• 제목/요약/키워드: product manifold

Search Result 137, Processing Time 0.021 seconds

EINSTEIN WARPED PRODUCT MANIFOLDS WITH 3-DIMENSIONAL FIBER MANIFOLDS

  • Jung, Yoon-Tae
    • 충청수학회지
    • /
    • 제35권3호
    • /
    • pp.235-242
    • /
    • 2022
  • In this paper, we consider the existence of nonconstant warping functions on a warped product manifold M = B × f2 F, where B is a q(> 2)-dimensional base manifold with a nonconstant scalar curvature SB(x) and F is a 3- dimensional fiber Einstein manifold and discuss that the resulting warped product manifold is an Einstein manifold, using the existence of the solution of some partial differential equation.

GCR-LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

  • Kumar, Sangeet;Kumar, Rakesh;Nagaich, Rakesh Kumar
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.883-899
    • /
    • 2014
  • We introduce GCR-lightlike submanifold of a semi-Riemannian product manifold and give an example. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

Contact CR-Warped product Submanifolds in Cosymplectic Manifolds

  • Atceken, Mehmet
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.965-977
    • /
    • 2016
  • The aim of this paper is to study the geometry of contact CR-warped product submanifolds in a cosymplectic manifold. We search several fundamental properties of contact CR-warped product submanifolds in a cosymplectic manifold. We also give necessary and sufficient conditions for a submanifold in a cosymplectic manifold to be contact CR-(warped) product submanifold. After then we establish a general inequality between the warping function and the second fundamental for a contact CR-warped product submanifold in a cosymplectic manifold and consider contact CR-warped product submanifold in a cosymplectic manifold which satisfy the equality case of the inequality and some new results are obtained.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE

  • Lee, Soo-Young
    • Korean Journal of Mathematics
    • /
    • 제26권1호
    • /
    • pp.75-85
    • /
    • 2018
  • In this paper, we study nonconstant warping functions on an Einstein warped product manifold $M=B{\times}_{f^2}F$ with a warped product metric $g=g_B+f(t)^2g_F$. And we consider a 2-dimensional base manifold B with a metric $g_B=dt^2+(f^{\prime}(t))^2du^2$. As a result, we prove the following: if M is an Einstein warped product manifold with a 2-dimensional base, then there exist generally nonconstant warping functions f(t).

A NEW QUARTERNIONIC DIRAC OPERATOR ON SYMPLECTIC SUBMANIFOLD OF A PRODUCT SYMPLECTIC MANIFOLD

  • Rashmirekha Patra;Nihar Ranjan Satapathy
    • Korean Journal of Mathematics
    • /
    • 제32권1호
    • /
    • pp.83-95
    • /
    • 2024
  • The Quaternionic Dirac operator proves instrumental in tackling various challenges within spectral geometry processing and shape analysis. This work involves the introduction of the quaternionic Dirac operator on a symplectic submanifold of an exact symplectic product manifold. The self adjointness of the symplectic quaternionic Dirac operator is observed. This operator is verified for spin ${\frac{1}{2}}$ particles. It factorizes the Hodge Laplace operator on the symplectic submanifold of an exact symplectic product manifold. For achieving this a new complex structure and an almost quaternionic structure are formulated on this exact symplectic product manifold.

NEARLY KAEHLERIAN PRODUCT MANIFOLDS OF TWO ALMOST CONTACT METRIC MANIFOLDS

  • Ki, U-Hang;Kim, In-Bae;Lee, Eui-Won
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.61-66
    • /
    • 1984
  • It is well-known that the most interesting non-integrable almost Hermitian manifold are the nearly Kaehlerian manifolds ([2] and [3]), and that there exists a complex but not a Kaehlerian structure on Riemannian product manifolds of two normal contact manifolds [4]. The purpose of the present paper is to study nearly Kaehlerian product manifolds of two almost contact metric manifolds and investigate the geometrical structures of these manifolds. Unless otherwise stated, we shall always assume that manifolds and quantities are differentiable of class $C^{\infty}$. In Paragraph 1, we give brief discussions of almost contact metric manifolds and their Riemannian product manifolds. In paragraph 2, we investigate the perfect conditions for Riemannian product manifolds of two almost contact metric manifolds to be nearly Kaehlerian and the non-existence of a nearly Kaehlerian product manifold of contact metric manifolds. Paragraph 3 will be devoted to a proof of the following; A conformally flat compact nearly Kaehlerian product manifold of two almost contact metric manifolds is isomatric to a Riemannian product manifold of a complex projective space and a flat Kaehlerian manifold..

  • PDF

SOME WARPED PRODUCT SUBMANIFOLDS OF A KENMOTSU MANIFOLD

  • Khan, Viqar Azam;Shuaib, Mohammad
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.863-881
    • /
    • 2014
  • Many differential geometric properties of a submanifold of a Kaehler manifold are conceived via canonical structure tensors T and F on the submanifold. For instance, a CR-submanifold of a Kaehler manifold is a CR-product if and only if T is parallel on the submanifold (c.f. [2]). Warped product submanifolds are generalized version of CR-product submanifolds. Therefore, it is natural to see how the non-triviality of the covariant derivatives of T and F gives rise to warped product submanifolds. In the present article, we have worked out characterizations in terms of T and F under which a contact CR- submanifold of a Kenmotsu manifold reduces to a warped product submanifold.