserting (3.13) into (3.12), we complete the proof. d

We remark that the condition 1 < n < (log N)? in Lemma 3.5 and Proposi-
tion 3.6 is necessary for my(IN) > ¢™.

To prove Theorem 1.9, we choose n such that
Nlog N n _ NlogN

106.(2)g =1 = T0¢.(2)

and the rest are straightforward using Lemma 3.5 and Proposition 3.6.
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