GCR-LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

SANGEET KUMAR, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

ABSTRACT. We introduce GCR-lightlike submanifold of a semi-Riemannian product manifold and give an example. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

1. Introduction

The significant applications of CR-structures in relativity [3, 4] and growing importance of lightlike submanifolds in mathematical physics and moreover availability of limited information on theory of lightlike submanifolds, motivated Duggal and Bejancu [5] to introduce CR-lightlike submanifolds of indefinite Kaehler manifolds. Similar to CR-lightlike submanifolds, semi-invariant lightlike submanifolds of a semi-Riemannian product manifold were introduced by Atçeken and Kiliç in [1]. Since CR-lightlike submanifold does not include the complex and totally real cases therefore Duggal and Sahin [7] introduced Screen Cauchy-Riemann (SCR)-lightlike submanifold of indefinite Kaehler manifolds, which contains complex and screen real sub-cases. The SCR-lightlike submanifolds, analogously, Screen Semi-Invariant lightlike submanifolds, of semi-Riemannian product manifolds were introduced by Khursheed et al. [9] and Kilic et al. [10], respectively. Since there is no inclusion relation between SCRand CR cases therefore Duggal and Sahin [8] introduced Generalized Cauchy-Riemann (GCR)-lightlike submanifold of indefinite Kaehler manifolds which acts as an umbrella of real hypersurfaces, invariant, screen real and CR lightlike submanifolds and further developed by [11, 12, 13, 14].

Received May 23, 2013; Revised November 20, 2013. 2010 Mathematics Subject Classification. 53C15, 53C40, 53C50.

 $Key\ words\ and\ phrases.\ CR\mbox{-lightlike submanifolds},\ SCR\mbox{-lightlike submanifolds},\ GCR\mbox{-lightlike submanifolds},\ semi\mbox{-Riemannian product manifold},\ minimal lightlike submanifolds}.$

Since the geometry of lightlike submanifolds of semi-Riemannian product manifolds is a topic of chief discussion [16, 17, 18] therefore we introduce GCR-lightlike submanifolds of a semi-Riemannian product manifold. We study geodesic GCR-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a GCR-lightlike submanifold to be a GCR-lightlike product. Finally, we discuss minimal GCR-lightlike submanifolds of a semi-Riemannian product manifold.

2. Lightlike submanifolds

Let (\bar{M}, \bar{g}) be a real (m+n)-dimensional semi-Riemannian manifold of constant index q such that $m, n \geq 1, \ 1 \leq q \leq m+n-1$ and (M,g) be an m-dimensional submanifold of \bar{M} and g be the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle TM of M then M is called a lightlike submanifold of \bar{M} , for detail see [5]. For a degenerate metric g on M, TM^{\perp} is a degenerate n-dimensional subspace of $T_x\bar{M}$. Thus both T_xM and T_xM^{\perp} are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $RadT_xM = T_xM \cap T_xM^{\perp}$ which is known as radical (null) subspace. If the mapping $RadTM: x \in M \longrightarrow RadT_xM$, defines a smooth distribution on M of rank r > 0 then the submanifold M of \bar{M} is called an r-lightlike submanifold and RadTM is called the radical distribution on M. Screen distribution S(TM) is a semi-Riemannian complementary distribution of Rad(TM) in TM therefore

$$(1) TM = RadTM \bot S(TM)$$

and $S(TM^{\perp})$ is a complementary vector subbundle to RadTM in TM^{\perp} . Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to TM in $T\bar{M}|_{M}$ and to RadTM in $S(TM^{\perp})^{\perp}$, respectively. Then we have

(2)
$$tr(TM) = ltr(TM) \perp S(TM^{\perp}),$$

(3)
$$T\bar{M}|_{M} = TM \oplus tr(TM) = (RadTM \oplus ltr(TM)) \bot S(TM) \bot S(TM^{\perp}).$$

Let u be a local coordinate neighborhood of M and consider the local quasi-orthonormal fields of frames of \bar{M} along M, on u as $\{\xi_1,\ldots,\xi_r,W_{r+1},\ldots,W_n,N_1,\ldots,N_r,X_{r+1},\ldots,X_m\}$, where $\{\xi_1,\ldots,\xi_r\},\{N_1,\ldots,N_r\}$ are local lightlike bases of $\Gamma(RadTM\mid_u)$, $\Gamma(ltr(TM)\mid_u)$ and $\{W_{r+1},\ldots,W_n\},\{X_{r+1},\ldots,X_m\}$ are local orthonormal bases of $\Gamma(S(TM^\perp)\mid_u)$ and $\Gamma(S(TM)\mid_u)$ respectively. For this quasi-orthonormal fields of frames, we have:

Theorem 2.1 ([5]). Let $(M, g, S(TM), S(TM^{\perp}))$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}) . Then there exists a complementary vector bundle ltr(TM) of RadTM in $S(TM^{\perp})^{\perp}$ and a basis of $\Gamma(ltr(TM)|_{\mathbf{u}})$ consisting of smooth section $\{N_i\}$ of $S(TM^{\perp})^{\perp}|_{\mathbf{u}}$, where \mathbf{u} is a coordinate neighborhood of M such that

(4)
$$\bar{g}(N_i, \xi_j) = \delta_{ij}, \quad \bar{g}(N_i, N_j) = 0 \text{ for any } i, j \in \{1, 2, \dots, r\},$$

where $\{\xi_1, \ldots, \xi_r\}$ is a lightlike basis of $\Gamma(Rad(TM))$.

Let ∇ be the Levi-Civita connection on \bar{M} then according to the decomposition (3), the Gauss and Weingarten formulas are given by

(5)
$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \bar{\nabla}_X U = -A_U X + \nabla_X^{\perp} U,$$

for any $X,Y \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$, where $\{\nabla_X Y, A_U X\}$ and $\{h(X,Y), \nabla_X^{\perp} U\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(TM)$ which is called second fundamental form, A_U is a linear a operator on M and known as shape operator.

