GCR-LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN PRODUCT MANIFOLD

Sangeet Kumar, Rakesh Kumar, and Rakesh Kumar Nagaich

Abstract

We introduce $G C R$-lightlike submanifold of a semi-Riemannian product manifold and give an example. We study geodesic $G C R$ lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a $G C R$-lightlike submanifold to be a $G C R$-lightlike product. Finally, we discuss minimal $G C R$-lightlike submanifolds of a semi-Riemannian product manifold.

1. Introduction

The significant applications of $C R$-structures in relativity [3, 4] and growing importance of lightlike submanifolds in mathematical physics and moreover availability of limited information on theory of lightlike submanifolds, motivated Duggal and Bejancu [5] to introduce $C R$-lightlike submanifolds of indefinite Kaehler manifolds. Similar to $C R$-lightlike submanifolds, semi-invariant lightlike submanifolds of a semi-Riemannian product manifold were introduced by Atçeken and Kiliç in [1]. Since $C R$-lightlike submanifold does not include the complex and totally real cases therefore Duggal and Sahin [7] introduced Screen Cauchy-Riemann ($S C R$)-lightlike submanifold of indefinite Kaehler manifolds, which contains complex and screen real sub-cases. The $S C R$-lightlike submanifolds, analogously, Screen Semi-Invariant lightlike submanifolds, of semiRiemannian product manifolds were introduced by Khursheed et al. [9] and Kiliç et al. [10], respectively. Since there is no inclusion relation between $S C R$ and $C R$ cases therefore Duggal and Sahin [8] introduced Generalized CauchyRiemann $(G C R)$-lightlike submanifold of indefinite Kaehler manifolds which acts as an umbrella of real hypersurfaces, invariant, screen real and $C R$ lightlike submanifolds and further developed by $[11,12,13,14]$.

[^0]Since the geometry of lightlike submanifolds of semi-Riemannian product manifolds is a topic of chief discussion [16, 17, 18] therefore we introduce $G C R$ lightlike submanifolds of a semi-Riemannian product manifold. We study geodesic $G C R$-lightlike submanifolds of a semi-Riemannian product manifold and obtain some necessary and sufficient conditions for a $G C R$-lightlike submanifold to be a $G C R$-lightlike product. Finally, we discuss minimal $G C R$-lightlike submanifolds of a semi-Riemannian product manifold.

2. Lightlike submanifolds

Let (\bar{M}, \bar{g}) be a real $(m+n)$-dimensional semi-Riemannian manifold of constant index q such that $m, n \geq 1,1 \leq q \leq m+n-1$ and (M, g) be an m-dimensional submanifold of $\overline{\bar{M}}$ and g be the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle $T M$ of M then M is called a lightlike submanifold of \bar{M}, for detail see [5]. For a degenerate metric g on $M, T M^{\perp}$ is a degenerate n-dimensional subspace of $T_{x} \bar{M}$. Thus both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $\operatorname{Rad} T_{x} M=T_{x} M \cap T_{x} M^{\perp}$ which is known as radical (null) subspace. If the mapping $\operatorname{RadTM}: x \in M \longrightarrow \operatorname{Rad} T_{x} M$, defines a smooth distribution on M of rank $r>0$ then the submanifold M of \bar{M} is called an r-lightlike submanifold and RadTM is called the radical distribution on M. Screen distribution $S(T M)$ is a semi-Riemannian complementary distribution of $\operatorname{Rad}(T M)$ in $T M$ therefore

$$
\begin{equation*}
T M=\operatorname{Rad} T M \perp S(T M) \tag{1}
\end{equation*}
$$

and $S\left(T M^{\perp}\right)$ is a complementary vector subbundle to RadTM in $T M^{\perp}$. Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary (but not orthogonal) vector bundles to $T M$ in $\left.T \bar{M}\right|_{M}$ and to RadTM in $S\left(T M^{\perp}\right)^{\perp}$, respectively. Then we have

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{2}
\end{equation*}
$$

(3) $\left.T \bar{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=(\operatorname{RadTM} \oplus \operatorname{ltr}(T M)) \perp S(T M) \perp S\left(T M^{\perp}\right)$.

Let u be a local coordinate neighborhood of M and consider the local quasiorthonormal fields of frames of \bar{M} along M, on u as $\left\{\xi_{1}, \ldots, \xi_{r}, W_{r+1}, \ldots, W_{n}\right.$, $\left.N_{1}, \ldots, N_{r}, X_{r+1}, \ldots, X_{m}\right\}$, where $\left\{\xi_{1}, \ldots, \xi_{r}\right\},\left\{N_{1}, \ldots, N_{r}\right\}$ are local lightlike bases of $\Gamma\left(\left.\operatorname{RadTM}\right|_{u}\right), \Gamma\left(\left.l \operatorname{tr}(T M)\right|_{u}\right)$ and $\left\{W_{r+1}, \ldots, W_{n}\right\},\left\{X_{r+1}, \ldots, X_{m}\right\}$ are local orthonormal bases of $\Gamma\left(\left.S\left(T M^{\perp}\right)\right|_{u}\right)$ and $\Gamma\left(\left.S(T M)\right|_{u}\right)$ respectively. For this quasi-orthonormal fields of frames, we have:

Theorem 2.1 ([5]). Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an r-lightlike submanifold of a semi-Riemannian manifold (\bar{M}, \bar{g}). Then there exists a complementary vector bundle ltr $(T M)$ of RadTM in $S\left(T M^{\perp}\right)^{\perp}$ and a basis of $\Gamma\left(\left.l \operatorname{tr}(T M)\right|_{\mathrm{u}}\right)$ consisting of smooth section $\left\{N_{i}\right\}$ of $\left.S\left(T M^{\perp}\right)^{\perp}\right|_{\mathrm{u}}$, where u is a coordinate neighborhood of M such that

$$
\begin{equation*}
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0 \text { for any } i, j \in\{1,2, \ldots, r\}, \tag{4}
\end{equation*}
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ is a lightlike basis of $\Gamma(\operatorname{Rad}(T M))$.
Let $\bar{\nabla}$ be the Levi-Civita connection on \bar{M} then according to the decomposition (3), the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} U=-A_{U} X+\nabla_{X}^{\perp} U \tag{5}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $U \in \Gamma(\operatorname{tr}(T M))$, where $\left\{\nabla_{X} Y, A_{U} X\right\}$ and $\{h(X, Y)$, $\left.\nabla \frac{1}{X} U\right\}$ belong to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(T M)$ which is called second fundamental form, A_{U} is a linear a operator on M and known as shape operator.

According to (2) considering the projection morphisms L and S of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ respectively, then (5) become
(6) $\bar{\nabla}_{X} Y=\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y), \quad \bar{\nabla}_{X} U=-A_{U} X+D_{X}^{l} U+D_{X}^{s} U$,
where we put $h^{l}(X, Y)=L(h(X, Y)), h^{s}(X, Y)=S(h(X, Y)), D_{X}^{l} U=L\left(\nabla \frac{1}{X} U\right)$, $D_{X}^{s} U=S\left(\nabla \frac{1}{X} U\right)$.

