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SUBMANIFOLDS OF AN ALMOST
QUATERNIONIC KAEHLER PRODUCT MANIFOLD

TaE Ho KaNGg AND Hyo CHANG NAM

ABSTRACT. We define an almost quaternionic Kaehler product man-
ifold and study its submanifolds. Moreover we construct the curva-
ture tensor of the product manifold of two quaternionic space forms.

1. Introduction

In [5], K. Yano and M. Kon studied submanifolds of Kaehlerian prod-
uct manifolds. The Kaehlerian product of two Kaehlerian manifolds is
also a Kaehlerian manifold. But the natural product manifold of two
quaternionic Kaehler manifolds does not become a quaternionic Kaehler
manifold. In this note, we define an almost quaternionic Kaehler prod-
uct manifold and give an example. We also prove some theorems of
submanifolds of almost quaternionic Kaehler product manifolds, and
construct the curvature tensor of the product manifold of two quater-
nionic space forms. '

2. Almost quaternionic Kaehler product manifolds

To begin with we define an almost product manifold (for details, see
[cf. 6]). Let N be an n-dimensional manifold with a tensor F' of type
(1,1) such that

F? =1,
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where I denotes the identity transformation. Then we say that NV is an
almost product manifold with almost product structure F. If an almost
product manifold N admits a Riemannian metric A such that

MEX,FY) = nX,Y)

for any vector fields X and ¥ on N , then N is called to be an almost
product Riemannian manifold.

DEFINITION. Let N be a 4n-dimensional almost product Riemann-
ian manifold with an almost product structure ¥ and a 3-dimensional
vector bundle £ consisting of tensors of type (1,1) over M satisfying
the following conditions:

(a) In any coordinate neighborhood U of N , there exists a local basis
of almost Hermitian structures 01, 682,03 of E such that

02 = —I(the identity transformation)(s = 1,2, 3),
(21) 91002'—: —02091 :03,02093: —03 092 201,
03001 = -—91 093 = 02.

(b) There exist local 1-forms ¢;, c; and c3 on / such that

VXOI = /\{63()2)92 — Cz(X)gg -+ Cg(FX)eg oF — CQ(FX)OQ, o F}
V02 = M~c3(X)81 + c1(X)03 — c3(FX )03 0 F + ¢, (FX)3 0 F}
\Y

(2.2)
V 283 = Mca(X)61 — ¢1(X)02 + co(FX)6, o F — c1(FX)0; 0 F}

for some non-zero constant )\ and any vector field X on N , Where F
denotes an almost product structure on N and V the Levi-Civita con-
nection of N.

In the case of a Riemannian manifold N , the vector bundle E satis-
fying (a) is called almost quaternionic structure in N. Such a manifold
N is called almost quaternionic manifold. If an almost product Rie-

mannian manifold N with an almost product structure F satisfies the
condition (a) and (b), then N is called almost quaternionic Kaehler
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product manifold and the bundle F is called an almost quaternionic
Kaehler product structure.

Now we give an example of an almost quaternionic Kaehler product
manifold.

Let N1*" be a 4n;-dimensional quaternionic Kaehler manifold with
metric 21. Then there exists a 3-dimensional vector bundle E; of ten-
sors of type (1,1) such that in any coordinate neighborhood U; of Ny4™ |
there exists a local basis of almost Hermitian structures ¢y, ¢2, ¢3 of E;
satisfying

¢ = —I(the identity transformation)(s = 1,2, 3),
(2.3) Pr10¢2 = —p20¢1 = ¢3,P20¢3 = —p30 ¢y = ¢y,
P30 ¢P1 = —P1 0 P3 = P,

and there exist local 1-forms a3, az and a3 on U satisfying

'VUxé1 = az(X) g2 — aa(X) b3
(2.4) 1Vx¢2 = —ag(X)¢1 + al(X)¢3
'Vixés = az(X)p1 — a1(X)s2

for any vector field X on N;%™ | where 'V the Levi-Civita connection of
N;*™. The bundle E; satisfying (2.3) and (2.4) is called a quaternionic
Kaehler structure in Ny (cf. [2, 3, 6]).