According to (2) considering the projection morphisms L and S of tr(TM) on ltr(TM) and $S(TM^{\perp})$ respectively, then (5) become

(6)
$$\bar{\nabla}_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \quad \bar{\nabla}_X U = -A_U X + D_X^l U + D_X^s U,$$

where we put $h^l(X,Y)=L(h(X,Y)), h^s(X,Y)=S(h(X,Y)), D^l_XU=L(\nabla_X^\perp U), D^s_XU=S(\nabla_X^\perp U).$

As h^l and h^s are $\Gamma(ltr(TM))$ -valued and $\Gamma(S(TM^{\perp}))$ -valued, respectively, therefore they are called the lightlike second fundamental form and the screen second fundamental form on M. In particular (7)

$$\nabla X N = -A_N X + \nabla_X^l N + D^s(X, N), \ \nabla X W = -A_W X + \nabla_X^s W + D^l(X, W),$$

where $X \in \Gamma(TM), N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Using (6) and (7) we obtain

(8)
$$\bar{q}(h^s(X,Y),W) + \bar{q}(Y,D^l(X,W)) = q(A_WX,Y),$$

(9)
$$\bar{q}(h^l(X,Y),\xi) + \bar{q}(Y,h^l(X,\xi)) + \bar{q}(Y,\nabla_X\xi) = 0$$

for any $W \in \Gamma(S(TM^{\perp})), \xi \in \Gamma(Rad(TM))$. Let P be the projection morphism of TM on S(TM) then using (1), we can induce some new geometric objects on the screen distribution S(TM) on M as

(10)
$$\nabla_X PY = \nabla_X^* PY + h^*(X, PY), \quad \nabla_X \xi = -A_{\xi}^* X + \nabla_X^{*t} \xi,$$

for any $X,Y \in \Gamma(TM)$ and $\xi \in \Gamma(RadTM)$, where $\{\nabla_X^*PY,A_\xi^*X\}$ and $\{h^*(X,PY),\nabla_X^{*t}\xi\}$ belong to $\Gamma(S(TM))$ and $\Gamma(RadTM)$, respectively. ∇^* and ∇^{*t} are linear connections on complementary distributions S(TM) and RadTM, respectively. h^* and A^* are $\Gamma(RadTM)$ -valued and $\Gamma(S(TM))$ -valued bilinear forms and are called as second fundamental forms of distributions S(TM) and RadTM, respectively. Using (6) and (10), we obtain

(11)
$$\bar{g}(h^l(X, PY), \xi) = g(A_{\xi}^*X, PY), \quad \bar{g}(h^*(X, PY), N) = \bar{g}(A_NX, PY)$$

for any $X, Y \in \Gamma(TM), \xi \in \Gamma(Rad(TM))$ and $N \in \Gamma(ltr(TM))$.

3. Semi-Riemannian product manifolds

Let (M_1, g_1) and (M_2, g_2) be two m_1 and m_2 dimensional semi-Riemannian manifolds with constant indexes $q_1 > 0$ and $q_2 > 0$, respectively. Let $\pi : M_1 \times M_2 \to M_1$ and $\sigma : M_1 \times M_2 \to M_2$ be the projections which are given by $\pi(x, y) = x$ and $\sigma(x, y) = y$ for any $(x, y) \in M_1 \times M_2$. We denote the product manifold by $(\bar{M}, \bar{g}) = (M_1 \times M_2, \bar{g})$, where

$$\bar{g}(X,Y) = g_1(\pi_* X, \pi_* Y) + g_2(\sigma_* X, \sigma_* Y),$$

for any $X, Y \in \Gamma(T\overline{M})$, where * means the differential mapping. Then we have

$$\pi_*^2 = \pi_*, \quad \sigma_*^2 = \sigma_*, \quad \pi_*\sigma_* = \sigma_*\pi_* = 0, \quad \pi_* + \sigma_* = I,$$

where I is the identity map of $T(M_1 \times M_2)$. Thus (\bar{M}, \bar{g}) is a $(m_1 + m_2)$ -dimensional semi-Riemannian manifold with constant index $(q_1 + q_2)$. The semi-Riemannian product manifold $\bar{M} = M_1 \times M_2$ is characterized by M_1 and M_2 which are totally geodesic submanifolds of \bar{M} . Now if we put $F = \pi_* - \sigma_*$ then we see that $F^2 = I$ and

(12)
$$\bar{g}(FX,Y) = \bar{g}(X,FY),$$

for any $X,Y\in \Gamma(T\bar{M})$, where F is called an almost product structure on $M_1\times M_2$. If we denote the Levi-Civita connection on \bar{M} by $\bar{\nabla}$, then it can be seen that

$$(\bar{\nabla}_X F)Y = 0,$$

for any $X, Y \in \Gamma(T\bar{M})$, that is, F is parallel with respect to $\bar{\nabla}$.

4. Generalized Cauchy-Riemann lightlike submanifolds

Definition 4.1. Let (M, g, S(TM)) be a real lightlike submanifold of a semi-Riemannian product manifold $(\overline{M}, \overline{g})$. Then M is called a generalized Cauchy-Riemann (GCR)-lightlike submanifold if the following conditions are satisfied

(A) There exist two subbundles D_1 and D_2 of Rad(TM), such that

$$Rad(TM) = D_1 \oplus D_2, \quad FD_1 = D_1, \quad FD_2 \subset S(TM).$$

(B) There exist two subbundles D_0 and D' of S(TM), such that

$$S(TM) = \{FD_2 \oplus D'\} \perp D_0, \quad FD_0 = D_0, \quad FD' = L_1 \perp L_2,$$

where D_0 is a non degenerate distribution on M, L_1 and L_2 are vector subbundles of ltr(TM) and $S(TM)^{\perp}$, respectively.

Then the tangent bundle TM of M is decomposed as $TM = D \perp D'$ and $D = Rad(TM) \oplus D_0 \oplus FD_2$. M is called a proper GCR-lightlike submanifold if $D_1 \neq \{0\}, D_2 \neq \{0\}, D_0 \neq \{0\}$ and $L_2 \neq \{0\}$, which has the following features:

- 1. The condition (A) implies that $\dim(\operatorname{Rad}(TM)) \geq 3$.
- 2. The condition (B) implies that dim $(D) = 2s \ge 6$, dim $(D') \ge 2$ and dim $(D_2) = \dim (L_1)$. Thus dim $(M) \ge 8$ and dim $(\bar{M}) \ge 12$.
- 3. Any proper 8-dimensional GCR-lightlike submanifold is 3-lightlike.

Example. Let $R_4^{12} = R_2^6 \times R_2^6$ be a semi-Riemannian product manifold with the product structure $F(\partial x_i, \partial y_i) = (\partial y_i, \partial x_i)$, where (x^i, y^i) are cartesian coordinates of R_4^{12} . Let M be a submanifold of R_4^{12} given by:

$$x_1 = u_1$$
, $x_2 = u_5$, $x_3 = u_3$, $x_4 = \sqrt{1 - u_4^2}$, $x_5 = u_6$, $x_6 = u_2$

$$y_1 = u_2$$
, $y_2 = u_3$, $y_3 = u_8$, $y_4 = u_4$, $y_5 = u_7$, $y_6 = u_1$.