As h^{l} and h^{s} are $\Gamma(l \operatorname{tr}(T M))$-valued and $\Gamma\left(S\left(T M^{\perp}\right)\right)$-valued, respectively, therefore they are called the lightlike second fundamental form and the screen second fundamental form on M. In particular
$\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N), \bar{\nabla}_{X} W=-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W)$, where $X \in \Gamma(T M), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Using (6) and (7) we obtain

$$
\begin{equation*}
\bar{g}\left(h^{s}(X, Y), W\right)+\bar{g}\left(Y, D^{l}(X, W)\right)=g\left(A_{W} X, Y\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\bar{g}\left(h^{l}(X, Y), \xi\right)+\bar{g}\left(Y, h^{l}(X, \xi)\right)+\bar{g}\left(Y, \nabla_{X} \xi\right)=0 \tag{9}
\end{equation*}
$$

for any $W \in \Gamma\left(S\left(T M^{\perp}\right)\right), \xi \in \Gamma(\operatorname{Rad}(T M))$. Let P be the projection morphism of $T M$ on $S(T M)$ then using (1), we can induce some new geometric objects on the screen distribution $S(T M)$ on M as

$$
\begin{equation*}
\nabla_{X} P Y=\nabla_{X}^{*} P Y+h^{*}(X, P Y), \quad \nabla_{X} \xi=-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi \tag{10}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(R a d T M)$, where $\left\{\nabla_{X}^{*} P Y, A_{\xi}^{*} X\right\}$ and $\left\{h^{*}(X, P Y), \nabla_{X}^{* t} \xi\right\}$ belong to $\Gamma(S(T M))$ and $\Gamma(\operatorname{RadTM})$, respectively. ∇^{*} and $\nabla^{* t}$ are linear connections on complementary distributions $S(T M)$ and RadTM, respectively. h^{*} and A^{*} are $\Gamma($ RadTM)-valued and $\Gamma(S(T M))$-valued bilinear forms and are called as second fundamental forms of distributions $S(T M)$ and RadTM, respectively. Using (6) and (10), we obtain

$$
\begin{equation*}
\bar{g}\left(h^{l}(X, P Y), \xi\right)=g\left(A_{\xi}^{*} X, P Y\right), \quad \bar{g}\left(h^{*}(X, P Y), N\right)=\bar{g}\left(A_{N} X, P Y\right) \tag{11}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M), \xi \in \Gamma(\operatorname{Rad}(T M))$ and $N \in \Gamma(l \operatorname{tr}(T M))$.

3. Semi-Riemannian product manifolds

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two m_{1} and m_{2} dimensional semi-Riemannian manifolds with constant indexes $q_{1}>0$ and $q_{2}>0$, respectively. Let π : $M_{1} \times M_{2} \rightarrow M_{1}$ and $\sigma: M_{1} \times M_{2} \rightarrow M_{2}$ be the projections which are given by $\pi(x, y)=x$ and $\sigma(x, y)=y$ for any $(x, y) \in M_{1} \times M_{2}$. We denote the product manifold by $(\bar{M}, \bar{g})=\left(M_{1} \times M_{2}, \bar{g}\right)$, where

$$
\bar{g}(X, Y)=g_{1}\left(\pi_{*} X, \pi_{*} Y\right)+g_{2}\left(\sigma_{*} X, \sigma_{*} Y\right),
$$

for any $X, Y \in \Gamma(T \bar{M})$, where $*$ means the differential mapping. Then we have

$$
\pi_{*}^{2}=\pi_{*}, \quad \sigma_{*}^{2}=\sigma_{*}, \quad \pi_{*} \sigma_{*}=\sigma_{*} \pi_{*}=0, \quad \pi_{*}+\sigma_{*}=I,
$$

where I is the identity map of $T\left(M_{1} \times M_{2}\right)$. Thus (\bar{M}, \bar{g}) is a $\left(m_{1}+m_{2}\right)$ dimensional semi-Riemannian manifold with constant index $\left(q_{1}+q_{2}\right)$. The semi-Riemannian product manifold $\bar{M}=M_{1} \times M_{2}$ is characterized by M_{1} and M_{2} which are totally geodesic submanifolds of \bar{M}. Now if we put $F=\pi_{*}-\sigma_{*}$ then we see that $F^{2}=I$ and

$$
\begin{equation*}
\bar{g}(F X, Y)=\bar{g}(X, F Y) \tag{12}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$, where F is called an almost product structure on $M_{1} \times M_{2}$. If we denote the Levi-Civita connection on \bar{M} by $\bar{\nabla}$, then it can be seen that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} F\right) Y=0 \tag{13}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$, that is, F is parallel with respect to $\bar{\nabla}$.

4. Generalized Cauchy-Riemann lightlike submanifolds

Definition 4.1. Let $(M, g, S(T M))$ be a real lightlike submanifold of a semiRiemannian product manifold (\bar{M}, \bar{g}). Then M is called a generalized CauchyRiemann ($G C R$)-lightlike submanifold if the following conditions are satisfied
(A) There exist two subbundles D_{1} and D_{2} of $\operatorname{Rad}(T M)$, such that

$$
\operatorname{Rad}(T M)=D_{1} \oplus D_{2}, \quad F D_{1}=D_{1}, \quad F D_{2} \subset S(T M)
$$

(B) There exist two subbundles D_{0} and D^{\prime} of $S(T M)$, such that

$$
S(T M)=\left\{F D_{2} \oplus D^{\prime}\right\} \perp D_{0}, \quad F D_{0}=D_{0}, \quad F D^{\prime}=L_{1} \perp L_{2}
$$

where D_{0} is a non degenerate distribution on M, L_{1} and L_{2} are vector subbundles of $\operatorname{ltr}(T M)$ and $S(T M)^{\perp}$, respectively.

Then the tangent bundle $T M$ of M is decomposed as $T M=D \perp D^{\prime}$ and $D=\operatorname{Rad}(T M) \oplus D_{0} \oplus F D_{2}$. M is called a proper $G C R$-lightlike submanifold if $D_{1} \neq\{0\}, D_{2} \neq\{0\}, D_{0} \neq\{0\}$ and $L_{2} \neq\{0\}$, which has the following features:

1. The condition (A) implies that $\operatorname{dim}(\operatorname{Rad}(T M)) \geq 3$.
2. The condition (B) implies that $\operatorname{dim}(D)=2 s \geq 6, \operatorname{dim}\left(D^{\prime}\right) \geq 2$ and $\operatorname{dim}\left(D_{2}\right)=\operatorname{dim}\left(L_{1}\right)$. Thus $\operatorname{dim}(M) \geq 8$ and $\operatorname{dim}(\bar{M}) \geq 12$.
3. Any proper 8 -dimensional $G C R$-lightlike submanifold is 3-lightlike.

Example. Let $R_{4}^{12}=R_{2}^{6} \times R_{2}^{6}$ be a semi-Riemannian product manifold with the product structure $F\left(\partial x_{i}, \partial y_{i}\right)=\left(\partial y_{i}, \partial x_{i}\right)$, where $\left(x^{i}, y^{i}\right)$ are cartesian coordinates of R_{4}^{12}. Let M be a submanifold of R_{4}^{12} given by:

$$
\begin{gathered}
x_{1}=u_{1}, \quad x_{2}=u_{5}, \quad x_{3}=u_{3}, \quad x_{4}=\sqrt{1-u_{4}^{2}}, \quad x_{5}=u_{6}, \quad x_{6}=u_{2} \\
y_{1}=u_{2}, \quad y_{2}=u_{3}, \quad y_{3}=u_{8}, \quad y_{4}=u_{4}, \quad y_{5}=u_{7}, \quad y_{6}=u_{1}
\end{gathered}
$$

Then $T M$ is spanned by $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}, Z_{8}$, where

$$
\begin{gathered}
Z_{1}=\partial x_{1}+\partial y_{6}, \quad Z_{2}=\partial y_{1}+\partial x_{6}, \quad Z_{3}=\partial x_{3}+\partial y_{2} \\
Z_{4}=-y_{4} \partial x_{4}+x_{4} \partial y_{4}, \quad Z_{5}=\partial x_{2}, \quad Z_{6}=\partial x_{5}, \quad Z_{7}=\partial y_{5}, \quad Z_{8}=\partial y_{3}
\end{gathered}
$$

Clearly, M is a 3 -lightlike submanifold with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{Z_{1}, Z_{2}, Z_{3}\right\}$ and $F Z_{1}=Z_{2}$, therefore $D_{1}=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}$. Since $F Z_{3}=\partial y_{3}+\partial x_{2}=$ $Z_{8}+Z_{5} \in \Gamma(S(T M))$, therefore $D_{2}=\operatorname{Span}\left\{Z_{3}\right\}$. Moreover $F Z_{6}=Z_{7}$ therefore $D_{0}=\operatorname{Span}\left\{Z_{6}, Z_{7}\right\}$. The lightlike transversal bundle $\operatorname{ltr}(T M)$ is spanned by

$$
\left\{N_{1}=\frac{1}{2}\left(-\partial x_{1}+\partial y_{6}\right), N_{2}=\frac{1}{2}\left(-\partial y_{1}+\partial x_{6}\right), N_{3}=\frac{1}{2}\left(-\partial x_{3}+\partial y_{2}\right)\right\}
$$