Let N3*"2 be another quaternionic Kaehler manifold with metric As.
Assume that a local basis of almost Hermitian structures 1, 2,13 of
a 3-dimensional vector bundle E of tensors of type (1,1) satisfy the
above algebraic relation (2.3), and there exist local 1-forms b, by and
b3 in a coordinate neighborhood Uj of N24"2 guch that

2V xth1 = bs(X) 2 — ba(X)ihs
*Vxwe = —bg(X)¥1 + b1(X)¥3
2V xt3 = ba(X)91 — b1 (X)eo

4n2

for any vector field X on No*"2, where 2V the Levi-Civita connection

of Nyinz,
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Now we consider a product manifold N := N;%™ x NoA™ of two
quaternionic Kaehler manifolds N; and N5. We denote by P and Q the
projection operators of tangent space of N to the tangent space of N;
and N, respectively. Then we have

PP=P Q*=Q,PQ=0=QP.

Setting F' = P —(Q, then we obtain F? = ], ie., F is an almost product
structure on N. Moreover, we define a Riemannian metric h on N by

WMX,Y) = hi(PX,PY) + hay(QX.QY)
for any vector fields X and Y of N. It also follows that
MEX,Y) = MFY, X).
For any vector field X on N we put
(2.5) 0. X = ¢ PX +9,QX, s =1,2,3.

Now we consider the vector bundle E over N generated by {0s = ¢s ®
¥s i 5=1,2,3}, where {¢, : s = 1,2,3} and {#s : s =1,2,3} are local
bases of quaternionic Kaehler structures F; and E, respectively. Then,
for any local coordinate neighborhood U; x Us, we see that the local
basis of almost Hermitian structures 6y,6s,0; satisfies the algebraic
relation (a). We also define local 1-forms ¢;, ¢; and c3 on Uy x Us by

(2.6) cs(X) = as(PX) + b,(QX), s =1,2,3

for any vector field X on N. Then, for the induced Levi-Civita connec-
tion V on N defined by

ViV =1V, PY +2V,:QY,

the covariant differentiation (b) with A = % holds. Moreover we know
that

(2'7) Pes - ¢SP, Qes = st
Summing up, we obtain

PROPOSITION 2.1. The product manifold N := N;%™ x Ny4"2 of
two quaternionic Kaehler manifolds Ny and Ny is an almost quaternion
Kaehler product manifold.
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3. F-invariant and F-anti-invariant submanifolds

Let M be an m-dimensional manifold isometrically immersed in a
4n- dimensional almost quaternionic Kaehler product manifold N. M
is called F-invariant (resp. F-anti-invariant) if FT,M C T, M (resp.
FT.M c T,M~*, where T,M+ denotes the normal space of T, M in
T N) for each point z € M. It is known [cf. 6] that if M is F-invariant in
the product manifold N := N;*™ x Ny4"2 of two quaternionic Kaehler
manifolds N; and Nj, then M is a Riemannian product manifold M =
M; x Ms, where M is a submanifold of N;%™ and M5 is a submanifold
of Ny*™2 and M; and M, being both totally geodesic in M.

A submanifold M in an almost quaternionic manifold N with an
almost quaternionic structure F is called (i) invariant if 0T, M c T, M
for any 6 € E, (ii) anti-invariant (or totally real) it 0T, M C T,M* for
any § € E and (iii) totally complez if there exists a one-dimensional
subbundle E° of E such that 67, M C T, M for ¢ € E° and 6T, M C
ToM* for 6 L E° for each z € M (cf. [1, 4]).

THEOREM 3.1. Let M be an F-invariant, invariant submanifold of
an almost quaternionic Kaehler product manifold N = N; x N,. Then
M is a Riemaannian product manifold M = M, > My, where M; and
M, are invariant submanifolds of Ny and Na, respectively.

Proof. Assume that M is an invariant submanifold of N. Since M
is F-invariant, M is a Riemannian product manifold M; x M, where
M, is a submanifold of Ny and M, is a submanifold of N;. We now
show that M; and M; are invariant in N; and Na, respectively. Let
{0s = s PvYs; s = 1,2, 3} be alocal basis of almost Hermitian structurs
of E as in (2.6). Let X € T, M;. Then for s = 1,2, 3

0: X = ¢ PX +9,QX = 0, X € TN NT, M =T, M,.
Therefore M is invariant in N;. Similarly, M, is invariant in Np. [

THEOREM 3.2. Let M be an F-invariant, totally real submanifold
of an almost quaternionic Kaehler product manifold N = N; x N.
Then M is a Riemannian product manifold M; x My, where M; and
M> are totally real submanifolds of Ny and N», respectively.
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Proof. M is a Riemannian product manifold M; x Ms because of
F-invariance. Let X € T, M;. Then we have for s = 1,2,3

0, X = ¢psPX + ,QX = ¢psPX € T, ML,

It is clear from (2.7) that Q0,X = ¥,QX = 0. Hence we see that
Q¢sPX = 0. This means that ¢, PX € T, N,. Thus M, is totally real
in N;. In the same way we know that M, is totally real in N,. O

THEOREM 3.3. Let M be an F-invariant, totally complex subman-
ifold of an almost quaternionic Kaehler product manifold N = N; x
Ns. Then M is a Riemannian product manifold M, x Ms, where M,
and Mj are totally complex submanifolds of N1 and Na, respectively.