Then TM is spanned by $Z_1, Z_2, Z_3, Z_4, Z_5, Z_6, Z_7, Z_8$, where

$$Z_1 = \partial x_1 + \partial y_6$$
, $Z_2 = \partial y_1 + \partial x_6$, $Z_3 = \partial x_3 + \partial y_2$,

$$Z_4 = -y_4 \partial x_4 + x_4 \partial y_4, \quad Z_5 = \partial x_2, \quad Z_6 = \partial x_5, \quad Z_7 = \partial y_5, \quad Z_8 = \partial y_3.$$

Clearly, M is a 3-lightlike submanifold with $Rad(TM) = Span\{Z_1, Z_2, Z_3\}$ and $FZ_1 = Z_2$, therefore $D_1 = Span\{Z_1, Z_2\}$. Since $FZ_3 = \partial y_3 + \partial x_2 = Z_8 + Z_5 \in \Gamma(S(TM))$, therefore $D_2 = Span\{Z_3\}$. Moreover $FZ_6 = Z_7$ therefore $D_0 = Span\{Z_6, Z_7\}$. The lightlike transversal bundle ltr(TM) is spanned by

$$\{N_1 = \frac{1}{2}(-\partial x_1 + \partial y_6), N_2 = \frac{1}{2}(-\partial y_1 + \partial x_6), N_3 = \frac{1}{2}(-\partial x_3 + \partial y_2)\}.$$

Clearly, $Span\{N_1, N_2\}$ is invariant with respect to F and $FN_3 = -\frac{1}{2}Z_8 + \frac{1}{2}Z_5$. Hence $L_1 = Span\{N_3\}$. By direct calculations, we obtain $S(TM^{\perp}) = Span\{W = -y_4\partial y_4 + x_4\partial x_4\}$. Since $FZ_4 = W$, thus $L_2 = S(TM^{\perp})$. Hence $D' = Span\{FN_3, FW = Z_4\}$. Thus, M is a proper GCR-lightlike submanifold of semi-Riemannian product manifold R_4^{12} .

Let Q, P_1 and P_2 be the projections on $D, FL_1 = M_1$ and $FL_2 = M_2$, respectively. Then for any $X \in \Gamma(TM)$, we have $X = QX + P_1X + P_2X$, applying F to both sides, we obtain

$$(14) FX = fX + wP_1X + wP_2X,$$

and we can write the equation (14) as

$$(15) FX = fX + wX,$$

where fX and wX are the tangential and transversal components of FX, respectively. Similarly

$$(16) FV = BV + CV,$$

for any $V \in \Gamma(tr(TM))$, where BV and CV are the sections of TM and tr(TM), respectively. Since F is parallel on M, using (6), (7), (14) and (16), we obtain

(17)
$$(\nabla_X f)Y = A_{wP_1Y}X + A_{wP_2Y}X + Bh(X,Y).$$

(18)
$$D^{s}(X, wP_{1}Y) = -\nabla_{Y}^{s}wP_{2}Y + wP_{2}\nabla_{X}Y - h^{s}(X, fY) + Ch^{s}(X, Y).$$

(19)
$$D^{l}(X, wP_{2}Y) = -\nabla^{l}_{Y}wP_{1}Y + wP_{1}\nabla_{X}Y - h^{l}(X, fY) + Ch^{l}(X, Y).$$

Theorem 4.2. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then the induced connection is a metric connection if and only if the following conditions hold

$$\nabla_X^{*t}FY - A_{FY}^*X \in \Gamma(FD_2 \oplus D_1), \quad when \quad Y \in \Gamma(D_1),$$

$$\nabla_X^*FY + h^*(X, FY) \in \Gamma(FD_2 \oplus D_1), \quad when \quad Y \in \Gamma(D_2),$$

$$and \quad Bh(X, FY) = 0, \quad when \quad Y \in \Gamma(Rad(TM)).$$

Proof. Since F is an almost product structure of \overline{M} therefore we have $\overline{\nabla}_X Y = \overline{\nabla}_X F^2 Y$ for any $Y \in \Gamma(Rad(TM))$ and $X \in \Gamma(TM)$. Then from (13), we obtain $\overline{\nabla}_X Y = F \overline{\nabla}_X F Y$ and then using (6) and (16), we obtain

(20)
$$\nabla_X Y + h(X, Y) = F(\nabla_X FY + h(X, FY)).$$

Since $Rad(TM) = D_1 \oplus D_2$ therefore using (10), (15) and (16) in (20) and then equating the tangential part for any $Y \in \Gamma(D_1)$, we obtain

(21)
$$\nabla_X Y = f(-A_{FY}^* X + \nabla_X^{*t} FY) + Bh(X, FY),$$

and for any $Y \in \Gamma(D_2)$, we obtain

(22)
$$\nabla_X Y = f(\nabla_X^* FY + h^*(X.FY)) + Bh(X, FY).$$

Thus from (21), $\nabla_X Y \in \Gamma(Rad(TM))$, if and only if

(23)
$$f(-A_{FY}^*X + \nabla_X^{*t}FY) \in \Gamma(FD_2 \oplus D_1) \quad \text{and} \quad Bh(X, FY) = 0.$$

From (22), $\nabla_X Y \in \Gamma(Rad(TM))$, if and only if

(24)
$$\nabla_X^* FY + h^*(X, FY) \in \Gamma(FD_2 \oplus D_1) \quad \text{and} \quad Bh(X, FY) = 0.$$

Thus the assertion follows from (23) and (24).

Theorem 4.3. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then

(i) The distribution D is integrable, if and only if,

$$h(X, FY) = h(FX, Y), \quad \forall \quad X, Y \in \Gamma(D).$$

(ii) The distribution D' is integrable, if and only if,

$$A_{FZ}V = A_{FV}Z, \quad \forall \quad Z, V \in \Gamma(D').$$

Proof. From (18) and (19), we obtain $w\nabla_X Y = h(X, fY) - Ch(X, Y)$ for any $X, Y \in \Gamma(D)$, which implies that w[X, Y] = h(X, fY) - h(fX, Y), which proves (i).

Next, from (17), we have $f\nabla_Z V = -A_{wV}Z - Bh(Z, V)$ for any $Z, V \in \Gamma(D')$, therefore $f[Z, V] = A_{wZ}V - A_{wV}Z$, which completes the proof.

Theorem 4.4. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then D-defines a totally geodesic foliation in M if and only if Bh(X,Y)=0 for any $X,Y\in\Gamma(D)$.

Proof. Using the definition of GCR-lightlike submanifolds, D-defines a totally geodesic foliation in M if and only if, $\nabla_X Y \in \Gamma(D)$ for any $X, Y \in \Gamma(D)$, that is, if and only if

$$g(\nabla_X Y, F\xi) = g(\nabla_X Y, FW) = 0,$$

for any $X, Y \in \Gamma(D)$, $\xi \in \Gamma(D_2)$ and $W \in \Gamma(L_2)$. From (6) and (13), we obtain

(25)
$$g(\nabla_X Y, F\xi) = \bar{g}(\bar{\nabla}_X FY, \xi)$$
$$= \bar{g}(h^l(X, FY), \xi), \ \forall X, Y \in \Gamma(D), \ \xi \in \Gamma(D_2).$$

Similarly, using (6) and (13), we obtain

(26)
$$g(\nabla_X Y, FW) = \bar{g}(\bar{\nabla}_X FY, W)$$
$$= \bar{g}(h^s(X, FY), W), \forall X, Y \in \Gamma(D), W \in \Gamma(L_2).$$

It follows from (25) and (26) that D defines a totally geodesic foliation in M, if and only if, $h^s(X, FY)$ has no components in L_2 and $h^l(X, FY)$ has no components in L_1 for any $X, Y \in \Gamma(D)$, that is, using (16), Bh(X, Y) = 0 for any $X, Y \in \Gamma(D)$.