Clearly, $\operatorname{Span}\left\{N_{1}, N_{2}\right\}$ is invariant with respect to F and $F N_{3}=-\frac{1}{2} Z_{8}+$ $\frac{1}{2} Z_{5}$. Hence $L_{1}=\operatorname{Span}\left\{N_{3}\right\}$. By direct calculations, we obtain $S\left(T M^{\perp}\right)=$ $\operatorname{Span}\left\{W=-y_{4} \partial y_{4}+x_{4} \partial x_{4}\right\}$. Since $F Z_{4}=W$, thus $L_{2}=S\left(T M^{\perp}\right)$. Hence $D^{\prime}=\operatorname{Span}\left\{F N_{3}, F W=Z_{4}\right\}$. Thus, M is a proper $G C R$-lightlike submanifold of semi-Riemannian product manifold R_{4}^{12}.

Let Q, P_{1} and P_{2} be the projections on $D, F L_{1}=M_{1}$ and $F L_{2}=M_{2}$, respectively. Then for any $X \in \Gamma(T M)$, we have $X=Q X+P_{1} X+P_{2} X$, applying F to both sides, we obtain

$$
\begin{equation*}
F X=f X+w P_{1} X+w P_{2} X \tag{14}
\end{equation*}
$$

and we can write the equation (14) as

$$
\begin{equation*}
F X=f X+w X \tag{15}
\end{equation*}
$$

where $f X$ and $w X$ are the tangential and transversal components of $F X$, respectively. Similarly

$$
\begin{equation*}
F V=B V+C V, \tag{16}
\end{equation*}
$$

for any $V \in \Gamma(\operatorname{tr}(T M))$, where $B V$ and $C V$ are the sections of $T M$ and $\operatorname{tr}(T M)$, respectively. Since F is parallel on M, using (6), (7), (14) and (16), we obtain

$$
\begin{gather*}
\left(\nabla_{X} f\right) Y=A_{w P_{1} Y} X+A_{w P_{2} Y} X+B h(X, Y) \tag{17}\\
D^{s}\left(X, w P_{1} Y\right)=-\nabla_{X}^{s} w P_{2} Y+w P_{2} \nabla_{X} Y-h^{s}(X, f Y)+C h^{s}(X, Y) \tag{18}\\
D^{l}\left(X, w P_{2} Y\right)=-\nabla_{X}^{l} w P_{1} Y+w P_{1} \nabla_{X} Y-h^{l}(X, f Y)+C h^{l}(X, Y) \tag{19}
\end{gather*}
$$

Theorem 4.2. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then the induced connection is a metric connection if and only if the following conditions hold

$$
\begin{gathered}
\nabla_{X}^{* t} F Y-A_{F Y}^{*} X \in \Gamma\left(F D_{2} \oplus D_{1}\right), \quad \text { when } \quad Y \in \Gamma\left(D_{1}\right), \\
\nabla_{X}^{*} F Y+h^{*}(X, F Y) \in \Gamma\left(F D_{2} \oplus D_{1}\right), \quad \text { when } \quad Y \in \Gamma\left(D_{2}\right), \\
\text { and } \quad B h(X, F Y)=0, \quad \text { when } \quad Y \in \Gamma(\operatorname{Rad}(T M)) .
\end{gathered}
$$

Proof. Since F is an almost product structure of \bar{M} therefore we have $\bar{\nabla}_{X} Y=$ $\bar{\nabla}_{X} F^{2} Y$ for any $Y \in \Gamma(\operatorname{Rad}(T M))$ and $X \in \Gamma(T M)$. Then from (13), we obtain $\nabla_{X} Y=F \nabla_{X} F Y$ and then using (6) and (16), we obtain

$$
\begin{equation*}
\nabla_{X} Y+h(X, Y)=F\left(\nabla_{X} F Y+h(X, F Y)\right) \tag{20}
\end{equation*}
$$

Since $\operatorname{Rad}(T M)=D_{1} \oplus D_{2}$ therefore using (10), (15) and (16) in (20) and then equating the tangential part for any $Y \in \Gamma\left(D_{1}\right)$, we obtain

$$
\begin{equation*}
\nabla_{X} Y=f\left(-A_{F Y}^{*} X+\nabla_{X}^{* t} F Y\right)+B h(X, F Y) \tag{21}
\end{equation*}
$$

and for any $Y \in \Gamma\left(D_{2}\right)$, we obtain

$$
\begin{equation*}
\nabla_{X} Y=f\left(\nabla_{X}^{*} F Y+h^{*}(X . F Y)\right)+B h(X, F Y) \tag{22}
\end{equation*}
$$

Thus from (21), $\nabla_{X} Y \in \Gamma(\operatorname{Rad}(T M))$, if and only if

$$
\begin{equation*}
f\left(-A_{F Y}^{*} X+\nabla_{X}^{* t} F Y\right) \in \Gamma\left(F D_{2} \oplus D_{1}\right) \quad \text { and } \quad B h(X, F Y)=0 \tag{23}
\end{equation*}
$$

From (22), $\nabla_{X} Y \in \Gamma(\operatorname{Rad}(T M))$, if and only if

$$
\begin{equation*}
\nabla_{X}^{*} F Y+h^{*}(X, F Y) \in \Gamma\left(F D_{2} \oplus D_{1}\right) \quad \text { and } \quad B h(X, F Y)=0 \tag{24}
\end{equation*}
$$

Thus the assertion follows from (23) and (24).
Theorem 4.3. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then
(i) The distribution D is integrable, if and only if,

$$
h(X, F Y)=h(F X, Y), \quad \forall \quad X, Y \in \Gamma(D) .
$$

(ii) The distribution D^{\prime} is integrable, if and only if,

$$
A_{F Z} V=A_{F V} Z, \quad \forall \quad Z, V \in \Gamma\left(D^{\prime}\right)
$$

Proof. From (18) and (19), we obtain $w \nabla_{X} Y=h(X, f Y)-C h(X, Y)$ for any $X, Y \in \Gamma(D)$, which implies that $w[X, Y]=h(X, f Y)-h(f X, Y)$, which proves (i).

Next, from (17), we have $f \nabla_{Z} V=-A_{w V} Z-B h(Z, V)$ for any $Z, V \in \Gamma\left(D^{\prime}\right)$, therefore $f[Z, V]=A_{w Z} V-A_{w V} Z$, which completes the proof.

Theorem 4.4. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then D-defines a totally geodesic foliation in M if and only if $B h(X, Y)=0$ for any $X, Y \in \Gamma(D)$.

Proof. Using the definition of $G C R$-lightlike submanifolds, D-defines a totally geodesic foliation in M if and only if, $\nabla_{X} Y \in \Gamma(D)$ for any $X, Y \in \Gamma(D)$, that is, if and only if

$$
g\left(\nabla_{X} Y, F \xi\right)=g\left(\nabla_{X} Y, F W\right)=0
$$

for any $X, Y \in \Gamma(D), \xi \in \Gamma\left(D_{2}\right)$ and $W \in \Gamma\left(L_{2}\right)$. From (6) and (13), we obtain

$$
\begin{align*}
g\left(\nabla_{X} Y, F \xi\right) & =\bar{g}\left(\bar{\nabla}_{X} F Y, \xi\right) \tag{25}\\
& =\bar{g}\left(h^{l}(X, F Y), \xi\right), \forall X, Y \in \Gamma(D), \xi \in \Gamma\left(D_{2}\right) .
\end{align*}
$$

Similarly, using (6) and (13), we obtain

$$
\begin{align*}
g\left(\nabla_{X} Y, F W\right) & =\bar{g}\left(\bar{\nabla}_{X} F Y, W\right) \tag{26}\\
& =\bar{g}\left(h^{s}(X, F Y), W\right), \forall X, Y \in \Gamma(D), W \in \Gamma\left(L_{2}\right) .
\end{align*}
$$

It follows from (25) and (26) that D defines a totally geodesic foliation in M, if and only if, $h^{s}(X, F Y)$ has no components in L_{2} and $h^{l}(X, F Y)$ has no components in L_{1} for any $X, Y \in \Gamma(D)$, that is, using (16), $B h(X, Y)=0$ for any $X, Y \in \Gamma(D)$.