Proof. Since M is totally complex in N, there exists a one-dimensional
subbundle E° of E such that 07, M C T,M for each z € M. Then 8
is of the form 6 = X6, +A202 + A\3603, where A\. A; and A3 are some
smooth functions on N. If X € T, My, then

X = )\1($)¢)1X + )\2(.’L‘)¢2X + )\3(1‘)(233)( € T, M.

Put E7 := span{f|s, }. Then Ef forms a one-dimensional subbundle of
E;. Next take any € F such that n L E° and nT, M C T, M~ for each
xr € M. Putnp= Z‘: ts0s for some smooth functions u,,s = 1,2,3 on
N.It X € T;M, then nX =3 us(z)s X € T,M-. On the other hand
OnX =3, usQus X =3 pspsQX = 0. Thus nX € T, Ny N T, M+ =
T, Mi for each z € M. This means that M; is totally complex in N;.
Similarly M, is also totally complex in Np. We complete the proof. [J

Let N1 be a 4n-dimensional quaternionic Kaehler manifold with
a local basis {¢1, @2, ¢35} of By Let Q(X) be the so-called quaternionic
section determined by X, which is a 4-plane spanned by {X,¢,X : s =
1,2,3}, where X is a unit vector on N;. Any 2-plane in a quaternionic
section is called a gquaternionic plane. The sectional curvature of a
quaternionic plane 7 is called the quaternionic sectional curvature of
7. A quaternionic Kaehler manifold is a quaternionic space form if its
quaternionic sectional curvatures are equal to a constant.
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It is well known that a quaternionic Kaehler manifold N 1 18 a quater-
nionic space form with constant quaternionic sectional curvature Ap if
and only if its curvature tensor R; is of the following form (cf. [3], [6])

A1
1
+ ) m(6:Y, 2)$,X ~ hi(¢:X, Z),Y

R{(X,Y)Z = 2L [m(Y, 2)X — hi(X, 2)Y

- 2}11(¢SX, Y)$s2}]

where X,Y and Z are vector fields on NV;.

Here and in the sequel, we denote by N;*™ (A1) the 4n;-dimensional
quaternionic space form of constant quaternionic sectional curvature
AL.

Let N>*"2();) be a 4n,-dimensional quaternionic space form with
constant quaternionic sectional curvature Ay and a local basis {41, 12, Y3}
of E>. Then the curvature tensor Ry of N, is given by the

Ao
T
= {ha(WsY, Z)0 X — ho(dh: X, Z)h,Y

Ro(X,Y)Z = Z2[hy(Y, Z)X — ho(X, 2)Y

Sy X, Y 2}]

where X,Y and Z are vector fields on N,.

Now we consider an almost quaternionic Kaehler product manifold
N = N4m (A1) x Nyinz (A2) of quaternionic space forms N;*™ (A1)
and N24"2()\2). Then the curvature tensor R, of N = N14"1()\1) X
No%2()p) is given by

(3.1)

+ Y {h(FO,Y,Z)FO,X — h(F8.X,Z)F0,Y — 2h(F6,X, Y)F0,Z}]

3
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+ B[h(FY, Z) —h(FX,2)Y +h(Y,2)FX - h(X,2)FY
+ Z{h F6,Y,2)0,X — h(F0,X,2)0,Y + h(8,Y,Z)F0,X

- h(GSX, Z2)FO,Y — 2h(F0,X,Y)0,Z — 2h(0, X, Y)F0,Z}]

for any vector fields X,Y and Z on N , where F' == P — Q) is an almost
AL+ Az and § 1= — A
16 '

REMARK 3.4. In the product manifold N = N;*™ (A1) x Npim2
(A2), if n1 = np and A\; = Ay, then N is an Einstein manifold. In fact,
The Ricci tensor pp, of N is given by

product structure on NV as in section 2, o :=

pn(X,Y) = a{(4(n + HR(X,Y) + (TraF)R(FX,Y)}
+ B{(4(n + HA(FX,Y) + (TrnF)n(X,Y)}

for any vector fields X and Y on N. If AL = A2 (ie, B = 0) and
ny = ng (ie, TrpF = 0), then p, = 4(n + 4)ah. Hence N is an
Einstein manifold.