Theorem 4.5. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then D'-defines a totally geodesic foliation in M, if and only if, $A_{wY}X \in \Gamma(D')$ for any $X, Y \in \Gamma(D')$.

Proof. From (17), we obtain that $f\nabla_X Y = -A_{wY}X - Bh(X,Y)$ for any $X,Y \in \Gamma(D')$. If D' defines a totally geodesic foliation in M, then $A_{wY}X = -Bh(X,Y)$, which implies that $A_{wY}X \in \Gamma(D')$ for any $X,Y \in \Gamma(D')$. Conversely, let $A_{wY}X \in \Gamma(D')$ for any $X,Y \in \Gamma(D')$, therefore $f\nabla_X Y = 0$, which implies that $\nabla_X Y \in \Gamma(D')$. Hence the result follows.

Definition 4.6. A GCR-lightlike submanifold of a semi-Riemannian product manifold is called D geodesic (respectively, D' geodesic) GCR-lightlike submanifold if its second fundamental form h satisfies h(X,Y)=0 for any $X,Y \in \Gamma(D)$ (respectively, $X,Y \in \Gamma(D')$).

Theorem 4.7. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then the distribution D defines a totally geodesic foliation in \bar{M} if and only if M is D-geodesic.

Proof. Let D defines a totally geodesic foliation in \overline{M} then $\overline{\nabla}_X Y \in \Gamma(D)$ for any $X, Y \in \Gamma(D)$. Then using (6) for any $\xi \in \Gamma(D_2)$ and $W \in \Gamma(L_2)$, we obtain

$$\bar{g}(h^l(X,Y),\xi) = \bar{g}(\bar{\nabla}_X Y,\xi) = 0, \quad \bar{g}(h^s(X,Y),W) = \bar{g}(\bar{\nabla}_X Y,W) = 0.$$

Hence $h^l(X,Y) = h^s(X,Y) = 0$, which implies that M is D-geodesic.

Conversely, let us assume that M is D-geodesic. Now using (6) and (13), for any $X, Y \in \Gamma(D)$, $\xi \in \Gamma(D_2)$ and $W \in \Gamma(L_2)$, we have

$$\bar{g}(\bar{\nabla}_X Y, F\xi) = \bar{g}(\bar{\nabla}_X FY, \xi) = \bar{g}(h^l(X, FY), \xi) = 0,$$

and

$$\bar{g}(\bar{\nabla}_X Y, FW) = \bar{g}(\bar{\nabla}_X FY, W) = \bar{g}(h^s(X, FY), W) = 0.$$

Hence $\bar{\nabla}_X Y \in \Gamma(D)$, which completes the proof.

Theorem 4.8. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is D-geodesic, if and only if,

$$g(A_W X, Y) = \bar{g}(D^l(X, W), Y),$$

and

$$\nabla_X^* F \xi \notin \Gamma(D_0 \bot F L_1), \quad A_{\xi'}^* X \notin \Gamma(F L_1), \quad h^l(X, \xi') \notin \Gamma(L_1),$$

for any $X, Y \in \Gamma(D)$, $\xi \in \Gamma(D_2)$, $\xi' \in \Gamma(Rad(TM))$ and $W \in \Gamma(L_2)$.

Proof. Using the definition of GCR-lightlike submanifolds, M is D-geodesic, if and only if,

$$\bar{g}(h^l(X,Y),\xi) = 0,$$

$$\bar{g}(h^s(X,Y),W) = 0$$

for any $X, Y \in \Gamma(D)$, $\xi \in \Gamma(D_2)$ and $W \in \Gamma(L_2)$. Thus for any $X, Y \in \Gamma(D)$, first part of assertion follows from (8).

Now, for $X, Y \in \Gamma(D)$ and $\xi \in \Gamma(D_2)$, using (6), (10) and (12), we have

$$\bar{g}(h^{l}(X,Y),\xi) = \bar{g}(\bar{\nabla}_{X}Y,\xi)
= -\bar{g}(FY,\bar{\nabla}_{X}F\xi)
= -g(FY,\nabla_{X}F\xi) - \bar{g}(FY,h^{l}(X,F\xi))
= -g(FY,\nabla_{X}^{*}F\xi) - \bar{g}(FY,h^{l}(X,F\xi)).$$
(27)

Since $Y \in \Gamma(D)$, this implies that $Y \in \Gamma(D_0)$, $Y \in \Gamma(D_1)$, $Y \in \Gamma(D_2)$, or $Y \in \Gamma(FD_2)$. If $Y \in \Gamma(D_0)$ or $Y \in \Gamma(D_2)$, then we have

(28)
$$\bar{g}(FY, h^l(X, F\xi)) = 0,$$

and if $Y \in \Gamma(D_1)$ or $Y \in \Gamma(FD_2)$, then we have

(29)
$$\bar{g}(FY, h^l(X, F\xi)) = g(A_{\xi'}^* X, F\xi) + \bar{g}(h^l(X, \xi'), F\xi)$$

for any $\xi' = FY \in \Gamma(Rad(TM))$. Now using (28) and (29) in (27), we obtain

$$\bar{g}(h^l(X,Y),\xi) = -g(FY,\nabla_X^*F\xi) - g(A_{\xi'}^*X,F\xi) - \bar{g}(h^l(X,\xi'),F\xi),$$

which proves the second part of the assertion.

Theorem 4.9. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is D'-geodesic, if and only if, A_WX and A_{ξ}^*X have no components in $M_2\bot FD_2$, for any $X\in\Gamma(D')$, $\xi\in\Gamma(Rad(TM))$ and $W\in\Gamma(S(TM^{\perp}))$.

Proof. For any $X, Y \in \Gamma(D')$ and $W \in \Gamma(S(TM^{\perp}))$ using (8), we obtain

(30)
$$\bar{g}(h^s(X,Y),W) = g(A_W X, Y),$$

and for any $\xi \in \Gamma(Rad(TM))$ using (9) and (10), we obtain

(31)
$$\bar{g}(h^l(X,Y),\xi) = g(A_{\xi}^*X,Y).$$

Hence the assertion follows from (30) and (31).

Definition 4.10. A GCR-lightlike submanifold of a semi-Riemannian product manifold is called mixed-geodesic GCR-lightlike submanifold if its second fundamental form h satisfies h(X,Y)=0 for any $X\in\Gamma(D)$ and $Y\in\Gamma(D')$.