Theorem 4.5. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then D^{\prime}-defines a totally geodesic foliation in M, if and only if, $A_{w Y} X \in \Gamma\left(D^{\prime}\right)$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$.

Proof. From (17), we obtain that $f \nabla_{X} Y=-A_{w Y} X-B h(X, Y)$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$. If D^{\prime} defines a totally geodesic foliation in M, then $A_{w Y} X=$ $-B h(X, Y)$, which implies that $A_{w Y} X \in \Gamma\left(D^{\prime}\right)$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$. Conversely, let $A_{w Y} X \in \Gamma\left(D^{\prime}\right)$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$, therefore $f \nabla_{X} Y=0$, which implies that $\nabla_{X} Y \in \Gamma\left(D^{\prime}\right)$. Hence the result follows.

Definition 4.6. A $G C R$-lightlike submanifold of a semi-Riemannian product manifold is called D geodesic (respectively, D^{\prime} geodesic) $G C R$-lightlike submanifold if its second fundamental form h satisfies $h(X, Y)=0$ for any $X, Y \in \Gamma(D)$ (respectively, $X, Y \in \Gamma\left(D^{\prime}\right)$).

Theorem 4.7. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then the distribution D defines a totally geodesic foliation in \bar{M} if and only if M is D-geodesic.
Proof. Let D defines a totally geodesic foliation in \bar{M} then $\bar{\nabla}_{X} Y \in \Gamma(D)$ for any $X, Y \in \Gamma(D)$. Then using (6) for any $\xi \in \Gamma\left(D_{2}\right)$ and $W \in \Gamma\left(L_{2}\right)$, we obtain

$$
\bar{g}\left(h^{l}(X, Y), \xi\right)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)=0, \quad \bar{g}\left(h^{s}(X, Y), W\right)=\bar{g}\left(\bar{\nabla}_{X} Y, W\right)=0 .
$$

Hence $h^{l}(X, Y)=h^{s}(X, Y)=0$, which implies that M is D-geodesic.
Conversely, let us assume that M is D-geodesic. Now using (6) and (13), for any $X, Y \in \Gamma(D), \xi \in \Gamma\left(D_{2}\right)$ and $W \in \Gamma\left(L_{2}\right)$, we have

$$
\bar{g}\left(\bar{\nabla}_{X} Y, F \xi\right)=\bar{g}\left(\bar{\nabla}_{X} F Y, \xi\right)=\bar{g}\left(h^{l}(X, F Y), \xi\right)=0
$$

and

$$
\bar{g}\left(\bar{\nabla}_{X} Y, F W\right)=\bar{g}\left(\bar{\nabla}_{X} F Y, W\right)=\bar{g}\left(h^{s}(X, F Y), W\right)=0 .
$$

Hence $\bar{\nabla}_{X} Y \in \Gamma(D)$, which completes the proof.
Theorem 4.8. Let M be a $G C R$-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is D-geodesic, if and only if,

$$
g\left(A_{W} X, Y\right)=\bar{g}\left(D^{l}(X, W), Y\right)
$$

and

$$
\nabla_{X}^{*} F \xi \notin \Gamma\left(D_{0} \perp F L_{1}\right), \quad A_{\xi^{\prime}}^{*} X \notin \Gamma\left(F L_{1}\right), \quad h^{l}\left(X, \xi^{\prime}\right) \notin \Gamma\left(L_{1}\right),
$$

for any $X, Y \in \Gamma(D), \xi \in \Gamma\left(D_{2}\right), \xi^{\prime} \in \Gamma(\operatorname{Rad}(T M))$ and $W \in \Gamma\left(L_{2}\right)$.
Proof. Using the definition of $G C R$-lightlike submanifolds, M is D-geodesic, if and only if,

$$
\begin{aligned}
& \bar{g}\left(h^{l}(X, Y), \xi\right)=0 \\
& \bar{g}\left(h^{s}(X, Y), W\right)=0
\end{aligned}
$$

for any $X, Y \in \Gamma(D), \xi \in \Gamma\left(D_{2}\right)$ and $W \in \Gamma\left(L_{2}\right)$. Thus for any $X, Y \in \Gamma(D)$, first part of assertion follows from (8).

Now, for $X, Y \in \Gamma(D)$ and $\xi \in \Gamma\left(D_{2}\right)$, using (6), (10) and (12), we have

$$
\begin{align*}
\bar{g}\left(h^{l}(X, Y), \xi\right) & =\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right) \\
& =-\bar{g}\left(F Y, \bar{\nabla}_{X} F \xi\right) \\
& =-g\left(F Y, \nabla_{X} F \xi\right)-\bar{g}\left(F Y, h^{l}(X, F \xi)\right) \\
& =-g\left(F Y, \nabla_{X}^{*} F \xi\right)-\bar{g}\left(F Y, h^{l}(X, F \xi)\right) . \tag{27}
\end{align*}
$$

en

Since $Y \in \Gamma(D)$, this implies that $Y \in \Gamma\left(D_{0}\right), Y \in \Gamma\left(D_{1}\right), Y \in \Gamma\left(D_{2}\right)$, or $Y \in \Gamma\left(F D_{2}\right)$. If $Y \in \Gamma\left(D_{0}\right)$ or $Y \in \Gamma\left(D_{2}\right)$, then we have

$$
\begin{equation*}
\bar{g}\left(F Y, h^{l}(X, F \xi)\right)=0 \tag{28}
\end{equation*}
$$

and if $Y \in \Gamma\left(D_{1}\right)$ or $Y \in \Gamma\left(F D_{2}\right)$, then we have

$$
\begin{equation*}
\bar{g}\left(F Y, h^{l}(X, F \xi)\right)=g\left(A_{\xi^{\prime}}^{*} X, F \xi\right)+\bar{g}\left(h^{l}\left(X, \xi^{\prime}\right), F \xi\right) \tag{29}
\end{equation*}
$$

for any $\xi^{\prime}=F Y \in \Gamma(\operatorname{Rad}(T M))$. Now using (28) and (29) in (27), we obtain

$$
\bar{g}\left(h^{l}(X, Y), \xi\right)=-g\left(F Y, \nabla_{X}^{*} F \xi\right)-g\left(A_{\xi^{\prime}}^{*} X, F \xi\right)-\bar{g}\left(h^{l}\left(X, \xi^{\prime}\right), F \xi\right)
$$

which proves the second part of the assertion.
Theorem 4.9. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is D^{\prime}-geodesic, if and only if, $A_{W} X$ and $A_{\xi}^{*} X$ have no components in $M_{2} \perp F D_{2}$, for any $X \in \Gamma\left(D^{\prime}\right), \xi \in \Gamma(\operatorname{Rad}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right.$.

Proof. For any $X, Y \in \Gamma\left(D^{\prime}\right)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right.$ using (8), we obtain

$$
\begin{equation*}
\bar{g}\left(h^{s}(X, Y), W\right)=g\left(A_{W} X, Y\right) \tag{30}
\end{equation*}
$$

and for any $\xi \in \Gamma(\operatorname{Rad}(T M))$ using (9) and (10), we obtain

$$
\begin{equation*}
\bar{g}\left(h^{l}(X, Y), \xi\right)=g\left(A_{\xi}^{*} X, Y\right) \tag{31}
\end{equation*}
$$

Hence the assertion follows from (30) and (31).
Definition 4.10. A $G C R$-lightlike submanifold of a semi-Riemannian product manifold is called mixed-geodesic $G C R$-lightlike submanifold if its second fundamental form h satisfies $h(X, Y)=0$ for any $X \in \Gamma(D)$ and $Y \in \Gamma\left(D^{\prime}\right)$.