For a submanifold M in an almost quaternionic Kaehler product
manifold N we denote by h the metric tensor of M as well as that of
N. Let V be the induced Levi-Civita connection on M. The Gauss and
Weingarten formulas for M are respectively given by

(3.2) VxY =VxY + B(X,Y),

(3.3) Vx€=—AcX 4+ Dx€

for any vector fields X,Y tangent to M and any vector field £ nor-
mal to M, where B, A and D are the second fundamental form, the
second fundamental tensor associated with £ and the normal connec-
tion, respectively. Moreover, B and A are related with h(A;X,Y) =
hB(X,Y),$).

For the second fundamental form B, we define the covariant differ-
entiation V with respect to the connection in TM @ TML by

(6XB)(Y7Z) :DXB(Y7Z) _B(VXY7Z> - B(Y,VXZ)
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for X,Y and Z tangent to M. Then the Gauss, Codazzi and Ricci
equations of M are given by

(3.4)
h(K(X,Y)Z,W) = h(Ru(X,Y)Z, W) + h(B(Y, Z), B(X, W))
— W(B(X, Z), B(Y,W)),

(35) (Rh(X) }/)Z)L = (vXB)(Ya Z) - (vYB)(Xa Z),

(3.6) h(Ba(X,Y)E,m) = h(KH(X,Y)E,n) — h([A¢, Ap)X,Y)

for X,Y,Z, W tangent to M and &,n normal to M, where K and K+
are the curvature tensors associated with V and D respectively, and L
in (3.5) denotes the normal component.

Let M be an m-dimensional F-invariant, totally real submanifold of
an almost quaternionic Kaehler product manifold N = N14”1(/\1) X
N3*"2(X3). Then the equations (3.4) and (3.5) with (3.1) are respec-
tively transformed into the following forms.

3.7

( l)l(K(X, Y), W) = o{Rh(Y, Z)h(X, W) — h(X, Z)h(Y, W)
+R(FY, Z)WFX, W) - h(FX, Z)R(FY, W)}
+ B{h(FY, Z)R(X, W) — h(F X, Z)h(Y, W)
+ WY, ZYW(FX,W) — h(X, Z)A(FY, W)}
+h(B(Y,Z),B(X,W)) - h(B(X, Z), B(Y, W)),

From (3.7) we see that the Ricci tensor pps of M is given by
(3.9)
M(X,Y) =af(m - 2)h(X,Y) + h(FX,Y)(TrF)}

+ B{(m — Dh(FX,Y) + h(X,Y)(TrF)}

+ Z{h(B(Xa Y)7 B(eivei)) - h(B(ei’X)vB(ei’Y))}>
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where {e;;¢ = 1,...,m} is an orthonormal frame of M and TrF :=

Z;’;l h(Fe;,e;). Therefore the scalar curvature 74 of M is given by

(3.10)
™ = a{m(m — 2) + (TrF)?} + 2(m — 1)8(TrF)

+ Z{h(B(ej,ej),B(ei,ei)) — h(B(ei,e;), Blei,ej))}.

From (3.7) we have

PROPOSITION 3.5. Let M be an m-dimensional F-invariant, totally
real submanifold of an almost quaternionic Kaehler product manifold
N = N () x Np*2(),). If M is totally geodesic, then M =
M™(3t) x M7 (22), where M™ (42) and M2 (22) (my +mg = m)

are real space forms of constant curvatures :\41. and 542, respectively.

PROPOSITION 3.6. Let M = MY x M} be a 2p- dimensional F-
invariant, totally real minimal submanifold of N = N{¥()X) x NjP(}).
Then M is totally geodesic if and only if M satisfies one of the following
conditions:

(a) M is a Riemannian product manifold MY (2) x ME(3),
(b) pm = (n—1)A,
(¢) T = %n(n - 1).

Proof. 1t is clear from (3.7), (3.9) and (3.10). O
LEMMA [1]. Let W*" be a quaternionic Hermitian vector space with
positive definite inner product < , > and quaternionic structure {61, 65,

63}. Let W™(m > 4) be an m-dimensional linear subspace of W4n.
Then W™ satisfies the property

3
Y <X, 0,Y >0YewWm

for any vectors X and Y in W™ if and only if W™ is one of the following:
(1) W™ is an invariant subspace of W4",
(2) W™ is a totally real subspace of W4",
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(3) W™ is a totally complex subspace of W4".