Theorem 4.11. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \overline{M} . Then M is mixed geodesic, if and only if,

$$A_{\varepsilon}^*X \in \Gamma(D_0 \bot FL_1), \quad and \quad A_WX \in \Gamma(D_0 \bot Rad(TM) \bot FL_1)$$

for any $X \in \Gamma(D)$, $\xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$.

Proof. Using (9) and (10), for any $X \in \Gamma(D), Y \in \Gamma(D')$ and $\xi \in \Gamma(Rad(TM))$, we obtain

(32)
$$\bar{g}(h^l(X,Y),\xi) = g(A_{\varepsilon}^*X,Y),$$

and for any $W \in \Gamma(S(TM^{\perp}))$ using (8), we obtain

(33)
$$\bar{g}(h^s(X,Y),W) = g(A_W X, Y).$$

Hence the result follows from (32) and (33).

Theorem 4.12. Let M be a mixed geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then $A_{\xi}^*X \in \Gamma(FD_2)$ for any $X \in \Gamma(D')$ and $\xi \in \Gamma(D_2)$.

Proof. Let $X \in \Gamma(D')$ and $\xi \in \Gamma(D_2)$ then we have

$$h(X, F\xi) = \bar{\nabla}_X F\xi - \nabla_X F\xi = F\nabla_X \xi + Fh(X, \xi) - \nabla_X F\xi.$$

Since M is mixed geodesic, therefore $F\nabla_X\xi=\nabla_XF\xi$. Using (10) and (15), we get

$$-fA_{\xi}^*X - wA_{\xi}^*X + F\nabla_X^{*t}\xi = \nabla_X^*F\xi + h^*(X, F\xi).$$

Equating the transversal components, we have $wA_{\xi}^*X=0$. Thus

$$A_{\varepsilon}^*X \in \Gamma(FD_2 \perp D_0).$$

Now, for any $Z \in \Gamma(D_0)$ and $\xi \in \Gamma(D_2)$, we have

$$\bar{g}(A_{\xi}^*X,Z) = \bar{g}(\nabla_X \xi + \nabla_X^{*t}\xi,Z) = \bar{g}(\bar{\nabla}_X \xi,Z) = -g(\xi,\nabla_X Z + h(X,Z)) = 0.$$

If $A_{\xi}^*X \in \Gamma(D_0)$, then using the non-degeneracy of D_0 for any $Z \in \Gamma(D_0)$, we must have $\bar{g}(A_{\xi}^*X, Z) \neq 0$. Therefore $A_{\xi}^*X \notin \Gamma(D_0)$. Hence the assertion is proved.

Theorem 4.13. Let M be a mixed geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \overline{M} . Then the transversal section $V \in \Gamma(FD')$ is D-parallel, if and only if, $\nabla_X FV \in \Gamma(D)$ for any $X \in \Gamma(D)$.

Proof. Let $Y \in \Gamma(D')$ such that $FY = wY = V \in \Gamma(L_1 \perp L_2)$ and $X \in \Gamma(D)$, then using hypothesis that M is a mixed geodesic in (17), we have $f\nabla_X Y = -A_{wY}X = -A_VX$. Now, $\nabla_X^t V = \overline{\nabla}_X V + A_V X = \overline{\nabla}_X FY - f\nabla_X Y$. Since $\overline{\nabla}$ is an almost product structure and M is mixed geodesic therefore we have $\nabla_X^t V = w\nabla_X Y$, that is, $\nabla_X^t V = w\nabla_X FV$, which proves the theorem. \square

Theorem 4.14. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} such that $D^s(X,V) \in \Gamma(L_2^{\perp})$. Then $A_{FV}X = FA_VX$ for any $X \in \Gamma(D)$ and $V \in \Gamma(L_1^{\perp})$.

Proof. Let $X \in \Gamma(D)$, $Y \in \Gamma(D')$ and $V \in \Gamma(L_1^{\perp})$ then we have

$$g(A_{FV}X - FA_{V}X, Y) = g(A_{FV}X, Y) - g(A_{V}X, FY)$$

$$= -g(\bar{\nabla}_{X}FV, Y) + g(\bar{\nabla}_{X}V, FY)$$

$$= -g(\bar{\nabla}_{X}V, FY) + g(\bar{\nabla}_{X}V, FY)$$

$$= 0.$$
(34)

For any $X \in \Gamma(D)$, $Z \in \Gamma(D_0)$ and $V \in \Gamma(L_1^{\perp})$, we have

$$g(A_{FV}X - FA_{V}X, Z) = g(A_{FV}X, Z) - g(A_{V}X, FZ)$$

$$= -g(\bar{\nabla}_{X}FV, Z) + g(\bar{\nabla}_{X}V, FZ)$$

$$= -g(\bar{\nabla}_{X}V, FZ) + g(\bar{\nabla}_{X}V, FZ)$$

$$= 0.$$
(35)

For any $X \in \Gamma(D)$, $N \in \Gamma(ltr(TM))$ and $V \in \Gamma(L_1^{\perp})$, we have

$$g(A_{FV}X - FA_{V}X, N) = g(A_{FV}X, N) - g(A_{V}X, FN)$$

$$= -g(\bar{\nabla}_{X}FV, N) + g(\bar{\nabla}_{X}V, FN)$$

$$= -g(F\bar{\nabla}_{X}V, N) + g(F\bar{\nabla}_{X}V, N)$$

$$= 0.$$
(36)

For any $X \in \Gamma(D)$, $FN \in \Gamma(FL_1)$ and $V \in \Gamma(L_1^{\perp})$, we also have

$$g(A_{FV}X - FA_{V}X, FN) = g(A_{FV}X, FN) - g(A_{V}X, N)$$

$$= -g(\bar{\nabla}_{X}FV, FN) + g(\bar{\nabla}_{X}V, N)$$

$$= -g(F\bar{\nabla}_{X}V, FN) + g(\bar{\nabla}_{X}V, N)$$

$$= -g(\bar{\nabla}_{X}V, N) + g(\bar{\nabla}_{X}V, N)$$

$$= 0.$$
(37)

Hence the assertion follows from (34)-(37).

5. GCR-Lightlike product

Definition 5.1 ([15]). A GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} is called a GCR-lightlike product if both the distributions D and D' define totally geodesic foliations in M.

Theorem 5.2. Let M be a totally geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Suppose that there exists a transversal vector bundle of M, which is parallel along D' with respect to the Levi-Civita connection on M, that is, $\bar{\nabla}_X V \in \Gamma(tr(TM))$ for any $V \in \Gamma(tr(TM))$ and $X \in \Gamma(D')$. Then M is a GCR-lightlike product.