Theorem 4.11. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is mixed geodesic, if and only if,

$$
A_{\xi}^{*} X \in \Gamma\left(D_{0} \perp F L_{1}\right), \quad \text { and } \quad A_{W} X \in \Gamma\left(D_{0} \perp \operatorname{Rad}(T M) \perp F L_{1}\right)
$$

for any $X \in \Gamma(D), \xi \in \Gamma(\operatorname{Rad}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$.
Proof. Using (9) and (10), for any $X \in \Gamma(D), Y \in \Gamma\left(D^{\prime}\right)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, we obtain

$$
\begin{equation*}
\bar{g}\left(h^{l}(X, Y), \xi\right)=g\left(A_{\xi}^{*} X, Y\right) \tag{32}
\end{equation*}
$$

and for any $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ using (8), we obtain

$$
\begin{equation*}
\bar{g}\left(h^{s}(X, Y), W\right)=g\left(A_{W} X, Y\right) \tag{33}
\end{equation*}
$$

Hence the result follows from (32) and (33).
Theorem 4.12. Let M be a mixed geodesic $G C R$-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then $A_{\xi}^{*} X \in \Gamma\left(F D_{2}\right)$ for any $X \in$ $\Gamma\left(D^{\prime}\right)$ and $\xi \in \Gamma\left(D_{2}\right)$.

Proof. Let $X \in \Gamma\left(D^{\prime}\right)$ and $\xi \in \Gamma\left(D_{2}\right)$ then we have

$$
h(X, F \xi)=\bar{\nabla}_{X} F \xi-\nabla_{X} F \xi=F \nabla_{X} \xi+F h(X, \xi)-\nabla_{X} F \xi
$$

Since M is mixed geodesic, therefore $F \nabla_{X} \xi=\nabla_{X} F \xi$. Using (10) and (15), we get

$$
-f A_{\xi}^{*} X-w A_{\xi}^{*} X+F \nabla_{X}^{* t} \xi=\nabla_{X}^{*} F \xi+h^{*}(X, F \xi)
$$

Equating the transversal components, we have $w A_{\xi}^{*} X=0$. Thus

$$
A_{\xi}^{*} X \in \Gamma\left(F D_{2} \perp D_{0}\right)
$$

Now, for any $Z \in \Gamma\left(D_{0}\right)$ and $\xi \in \Gamma\left(D_{2}\right)$, we have

$$
\bar{g}\left(A_{\xi}^{*} X, Z\right)=\bar{g}\left(\nabla_{X} \xi+\nabla_{X}^{* t} \xi, Z\right)=\bar{g}\left(\bar{\nabla}_{X} \xi, Z\right)=-g\left(\xi, \nabla_{X} Z+h(X, Z)\right)=0
$$

If $A_{\xi}^{*} X \in \Gamma\left(D_{0}\right)$, then using the non-degeneracy of D_{0} for any $Z \in \Gamma\left(D_{0}\right)$, we must have $\bar{g}\left(A_{\xi}^{*} X, Z\right) \neq 0$. Therefore $A_{\xi}^{*} X \notin \Gamma\left(D_{0}\right)$. Hence the assertion is proved.

Theorem 4.13. Let M be a mixed geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then the transversal section $V \in$ $\Gamma\left(F D^{\prime}\right)$ is D-parallel, if and only if, $\nabla_{X} F V \in \Gamma(D)$ for any $X \in \Gamma(D)$.
Proof. Let $Y \in \Gamma\left(D^{\prime}\right)$ such that $F Y=w Y=V \in \Gamma\left(L_{1} \perp L_{2}\right)$ and $X \in \Gamma(D)$, then using hypothesis that M is a mixed geodesic in (17), we have $f \nabla_{X} Y=$ $-A_{w Y} X=-A_{V} X$. Now, $\nabla_{X}^{t} V=\bar{\nabla}_{X} V+A_{V} X=\bar{\nabla}_{X} F Y-f \nabla_{X} Y$. Since $\bar{\nabla}$ is an almost product structure and M is mixed geodesic therefore we have $\nabla_{X}^{t} V=w \nabla_{X} Y$, that is, $\nabla_{X}^{t} V=w \nabla_{X} F V$, which proves the theorem.

Theorem 4.14. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M} such that $D^{s}(X, V) \in \Gamma\left(L_{2}^{\perp}\right)$. Then $A_{F V} X=F A_{V} X$ for any $X \in \Gamma(D)$ and $V \in \Gamma\left(L_{1}^{\perp}\right)$.
Proof. Let $X \in \Gamma(D), Y \in \Gamma\left(D^{\prime}\right)$ and $V \in \Gamma\left(L_{1}^{\perp}\right)$ then we have

$$
\begin{align*}
g\left(A_{F V} X-F A_{V} X, Y\right) & =g\left(A_{F V} X, Y\right)-g\left(A_{V} X, F Y\right) \\
& =-g\left(\bar{\nabla}_{X} F V, Y\right)+g\left(\bar{\nabla}_{X} V, F Y\right) \\
& =-g\left(\bar{\nabla}_{X} V, F Y\right)+g\left(\bar{\nabla}_{X} V, F Y\right) \\
& =0 . \tag{34}
\end{align*}
$$

For any $X \in \Gamma(D), Z \in \Gamma\left(D_{0}\right)$ and $V \in \Gamma\left(L_{1}^{\perp}\right)$, we have

$$
\begin{align*}
g\left(A_{F V} X-F A_{V} X, Z\right) & =g\left(A_{F V} X, Z\right)-g\left(A_{V} X, F Z\right) \\
& =-g\left(\bar{\nabla}_{X} F V, Z\right)+g\left(\bar{\nabla}_{X} V, F Z\right) \\
& =-g\left(\bar{\nabla}_{X} V, F Z\right)+g\left(\bar{\nabla}_{X} V, F Z\right) \\
& =0 . \tag{35}
\end{align*}
$$

For any $X \in \Gamma(D), N \in \Gamma(l \operatorname{tr}(T M))$ and $V \in \Gamma\left(L_{1}^{\perp}\right)$, we have

$$
\begin{align*}
g\left(A_{F V} X-F A_{V} X, N\right) & =g\left(A_{F V} X, N\right)-g\left(A_{V} X, F N\right) \\
& =-g\left(\bar{\nabla}_{X} F V, N\right)+g\left(\bar{\nabla}_{X} V, F N\right) \\
& =-g\left(F \bar{\nabla}_{X} V, N\right)+g\left(F \bar{\nabla}_{X} V, N\right) \\
& =0 . \tag{36}
\end{align*}
$$

For any $X \in \Gamma(D), F N \in \Gamma\left(F L_{1}\right)$ and $V \in \Gamma\left(L_{1}^{\perp}\right)$, we also have

$$
\begin{align*}
g\left(A_{F V} X-F A_{V} X, F N\right) & =g\left(A_{F V} X, F N\right)-g\left(A_{V} X, N\right) \\
& =-g\left(\bar{\nabla}_{X} F V, F N\right)+g\left(\bar{\nabla}_{X} V, N\right) \\
& =-g\left(F \bar{\nabla}_{X} V, F N\right)+g\left(\bar{\nabla}_{X} V, N\right) \\
& =-g\left(\bar{\nabla}_{X} V, N\right)+g\left(\bar{\nabla}_{X} V, N\right) \\
& =0 . \tag{37}
\end{align*}
$$

Hence the assertion follows from (34)-(37).

5. GCR-Lightlike product

Definition 5.1 ([15]). A $G C R$-lightlike submanifold of a semi-Riemannian product manifold \bar{M} is called a $G C R$-lightlike product if both the distributions D and D^{\prime} define totally geodesic foliations in M.