If, for any vectors X,Y and Z tangent to M, Rn(X,Y)Z is also
tangent to M, i.e., Rp(X,Y)T.M C T, M for each x € M, then M is
said to be curvature invariant.

THEOREM 3.7. Let M be an (mi + mz)-dimensional F-invariant
submanifold of an almost quaternionic Kaehler product manifold N =
N7 (A) x NJ2(A) (A # 0, and my,mg > 4). If M is curvature invariant,
then M is a Riemannian product manifold M{™ x M3™ such that
(i) M{™ is invariant or totally complex or totally real in N1 (A),

(i) MJ™* is invariant or totally complex or totally real in N3*(A).

Proof. Since A # 0, (3.1) with F-invariance gives
> {h(8.Y, Z2)0.X — h(0.X, Z)0,Y — 2h(6,X,Y)0,2Z

+h(F8,Y, Z)F0,X — h(F0,X, Z)F0,Y —2h(F0,X,Y)F0,Z} € T,M

for any vector fields X,Y and Z tangent to M. Putting Y = Z in this
expression, we obtain

> {h(X,0.Y)0,Y + h(X,0,FY)0,FY} € T, M.

Since M is F-invariant, M is of the form M{™ x M2 . If X € T, M,
then FX = X and if X € T, M2, then FX = —X. Now let X,Y €
T, M. Then for each x € M

S TR(X,60.Y)0,Y =3 h(X,0,Y)¢,Y € T.M[™.

Hence Lemma implies that M{™ is invariant or totally complex or to-
tally real submanifold of N{"*(A). In the same way, for X,Y € T, M;"
and each x € M we obtain

S TR(X,0.Y)0.Y =D h(X, Y)Y € T, Mz™.

Again combining this with Lemma, we complete the proof. O
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THEOREM 3.8. Let M be an invariant submanifold of an almost
quaternionic Kaehler product manifold N = N (X) x NJ2()) (A # 0).
If M is curvature invariant, then M is F-invariant or F-anti-invariant.

Proof. Assume that M is an invariant and curvature invariant sub-
manifold of N. Then, for any vector fields X,Y and Z tangent to M,
(3.1) implies

(3.11)
> {W(FO0.Y,Z)F0,X — h(F0,X,Z)F0,Y — 2h(F0,X,Y)F0,7)

~h(FY,Z)FX — h(FX,Z)FY € T, M.
Putting Y = Z in (3.11), we find

(3.12) A(FY,Y)FX —h(FX,Y)FY + 32 MFX,0,Y)F8,Y € T, M.
Replacing Y by #,Y,60,Y and 63Y in turns in (3.12), we obtain (3.13)
~ (3.15) respectively

(3.13) 3{h(FX,Y)FY + h(FX,05Y)F05Y + h(FX,0,Y)F6,Y)
+h(FY,Y)FX — M(FX,0Y)F6,Y € T, M,

(3.14) 3{A(FX,Y)FY + h(FX,05Y)F03Y + h(FX,0,Y)F0,Y}
+h(FY,Y)FX — h(FX,0,Y)F0,Y € T, M,

(3.15) 3{h(FX,Y)FY + h(FX,0,Y)F8,Y + h(FX,0,Y)F6,Y}
+h(FY,Y)FX - h(FX,0,Y)F0;Y € T, M.

Then (3.13) + (3.14) + (3.15) yields
(3.16)
Bh(FY,Y)FX + 9h(FX,Y)FY + 5 h(FX,0,Y)F0,Y € T,M.
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Next, (3.12) x 5 — (3.16) x 3 gives
(3.17) W(FY,Y)FX — 8h(FX,Y)FY € T, M.
Putting X =Y in (3.17), we get

MFY,Y)FY € T, M,

which implies that FY € T, M or h(FY,Y) = 0. If h(FY,Y) = 0,
then (3.17) implies that h(FX,Y)FY € T, M and hence FY € T, M or
FY e T,M*. Consequently we see that for any Y « T, M, FY € T, M
or FY € T,M~+. Thus we have FT,.M < T,M or FT,M c T,M~* for
each point z € M. Therefore we complete the proof. O

COROLLARY 3.9. Let M be an invariant submanifold of an almost
quaternionic Kaehler product manifold N = N{"' (X} x NJ2(X) (A # 0).
If M is totally geodesic, then M is F-invariant or I -anti-invariant.

Proof. Tt follows from the fact that if M is totally geodesic, then M
is curvature invariant. C
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