Proof. Since M is a totally geodesic GCR-lightlike submanifold, therefore Bh(X,Y)=0 for any $X,Y\in\Gamma(D)$. Therefore, the distribution D defines a totally geodesic foliation in M. Next, since $\bar{\nabla}_X V\in\Gamma(tr(TM))$ for any $V\in\Gamma(tr(TM))$ and $X\in\Gamma(D')$, therefore using (7), we obtain $A_VX=0$, then from (17), we get $f\nabla_X Y=0$ for any $X,Y\in\Gamma(D')$, which implies that $\nabla_X Y\in\Gamma(D')$. Hence the distribution D' defines a totally geodesic foliation in M. Thus M is a GCR-lightlike product.

Definition 5.3. A lightlike submanifold of a semi-Riemannian manifold is said to be an irrotational submanifold if $\bar{\nabla}_X \xi \in \Gamma(TM)$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$. Thus M is an irrotational lightlike submanifold, if and only if, $h^l(X, \xi) = 0$, $h^s(X, \xi) = 0$.

Theorem 5.4. Let M be an irrotational GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is a GCR-lightlike product if the following conditions are satisfied:

- (A) $\bar{\nabla}_X U \in \Gamma(S(TM^{\perp}))$ for any $X \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$.
- (B) $A_{\varepsilon}^*Y \in \Gamma(FL_2)$ for any $Y \in \Gamma(D)$.

Proof. Using (7) with (A), we get $A_WX=0$, $D^l(X,W)=0$ and $\nabla^l_XW=0$ for any $X\in\Gamma(TM)$ and $W\in\Gamma(S(TM^\perp))$. Therefore for any $X,Y\in\Gamma(D)$ and $W\in\Gamma(S(TM^\perp))$ and using (8), we obtain $\bar{g}(h^s(X,Y),W)=0$, then non-degeneracy of $S(TM^\perp)$ implies that $h^s(X,Y)=0$. Hence, $Bh^s(X,Y)=0$. Now, let $X,Y\in\Gamma(D)$ and $\xi\in\Gamma(Rad(TM))$, then using (B), we have $\bar{g}(h^l(X,Y),\xi)=-g(\nabla_X\xi,Y)=g(A^*_\xi X,Y)=0$. Then using (4), we get $h^l(X,Y)=0$. Hence $Bh^l(X,Y)=0$. Thus the distribution D defines a totally geodesic foliation in M.

Next, let $X, Y \in \Gamma(D')$, then $FY = wY \in \Gamma(L_1 \perp L_2) \subset tr(TM)$. Using (17), we obtain $f\nabla_X Y = -Bh(X,Y)$, comparing the components along D, we get $f\nabla_X Y = 0$, which implies that $\nabla_X Y \in \Gamma(D')$. Thus the distribution D' defines a totally geodesic foliation in M. Hence M is a GCR-lightlike product. \square

Theorem 5.5. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is a GCR-lightlike product if and only if $(\nabla_X f)Y = 0$ for any $X, Y \in \Gamma(D)$ or $X, Y \in \Gamma(D')$.

Proof. Let $(\nabla_X f)Y = 0$ for any $X, Y \in \Gamma(D)$ or $X, Y \in \Gamma(D')$. Let $X, Y \in \Gamma(D)$, then wY = 0 and (17) gives that Bh(X,Y) = 0. Hence using the Theorem (4.4), the distribution D defines a totally geodesic foliation in M. Next, let $X, Y \in \Gamma(D')$. Since $BV \in \Gamma(D')$ for any $V \in \Gamma(tr(TM))$, then (17) implies that $A_{wY}X \in \Gamma(D')$. Hence using Theorem 4.5, the distribution D' defines a totally geodesic foliation in M. Since both the distributions D and D' define totally geodesic foliations in M, hence M is a GCR-lightlike product.

Conversely, let M be a GCR-lightlike product, therefore the distributions D and D' define totally geodesic foliations in M. Using (13), for any $X,Y \in \Gamma(D)$, we have $\bar{\nabla}_X FY = F\bar{\nabla}_X Y$, then comparing the transversal components, we obtain h(X,FY) = Fh(X,Y) and then $(\nabla_X f)Y = \nabla_X fY - f\nabla_X Y = \bar{\nabla}_X FY - h(X,FY) - F\bar{\nabla}_X Y + h(X,FY) = 0$, that is $(\nabla_X f)Y = 0$ for any $X,Y \in \Gamma(D)$. Let D' defines a totally geodesic foliation in M and using (13), we have $\bar{\nabla}_X FY = F\bar{\nabla}_X Y$, then comparing the tangential components on both sides, we obtain $-A_{wY}X = Bh(X,Y)$, then (17) implies that $(\nabla_X f)Y = 0$, which completes the proof.

Definition 5.6 ([6]). A lightlike submanifold (M, g) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be totally umbilical in \bar{M} if there is a smooth transversal vector field $H \in \Gamma(tr(TM))$ on M, called the transversal curvature vector field of M, such that, for any $X, Y \in \Gamma(TM)$,

(38)
$$h(X,Y) = H\bar{g}(X,Y).$$

Using (7), it is clear that M is a totally umbilical, if and only if, on each coordinate neighborhood u there exist smooth vector fields $H^l \in \Gamma(ltr(TM))$ and $H^s \in \Gamma(S(TM^{\perp}))$ such that

(39)
$$h^{l}(X,Y) = H^{l}g(X,Y), \quad h^{s}(X,Y) = H^{s}g(X,Y), \quad D^{l}(X,W) = 0$$

for any $X,Y\in\Gamma(TM)$ and $W\in\Gamma(S(TM^{\perp}))$. M is called totally geodesic if H=0, that is, if h(X,Y)=0.

Lemma 5.7. Let M be a totally umbilical GCR-lightlike submanifold of semi-Riemannian product manifold \bar{M} . Then the distribution D' defines a totally geodesic foliation in M.

Proof. Let $X, Y \in \Gamma(D')$ then (17) implies that $f \nabla_X Y = -A_{wY} X - Bh(X, Y)$, then for any $Z \in \Gamma(D_0)$, we have

$$g(f\nabla_X Y, Z) = -g(A_{wY}X, Z) - g(Bh(X, Y), Z)$$

$$= \bar{g}(\bar{\nabla}_X wY, Z) = \bar{g}(\bar{\nabla}_X FY, Z) = \bar{g}(\bar{\nabla}_X Y, FZ) = \bar{g}(\bar{\nabla}_X Y, Z')$$

$$= -g(Y, \nabla_X Z'),$$

$$(40)$$

where $Z' = FZ \in \Gamma(D_0)$. Since $X \in \Gamma(D')$ and $Z \in \Gamma(D_0)$, then from (18) and (19), we have $wP\nabla_X Z = h(X, fZ) - Ch(X, Z) = Hg(X, fZ) - CHg(X, Z) = 0$, therefore $wP\nabla_X Z = 0$, which implies that $\nabla_X Z \in \Gamma(D)$. Thus (40) implies

that $g(f\nabla_X Y, Z) = 0$, then the non-degeneracy of D_0 implies that $f\nabla_X Y = 0$. Hence $\nabla_X Y \in \Gamma(D')$ for any $X, Y \in \Gamma(D')$. Thus the result follows.