Theorem 5.2. Let M be a totally geodesic GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Suppose that there exists a transversal vector bundle of M, which is parallel along D^{\prime} with respect to the Levi-Civita connection on M, that is, $\bar{\nabla}_{X} V \in \Gamma(\operatorname{tr}(T M))$ for any $V \in \Gamma(\operatorname{tr}(T M))$ and $X \in \Gamma\left(D^{\prime}\right)$. Then M is a $G C R$-lightlike product.

Proof. Since M is a totally geodesic $G C R$-lightlike submanifold, therefore $B h(X, Y)=0$ for any $X, Y \in \Gamma(D)$. Therefore, the distribution D defines a totally geodesic foliation in M. Next, since $\bar{\nabla}_{X} V \in \Gamma(\operatorname{tr}(T M))$ for any $V \in \Gamma(\operatorname{tr}(T M))$ and $X \in \Gamma\left(D^{\prime}\right)$, therefore using (7), we obtain $A_{V} X=0$, then from (17), we get $f \nabla_{X} Y=0$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$, which implies that $\nabla_{X} Y \in \Gamma\left(D^{\prime}\right)$. Hence the distribution D^{\prime} defines a totally geodesic foliation in M. Thus M is a $G C R$-lightlike product.

Definition 5.3. A lightlike submanifold of a semi-Riemannian manifold is said to be an irrotational submanifold if $\bar{\nabla}_{X} \xi \in \Gamma(T M)$ for any $X \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$. Thus M is an irrotational lightlike submanifold, if and only if, $h^{l}(X, \xi)=0, h^{s}(X, \xi)=0$.

Theorem 5.4. Let M be an irrotational $G C R$-lightlike submanifold of a semiRiemannian product manifold \bar{M}. Then M is a $G C R$-lightlike product if the following conditions are satisfied:
(A) $\bar{\nabla}_{X} U \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ for any $X \in \Gamma(T M)$ and $U \in \Gamma(\operatorname{tr}(T M))$.
(B) $A_{\xi}^{*} Y \in \Gamma\left(F L_{2}\right)$ for any $Y \in \Gamma(D)$.

Proof. Using (7) with (A), we get $A_{W} X=0, D^{l}(X, W)=0$ and $\nabla_{X}^{l} W=0$ for any $X \in \Gamma(T M)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Therefore for any $X, Y \in \Gamma(D)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and using (8), we obtain $\bar{g}\left(h^{s}(X, Y), W\right)=0$, then non-degeneracy of $S\left(T M^{\perp}\right)$ implies that $h^{s}(X, Y)=0$. Hence, $B h^{s}(X, Y)=$ 0 . Now, let $X, Y \in \Gamma(D)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, then using (B), we have $\bar{g}\left(h^{l}(X, Y), \xi\right)=-g\left(\nabla_{X} \xi, Y\right)=g\left(A_{\xi}^{*} X, Y\right)=0$. Then using (4), we get $h^{l}(X, Y)=0$. Hence $B h^{l}(X, Y)=0$. Thus the distribution D defines a totally geodesic foliation in M.

Next, let $X, Y \in \Gamma\left(D^{\prime}\right)$, then $F Y=w Y \in \Gamma\left(L_{1} \perp L_{2}\right) \subset \operatorname{tr}(T M)$. Using (17), we obtain $f \nabla_{X} Y=-B h(X, Y)$, comparing the components along D, we get $f \nabla_{X} Y=0$, which implies that $\nabla_{X} Y \in \Gamma\left(D^{\prime}\right)$. Thus the distribution D^{\prime} defines a totally geodesic foliation in M. Hence M is a $G C R$-lightlike product.
Theorem 5.5. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is a $G C R$-lightlike product if and only if $\left(\nabla_{X} f\right) Y$ $=0$ for any $X, Y \in \Gamma(D)$ or $X, Y \in \Gamma\left(D^{\prime}\right)$.

Proof. Let $\left(\nabla_{X} f\right) Y=0$ for any $X, Y \in \Gamma(D)$ or $X, Y \in \Gamma\left(D^{\prime}\right)$. Let $X, Y \in$ $\Gamma(D)$, then $w Y=0$ and (17) gives that $B h(X, Y)=0$. Hence using the Theorem (4.4), the distribution D defines a totally geodesic foliation in M. Next, let $X, Y \in \Gamma\left(D^{\prime}\right)$. Since $B V \in \Gamma\left(D^{\prime}\right)$ for any $V \in \Gamma(\operatorname{tr}(T M))$, then (17) implies that $A_{w Y} X \in \Gamma\left(D^{\prime}\right)$. Hence using Theorem 4.5, the distribution D^{\prime} defines a totally geodesic foliation in M. Since both the distributions D and D^{\prime} define totally geodesic foliations in M, hence M is a $G C R$-lightlike product.

Conversely, let M be a $G C R$-lightlike product, therefore the distributions D and D^{\prime} define totally geodesic foliations in M. Using (13), for any $X, Y \in$ $\Gamma(D)$, we have $\bar{\nabla}_{X} F Y=F \bar{\nabla}_{X} Y$, then comparing the transversal components, we obtain $h(X, F Y)=F h(X, Y)$ and then $\left(\nabla_{X} f\right) Y=\nabla_{X} f Y-f \nabla_{X} Y=$ $\bar{\nabla}_{X} F Y-h(X, F Y)-F \bar{\nabla}_{X} Y+h(X, F Y)=0$, that is $\left(\nabla_{X} f\right) Y=0$ for any $X, Y \in \Gamma(D)$. Let D^{\prime} defines a totally geodesic foliation in M and using (13), we have $\bar{\nabla}_{X} F Y=F \bar{\nabla}_{X} Y$, then comparing the tangential components on both sides, we obtain $-A_{w Y} X=B h(X, Y)$, then (17) implies that $\left(\nabla_{X} f\right) Y=0$, which completes the proof.

Definition 5.6 ([6]). A lightlike submanifold (M, g) of a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be totally umbilical in \bar{M} if there is a smooth transversal vector field $H \in \Gamma(\operatorname{tr}(T M))$ on M, called the transversal curvature vector field of M, such that, for any $X, Y \in \Gamma(T M)$,

$$
\begin{equation*}
h(X, Y)=H \bar{g}(X, Y) \tag{38}
\end{equation*}
$$

Using (7), it is clear that M is a totally umbilical, if and only if, on each coordinate neighborhood u there exist smooth vector fields $H^{l} \in \Gamma(l \operatorname{tr}(T M))$ and $H^{s} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ such that

$$
\begin{equation*}
h^{l}(X, Y)=H^{l} g(X, Y), \quad h^{s}(X, Y)=H^{s} g(X, Y), \quad D^{l}(X, W)=0 \tag{39}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. M is called totally geodesic if $H=0$, that is, if $h(X, Y)=0$.

Lemma 5.7. Let M be a totally umbilical GCR-lightlike submanifold of semiRiemannian product manifold \bar{M}. Then the distribution D^{\prime} defines a totally geodesic foliation in M.

Proof. Let $X, Y \in \Gamma\left(D^{\prime}\right)$ then (17) implies that $f \nabla_{X} Y=-A_{w Y} X-B h(X, Y)$, then for any $Z \in \Gamma\left(D_{0}\right)$, we have

$$
\begin{aligned}
g\left(f \nabla_{X} Y, Z\right) & =-g\left(A_{w Y} X, Z\right)-g(B h(X, Y), Z) \\
& =\bar{g}\left(\bar{\nabla}_{X} w Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} F Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} Y, F Z\right)=\bar{g}\left(\bar{\nabla}_{X} Y, Z^{\prime}\right) \\
& =-g\left(Y, \nabla_{X} Z^{\prime}\right),
\end{aligned}
$$

where $Z^{\prime}=F Z \in \Gamma\left(D_{0}\right)$. Since $X \in \Gamma\left(D^{\prime}\right)$ and $Z \in \Gamma\left(D_{0}\right)$, then from (18) and (19), we have $w P \nabla_{X} Z=h(X, f Z)-C h(X, Z)=H g(X, f Z)-C H g(X, Z)=0$, therefore $w P \nabla_{X} Z=0$, which implies that $\nabla_{X} Z \in \Gamma(D)$. Thus (40) implies
that $g\left(f \nabla_{X} Y, Z\right)=0$, then the non-degeneracy of D_{0} implies that $f \nabla_{X} Y=0$. Hence $\nabla_{X} Y \in \Gamma\left(D^{\prime}\right)$ for any $X, Y \in \Gamma\left(D^{\prime}\right)$. Thus the result follows.

Theorem 5.8. Let M be a totally umbilical GCR-lightlike submanifold of semiRiemannian product manifold \bar{M}. Then M is a $G C R$-lightlike product if and only if $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$.
Proof. Let M be a $G C R$-lightlike product therefore the distributions D and D^{\prime} define totally geodesic foliations in M. Therefore using Theorem 4.4, we have $B h(X, Y)=0$ for any $X, Y \in \Gamma(D)$. Now using the hypothesis for $X \in \Gamma\left(D^{\prime}\right)$ and $Y \in \Gamma(D)$, we have $B h(X, Y)=g(X, Y) B H=0$. Thus $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$.

Conversely, let $B h(X, Y)=0$ for any $X \in \Gamma(T M)$ and $Y \in \Gamma(D)$. Now for any $X, Y \in \Gamma(D)$, we have $B h(X, Y)=0$, which implies that D defines a totally geodesic foliation in M. Let $X, Y \in \Gamma\left(D^{\prime}\right)$, then (17) implies that $A_{w Y} X=-f \nabla_{X} Y-B h(X, Y)$ and using Lemma 5.7 , we obtain $f A_{w Y} X+$ $w A_{w Y} X=-h(X, Y)$, comparing the tangential components on both sides, we have $f A_{w Y} X=0$, which implies that $A_{w Y} X \in \Gamma\left(D^{\prime}\right)$. Hence using Theorem 4.5 , the distribution D^{\prime} defines a totally geodesic foliation in M. Hence the result follows.

Theorem 5.9. Let M be a GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is totally geodesic manifold, if and only if, $\operatorname{Rad}(T M)$ and $S\left(T M^{\perp}\right)$ are Killing distributions on \bar{M}.

Proof. For any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, consider

$$
\begin{aligned}
\bar{g}(h(X, Y), \xi) & =\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)=X \bar{g}(Y, \xi)-\bar{g}\left(\bar{\nabla}_{X} \xi, Y\right) \\
& =\bar{g}([\xi, X], Y)-\bar{g}\left(\bar{\nabla}_{\xi} X, Y\right) \\
& =\bar{g}([\xi, X], Y)-\xi \bar{g}(X, Y)+\bar{g}\left(\bar{\nabla}_{\xi} Y, X\right) \\
& =-\xi \bar{g}(X, Y)+\bar{g}([\xi, X], Y)+\bar{g}([\xi, Y], X)-\bar{g}\left(\bar{\nabla}_{Y} X, \xi\right) \\
& =-\left(L_{\xi} \bar{g}\right)(X, Y)-\bar{g}(h(X, Y), \xi),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
2 \bar{g}(h(X, Y), \xi)=-\left(L_{\xi} \bar{g}\right)(X, Y) \tag{42}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$.
Similarly, for any $X, Y \in \Gamma(T M)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, we have

$$
\begin{aligned}
\bar{g}(h(X, Y), W) & =\bar{g}\left(\bar{\nabla}_{X} Y, W\right)=X \bar{g}(Y, W)-\bar{g}\left(\bar{\nabla}_{X} W, Y\right) \\
& =\bar{g}([W, X], Y)-\bar{g}\left(\bar{\nabla}_{W} X, Y\right) \\
& =\bar{g}([W, X], Y)-W \bar{g}(X, Y)+\bar{g}\left(\bar{\nabla}_{W} Y, X\right) \\
& =-W \bar{g}(X, Y)+\bar{g}([W, X], Y)+\bar{g}([W, Y], X)-\bar{g}\left(\bar{\nabla}_{Y} X, W\right) \\
& =-\left(L_{W} \bar{g}\right)(X, Y)-\bar{g}(h(X, Y), W),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
2 \bar{g}(h(X, Y), W)=-\left(L_{W} \bar{g}\right)(X, Y) \tag{44}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Thus from (42) and (44), we have $h(X, Y)=0$, if and only if, $\left(L_{\xi} \bar{g}\right)(X, Y)=0$ and $\left(L_{W} \bar{g}\right)(X, Y)=0$, for any $X, Y \in \Gamma(T M), \xi \in \Gamma(\operatorname{Rad}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Thus the result follows.

Theorem 5.10. Let M be a totally umbilical GCR-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. If the induced connection is a metric connection, then $h^{*}(X, Y)=0$ for any $X, Y \in \Gamma\left(D_{0}\right)$.

Proof. Let the induced connection ∇ be a metric connection, then from Theorem 2.2 on page 159 of [5], we have $h^{l}=0$. Hence using hypothesis in (19), we get $w P_{1} \nabla_{X} Y=0$, therefore, $\nabla_{X} Y \in \Gamma(S(T M))$, which implies that $h^{*}(X, Y)=0$ for any $X, Y \in \Gamma\left(D_{0}\right)$. Thus the result follows.

6. Minimal GCR-lightlike submanifolds

Definition 6.1 ([2]). A lightlike submanifold ($M, g, S(T M)$) isometrically immersed in a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be minimal if $h^{s}=0$ on $\operatorname{Rad}(T M)$ and trace $h=0$, where trace is written with respect to g restricted to $S(T M)$.

Theorem 6.2. Let M be a totally umbilical $G C R$-lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is minimal, if and only if, M is totally geodesic.

Proof. Suppose M is minimal then $h^{s}(X, Y)=0$ for any $X, Y \in \Gamma(\operatorname{Rad}(T M))$. Since M is totally umbilical therefore $h^{l}(X, Y)=H^{l} g(X, Y)=0$ for any $X, Y \in$ $\Gamma(\operatorname{Rad}(T M))$. Now, choose an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{m-r}\right\}$ of $S(T M)$ then from (39), we obtain

$$
\operatorname{trace} h\left(e_{i}, e_{i}\right)=\sum_{i=1}^{m-r} \epsilon_{i} g\left(e_{i}, e_{i}\right) H^{l}+\epsilon_{i} g\left(e_{i}, e_{i}\right) H^{s}=(m-r) H^{l}+(m-r) H^{s}
$$

Since M is minimal and $\operatorname{ltr}(T M) \cap S\left(T M^{\perp}\right)=\{0\}$, we get $H^{l}=0$ and $H^{s}=0$. Hence M is totally geodesic. Converse follows directly.

Theorem 6.3. A totally umbilical proper GCR-lightlike submanifold of a semiRiemannian product manifold \bar{M} is minimal, if and only if,

$$
\text { trace } A_{W_{p}}=0 \quad \text { and } \quad \text { trace } A_{\xi_{k}}^{*}=0 \quad \text { on } \quad D_{0} \perp F L_{2}
$$

for $W_{p} \in \Gamma\left(S\left(T M^{\perp}\right)\right.$, where $k \in\{1,2, \ldots, r\}$ and $p \in\{1,2, \ldots, n-r\}$.