Theorem 5.8. Let M be a totally umbilical GCR-lightlike submanifold of semi-Riemannian product manifold \overline{M} . Then M is a GCR-lightlike product if and only if Bh(X,Y)=0 for any $X\in\Gamma(TM)$ and $Y\in\Gamma(D)$.

Proof. Let M be a GCR-lightlike product therefore the distributions D and D' define totally geodesic foliations in M. Therefore using Theorem 4.4, we have Bh(X,Y)=0 for any $X,Y\in\Gamma(D)$. Now using the hypothesis for $X\in\Gamma(D')$ and $Y\in\Gamma(D)$, we have Bh(X,Y)=g(X,Y)BH=0. Thus Bh(X,Y)=0 for any $X\in\Gamma(TM)$ and $Y\in\Gamma(D)$.

Conversely, let Bh(X,Y)=0 for any $X \in \Gamma(TM)$ and $Y \in \Gamma(D)$. Now for any $X,Y \in \Gamma(D)$, we have Bh(X,Y)=0, which implies that D defines a totally geodesic foliation in M. Let $X,Y \in \Gamma(D')$, then (17) implies that $A_{wY}X = -f\nabla_X Y - Bh(X,Y)$ and using Lemma 5.7, we obtain $fA_{wY}X + wA_{wY}X = -h(X,Y)$, comparing the tangential components on both sides, we have $fA_{wY}X = 0$, which implies that $A_{wY}X \in \Gamma(D')$. Hence using Theorem 4.5, the distribution D' defines a totally geodesic foliation in M. Hence the result follows.

Theorem 5.9. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is totally geodesic manifold, if and only if, Rad(TM) and $S(TM^{\perp})$ are Killing distributions on \bar{M} .

Proof. For any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$, consider

$$\bar{g}(h(X,Y),\xi) = \bar{g}(\bar{\nabla}_X Y,\xi) = X\bar{g}(Y,\xi) - \bar{g}(\bar{\nabla}_X \xi, Y)
= \bar{g}([\xi, X], Y) - \bar{g}(\bar{\nabla}_\xi X, Y)
= \bar{g}([\xi, X], Y) - \xi \bar{g}(X, Y) + \bar{g}(\bar{\nabla}_\xi Y, X)
= -\xi \bar{g}(X, Y) + \bar{g}([\xi, X], Y) + \bar{g}([\xi, Y], X) - \bar{g}(\bar{\nabla}_Y X, \xi)
= -(L_{\xi}\bar{g})(X, Y) - \bar{g}(h(X, Y), \xi),$$
(41)

which implies that

$$(42) 2\bar{g}(h(X,Y),\xi) = -(L_{\xi}\bar{g})(X,Y)$$

for any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$.

Similarly, for any $X, Y \in \Gamma(TM)$ and $W \in \Gamma(S(TM^{\perp}))$, we have

$$\bar{g}(h(X,Y),W) = \bar{g}(\bar{\nabla}_X Y, W) = X \bar{g}(Y,W) - \bar{g}(\bar{\nabla}_X W, Y)
= \bar{g}([W,X],Y) - \bar{g}(\bar{\nabla}_W X, Y)
= \bar{g}([W,X],Y) - W \bar{g}(X,Y) + \bar{g}(\bar{\nabla}_W Y, X)
= -W \bar{g}(X,Y) + \bar{g}([W,X],Y) + \bar{g}([W,Y],X) - \bar{g}(\bar{\nabla}_Y X, W)
(43) = -(L_W \bar{g})(X,Y) - \bar{g}(h(X,Y),W),$$

which implies that

(44)
$$2\bar{g}(h(X,Y),W) = -(L_W\bar{g})(X,Y)$$

for any $X, Y \in \Gamma(TM)$ and $W \in \Gamma(S(TM^{\perp}))$. Thus from (42) and (44), we have h(X, Y) = 0, if and only if, $(L_{\xi}\bar{g})(X, Y) = 0$ and $(L_W\bar{g})(X, Y) = 0$, for any $X, Y \in \Gamma(TM)$, $\xi \in \Gamma(Rad(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Thus the result follows.

Theorem 5.10. Let M be a totally umbilical GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . If the induced connection is a metric connection, then $h^*(X,Y) = 0$ for any $X,Y \in \Gamma(D_0)$.

Proof. Let the induced connection ∇ be a metric connection, then from Theorem 2.2 on page 159 of [5], we have $h^l = 0$. Hence using hypothesis in (19), we get $wP_1\nabla_XY = 0$, therefore, $\nabla_XY \in \Gamma(S(TM))$, which implies that $h^*(X,Y) = 0$ for any $X,Y \in \Gamma(D_0)$. Thus the result follows.

6. Minimal GCR-lightlike submanifolds

Definition 6.1 ([2]). A lightlike submanifold (M, g, S(TM)) isometrically immersed in a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be minimal if $h^s = 0$ on Rad(TM) and $trace \ h = 0$, where trace is written with respect to g restricted to S(TM).

Theorem 6.2. Let M be a totally umbilical GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is minimal, if and only if, M is totally geodesic.

Proof. Suppose M is minimal then $h^s(X,Y) = 0$ for any $X,Y \in \Gamma(Rad(TM))$. Since M is totally umbilical therefore $h^l(X,Y) = H^lg(X,Y) = 0$ for any $X,Y \in \Gamma(Rad(TM))$. Now, choose an orthonormal basis $\{e_1,e_2,\ldots,e_{m-r}\}$ of S(TM) then from (39), we obtain

trace
$$h(e_i, e_i) = \sum_{i=1}^{m-r} \epsilon_i g(e_i, e_i) H^l + \epsilon_i g(e_i, e_i) H^s = (m-r) H^l + (m-r) H^s.$$

Since M is minimal and $ltr(TM) \cap S(TM^{\perp}) = \{0\}$, we get $H^l = 0$ and $H^s = 0$. Hence M is totally geodesic. Converse follows directly.