Proof. Using (38), it is clear that $h^{s}(X, Y)=0$ on $\operatorname{Rad}(T M)$. Using the definition of a $G C R$-lightlike submanifold, we have

$$
\begin{aligned}
\left.\operatorname{trace} h\right|_{S(T M)}= & \sum_{i=1}^{a} h\left(Z_{i}, Z_{i}\right)+\sum_{j=1}^{b} h\left(F \xi_{j}, F \xi_{j}\right) \\
& +\sum_{j=1}^{b} h\left(F N_{j}, N_{j}\right)+\sum_{l=1}^{c} h\left(F W_{l}, F W_{l}\right),
\end{aligned}
$$

where $a=\operatorname{dim}\left(D_{0}\right), b=\operatorname{dim}\left(D_{2}\right)$ and $c=\operatorname{dim}\left(L_{2}\right)$. Since M is totally umbilical therefore from (38), we have $h\left(F \xi_{j}, F \xi_{j}\right)=h\left(F N_{j}, N_{j}\right)=0$. Thus above equation becomes

$$
\begin{align*}
\left.\operatorname{trace} h\right|_{S(T M)}= & \sum_{i=1}^{a} h\left(Z_{i}, Z_{i}\right)+\sum_{l=1}^{c} h\left(F W_{l}, F W_{l}\right) \\
= & \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(h^{l}\left(Z_{i}, Z_{i}\right), \xi_{k}\right) N_{k} \\
& +\sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}\left(h^{s}\left(Z_{i}, Z_{i}\right), W_{p}\right) W_{p} \\
& +\sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(h^{l}\left(F W_{l}, F W_{l}\right), \xi_{k}\right) N_{k} \\
& +\sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}\left(h^{s}\left(F W_{l}, F W_{l}\right), W_{p}\right) W_{p} \tag{45}
\end{align*}
$$

where $\left\{W_{1}, W_{2}, \ldots, W_{n-r}\right\}$ is an orthonormal basis of $S\left(T M^{\perp}\right)$. Using (8) and (11) in (45), we obtain

$$
\begin{aligned}
\left.\operatorname{trace} h\right|_{S(T M)}= & \sum_{i=1}^{a} \frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(A_{\xi_{k}}^{*} Z_{i}, Z_{i}\right) N_{k} \\
& +\sum_{i=1}^{a} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}\left(A_{W_{p}} Z_{i}, Z_{i}\right) W_{p} \\
& +\sum_{l=1}^{c} \frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(A_{\xi_{k}}^{*} F W_{l}, F W_{l}\right) N_{k} \\
& +\sum_{l=1}^{c} \frac{1}{n-r} \sum_{p=1}^{n-r} \bar{g}\left(A_{W_{p}} F W_{l}, F W_{l}\right) W_{p} .
\end{aligned}
$$

Thus trace $\left.h\right|_{S(T M)}=0$, if and only if, trace $A_{W_{p}}=0$ and trace $A_{\xi_{k}^{*}}=0$ on $D_{0} \perp F L_{2}$. Hence the result follows.

Theorem 6.4. Let M be an irrotational lightlike submanifold of a semi-Riemannian product manifold \bar{M}. Then M is minimal, if and only if, trace $\left.A_{\xi_{k}}^{*}\right|_{S(T M)}=0$ and trace $\left.A_{W_{j}}\right|_{S(T M)}=0$, where $W_{j} \in \Gamma\left(S\left(T M^{\perp}\right)\right.$, $k \in\{1,2, \ldots, r\}$ and $j \in\{1,2, \ldots, n-r\}$.

Proof. M is irrotational implies that $h^{s}(X, \xi)=0$ for any $X \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, therefore $h^{s}=0$ on $\operatorname{Rad}(T M)$. Also

$$
\begin{aligned}
\left.\operatorname{trace} h\right|_{S(T M)} & =\sum_{i=1}^{m-r} \epsilon_{i}\left(h^{l}\left(e_{i}, e_{i}\right)+h^{s}\left(e_{i}, e_{i}\right)\right) \\
& =\sum_{i=1}^{m-r} \epsilon_{i}\left\{\frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(h^{l}\left(e_{i}, e_{i}\right), \xi_{k}\right) N_{k}+\frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}\left(h^{s}\left(e_{i}, e_{i}\right), W_{j}\right) W_{j}\right\} \\
& =\sum_{i=1}^{m-r} \epsilon_{i}\left\{\frac{1}{r} \sum_{k=1}^{r} \bar{g}\left(A_{\xi_{k}}^{*} e_{i}, e_{i}\right) N_{k}+\frac{1}{n-r} \sum_{j=1}^{n-r} \bar{g}\left(A_{W_{j}} e_{i}, e_{i}\right) W_{j}\right\}
\end{aligned}
$$

Hence theorem follows.
Acknowledgment. The authors would like to thank the anonymous referee for his/her valuable suggestions that helped them to improve this paper.

References

[1] M. Atçeken and E. Kiliç, Semi-invariant lightlike submanifolds of a semi-Riemannian product manifold, Kodai Math. J. 30 (2007), no. 3, 361-378.
[2] C. L. Bejan and K. L. Duggal, Global lightlike manifolds and harmonicity, Kodai Math. J. 28 (2005), no. 1, 131-145.
[3] K. L. Duggal, CR-structures and Lorentzian geometry, Acta Appl. Math. 7 (1986), no. 3, 211-223.
[4] , Lorentzian geometry of CR submanifolds, Acta Appl. Math. 17 (1989), no. 2, 171-193.
[5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of semi-Riemannian Manifolds and Applications, Vol. 364 of Mathematics and its Applications, Kluwer Academic Publishers, The Netherlands, 1996.
[6] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), no. 1, 49-68.
[7] K. L. Duggal and B. Sahin, Screen Cauchy-Riemann lightlike submanifolds, Acta Math. Hungar. 106 (2005), no. 1-2, 137-165.
[8] , Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds, Acta Math. Hungar. 112 (2006), no. 1-2, 107-130.
[9] S. M. Khursheed Haider, Mamta Thakur, and Advin, Screen Cauchy-Riemann lightlike submanifolds of a semi-Riemannian product manifold, Int. Electron. J. Geom. 4 (2011), no. 2, 141-154.
[10] E. Kiliç, B. Şahin, and S. Keleş, Screen semi invariant lightlike submanifolds of a semiRiemannian product manifolds, Int. Electron. J. Geom. 4 (2011), 120-135.
[11] R. Kumar, S. Kumar, and R. K. Nagaich, GCR-lightlike product of indefinite Kaehler manifolds, ISRN Geometry. 2011 (2011), Article ID 531281, 13 pages.
[12] , Integrability of distributions in GCR-lightlike submanifolds of indefinite Kaehler manifolds, Commun. Korean Math. Soc. 27 (2012), no. 3, 591-602.
[13] S. Kumar, R. Kumar, and R. K. Nagaich, Characterization of holomorphic bisectional curvature of GCR-lightlike submanifolds, Advances in Mathematical Physics. 2012 (2012), Article ID 356263, 18 pages.
[14] _, GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds, Bull. Korean Math. Soc. 50 (2013), no. 4, 1173-1192.
[15] D. N. Kupeli, Singular Semi-Riemannian Geometry, vol. 366, Kluwer, Dordrecht, 1996.
[16] B. O'Neill, Semi-Riemannian Geometry with Applicitaions to Relativity, Academic Press, New York, 1983.
[17] B. Şahin and M. Atçeken, Semi-Invariant submanifolds of Riemannian product manifold, Balkan J. Geom. Appl. 8 (2003), no. 1, 91-100.
[18] X. Senlin and N. Yilong, Submanifolds of product Riemannian manifold, Acta Math. Sci. Ser. B Engl. Ed. 20 (2000), no. 2, 213-218.

Sangeet Kumar
School of Applied Sciences
Chitkara University
Jhansla, Rajpura, Distt. Patiala, India
E-mail address: sp7maths@gmail.com
Rakesh Kumar
Department of Basic and Applied Sciences
Punjabi University
Patiala, India
E-mail address: dr_rk37c@yahoo.co.in
Rakesh Kumar Nagaich
Department of Mathematics
Punjabi University
Patiala, India
E-mail address: nagaichrakesh@yahoo.com

[^0]: Received May 23, 2013; Revised November 20, 2013.
 2010 Mathematics Subject Classification. 53C15, 53C40, 53C50.
 Key words and phrases. CR-lightlike submanifolds, $S C R$-lightlike submanifolds, $G C R$ lightlike submanifolds, semi-Riemannian product manifold, minimal lightlike submanifolds.