Theorem 6.3. A totally umbilical proper GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} is minimal, if and only if,

trace
$$A_{W_p} = 0$$
 and trace $A_{\xi_k}^* = 0$ on $D_0 \perp FL_2$

for $W_p \in \Gamma(S(TM^{\perp}), \text{ where } k \in \{1, 2, \dots, r\} \text{ and } p \in \{1, 2, \dots, n - r\}.$

Proof. Using (38), it is clear that $h^s(X,Y) = 0$ on Rad(TM). Using the definition of a GCR-lightlike submanifold, we have

trace
$$h|_{S(TM)} = \sum_{i=1}^{a} h(Z_i, Z_i) + \sum_{j=1}^{b} h(F\xi_j, F\xi_j)$$

 $+ \sum_{j=1}^{b} h(FN_j, N_j) + \sum_{l=1}^{c} h(FW_l, FW_l),$

where $a = \dim(D_0)$, $b = \dim(D_2)$ and $c = \dim(L_2)$. Since M is totally umbilical therefore from (38), we have $h(F\xi_j, F\xi_j) = h(FN_j, N_j) = 0$. Thus above equation becomes

$$trace \ h|_{S(TM)} = \sum_{i=1}^{a} h(Z_{i}, Z_{i}) + \sum_{l=1}^{c} h(FW_{l}, FW_{l})$$

$$= \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} \bar{g}(h^{l}(Z_{i}, Z_{i}), \xi_{k}) N_{k}$$

$$+ \sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}(h^{s}(Z_{i}, Z_{i}), W_{p}) W_{p}$$

$$+ \sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} \bar{g}(h^{l}(FW_{l}, FW_{l}), \xi_{k}) N_{k}$$

$$+ \sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}(h^{s}(FW_{l}, FW_{l}), W_{p}) W_{p},$$

$$(45)$$

where $\{W_1, W_2, \dots, W_{n-r}\}$ is an orthonormal basis of $S(TM^{\perp})$. Using (8) and (11) in (45), we obtain

$$trace \ h|_{S(TM)} = \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} \bar{g}(A_{\xi_{k}}^{*} Z_{i}, Z_{i}) N_{k}$$

$$+ \sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}(A_{W_{p}} Z_{i}, Z_{i}) W_{p}$$

$$+ \sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} \bar{g}(A_{\xi_{k}}^{*} F W_{l}, F W_{l}) N_{k}$$

$$+ \sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}(A_{W_{p}} F W_{l}, F W_{l}) W_{p}.$$

Thus $trace\ h|_{S(TM)}=0$, if and only if, $trace\ A_{W_p}=0$ and $trace\ A_{\xi_k^*}=0$ on $D_0\bot FL_2$. Hence the result follows.

Theorem 6.4. Let M be an irrotational lightlike submanifold of a semi-Riemannian product manifold \bar{M} . Then M is minimal, if and only if, trace $A_{\xi_k}^*|_{S(TM)} = 0$ and trace $A_{W_j}|_{S(TM)} = 0$, where $W_j \in \Gamma(S(TM^{\perp}), k \in \{1, 2, ..., r\}$ and $j \in \{1, 2, ..., n - r\}$.

Proof. M is irrotational implies that $h^s(X,\xi) = 0$ for any $X \in \Gamma(TM)$ and $\xi \in \Gamma(Rad(TM))$, therefore $h^s = 0$ on Rad(TM). Also

$$trace \ h|_{S(TM)} = \sum_{i=1}^{m-r} \epsilon_i (h^l(e_i, e_i) + h^s(e_i, e_i))$$

$$= \sum_{i=1}^{m-r} \epsilon_i \{ \frac{1}{r} \sum_{k=1}^r \bar{g}(h^l(e_i, e_i), \xi_k) N_k + \frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}(h^s(e_i, e_i), W_j) W_j \}$$

$$= \sum_{i=1}^{m-r} \epsilon_i \{ \frac{1}{r} \sum_{k=1}^r \bar{g}(A_{\xi_k}^* e_i, e_i) N_k + \frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}(A_{W_j} e_i, e_i) W_j \}.$$

Hence theorem follows.

Acknowledgment. The authors would like to thank the anonymous referee for his/her valuable suggestions that helped them to improve this paper.

References

- M. Atçeken and E. Kiliç, Semi-invariant lightlike submanifolds of a semi-Riemannian product manifold, Kodai Math. J. 30 (2007), no. 3, 361–378.
- [2] C. L. Bejan and K. L. Duggal, Global lightlike manifolds and harmonicity, Kodai Math. J. 28 (2005), no. 1, 131–145.
- [3] K. L. Duggal, CR-structures and Lorentzian geometry, Acta Appl. Math. 7 (1986), no. 3, 211–223.
- [4] ______, Lorentzian geometry of CR submanifolds, Acta Appl. Math. 17 (1989), no. 2, 171–193.
- [5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its Applications, Kluwer Academic Publishers, The Netherlands, 1996.
- [6] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), no. 1, 49–68.
- [7] K. L. Duggal and B. Sahin, Screen Cauchy-Riemann lightlike submanifolds, Acta Math. Hungar. 106 (2005), no. 1-2, 137–165.
- [8] _____, Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungar. 112 (2006), no. 1-2, 107–130.
- [9] S. M. Khursheed Haider, Mamta Thakur, and Advin, Screen Cauchy-Riemann lightlike submanifolds of a semi-Riemannian product manifold, Int. Electron. J. Geom. 4 (2011), no. 2, 141–154.
- [10] E. Kiliç, B. Şahin, and S. Keleş, Screen semi invariant lightlike submanifolds of a semi-Riemannian product manifolds, Int. Electron. J. Geom. 4 (2011), 120–135.
- [11] R. Kumar, S. Kumar, and R. K. Nagaich, GCR-lightlike product of indefinite Kaehler manifolds, ISRN Geometry. 2011 (2011), Article ID 531281, 13 pages.
- [12] ______, Integrability of distributions in GCR-lightlike submanifolds of indefinite Kaehler manifolds, Commun. Korean Math. Soc. 27 (2012), no. 3, 591–602.

- [13] S. Kumar, R. Kumar, and R. K. Nagaich, Characterization of holomorphic bisectional curvature of GCR-lightlike submanifolds, Advances in Mathematical Physics. 2012 (2012), Article ID 356263, 18 pages.
- [14] ______, GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds, Bull. Korean Math. Soc. 50 (2013), no. 4, 1173–1192.
- [15] D. N. Kupeli, Singular Semi-Riemannian Geometry, vol. 366, Kluwer, Dordrecht, 1996.
- [16] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [17] B. Şahin and M. Atçeken, Semi-Invariant submanifolds of Riemannian product manifold, Balkan J. Geom. Appl. 8 (2003), no. 1, 91–100.
- [18] X. Senlin and N. Yilong, Submanifolds of product Riemannian manifold, Acta Math. Sci. Ser. B Engl. Ed. **20** (2000), no. 2, 213–218.

SANGEET KUMAR
SCHOOL OF APPLIED SCIENCES
CHITKARA UNIVERSITY
JHANSLA, RAJPURA, DISTT. PATIALA, INDIA
E-mail address: sp7maths@gmail.com

RAKESH KUMAR
DEPARTMENT OF BASIC AND APPLIED SCIENCES
PUNJABI UNIVERSITY
PATIALA, INDIA
E-mail address: dr_rk37c@yahoo.co.in

RAKESH KUMAR NAGAICH DEPARTMENT OF MATHEMATICS PUNJABI UNIVERSITY PATIALA, INDIA

 $E ext{-}mail\ address: nagaichrakesh@yahoo.com}$