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NONCONSTANT WARPING FUNCTIONS ON

EINSTEIN WARPED PRODUCT MANIFOLDS WITH

2−DIMENSIONAL BASE

Soo-Young Lee

Abstract. In this paper, we study nonconstant warping functions
on an Einstein warped product manifold M = B×f2F with a warped
product metric g = gB +f(t)2gF . And we consider a 2−dimensional
base manifold B with a metric gB = dt2 + (f ′(t))2du2. As a result,
we prove the following: if M is an Einstein warped product manifold
with a 2−dimensional base, then there exist generally nonconstant
warping functions f(t).

1. Introduction

In [1], A.L. Besse, the author studies an Einstein manifold. And he
considers an Einstein warped product manifold M = B ×f2 F with a
warped product metric g = gB + f(t)2gF . In addition to, he may also
consider an Einstein warped product manifold with a 2−dimensional
base manifold.

In a recent study, we have various results on an Einstein warped
product manifold by several authors( [4, 6–10]). And we get results on
an Einstein warped product manifold with a 2−dimensional base by
several authors( [8–10]).

In this paper, we study the following question:
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Main Theorem : If M = B ×f2 F is an Einstein warped product
manifold with a 2−dimensional base, then there exist generally noncon-
stant warping functions f(t).

Definition 1.1. Let (B, gB) and (F, gF ) be two manifolds. Let gB
be metric tensors of B and gF be metric tensors of F. We denote by π
and σ the projections of B × F onto B and F, respectively.

For a positive smooth function f on B the warped product manifold
M = B ×f F is the product manifold M = B × F furnished with the
metric tensor g defined by g = π∗(gB) + (f ◦ π)2σ∗(gF ). We denote by
π∗ and σ∗ the pullback π and σ, respectively. Here B is called the base
of M and F the fiber( [1–3,11]).

We denote by RicF is the Ricci curvature of (F, gF ) and RicB is the
Ricci curvature of (B, gB). We denote by RicB and RicF the lifts to M
of Ricci curvatures of B and F, respectively. Let p be a dimension of
F ( [1–3,11]).

Proposition 1.2. (See Proposition 9.106 in [1].) The Ricci curvature
Ric of the warped product manifold M = B ×f2 F satisfies

(i) Ric(V,W ) = RicF (V,W ) + g(V,W )[(
∆f

f
− (p− 1)

||df ||2

f 2
)π],

(ii) Ric(X, V ) = 0,

(iii) Ric(X, Y ) = RicB(X, Y )− p

f
Hf (X, Y )

for any vertical vectors V,W and any horizontal vectors X, Y. We are
defined by df is the gradient of f for gB, H

f is the Hessian of f for gB.
We denote by ∆f is the Laplacian of f for gB and p is a dimension of F.

Corollary 1.3. (See Corollary 9.107 in [1].) The warped product
manifold M = B ×f2 F is an Einstein manifold (with Ric = λg) if and
only if gF , gB and f satisfy
(i) (F, gF ) is Einstein (with RicF = λ0gF ),

(ii)
∆f

f
− (p− 1)

‖df‖2

f 2
+
λ0
f 2

= λ,

(iii) RicB −
p

f
Hf = λgB.

Obviously, (i) gives a condition on (F, gF ) alone, whereas (ii) and (iii)
are two differential equations for f on (B, gB).
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Remark 1.4. (See 9.108 in [1].) Using Corollary 1.3 (ii) and (iii), we
replace the unique equation

(1.1)

RicB −
p

f
Hf =

1

2
[ sB + 2p

∆f

f
− p(p− 1)

‖df‖2

f 2
+ p

λ0
f 2
− (p+ q− 2)λ ]gB,

where q = dimB.

Remark 1.5. (See 9.116 in [1].) In a special case of a warped product
manifold M = B×f2F over a 2−dimensional base. We denote by sB is

a Gaussian curvature of B, RicB =
1

2
sBgB, and q = 2. Hence equation

(1.1) simplifies to

(1.2) Hf = −1

2
[ 2∆f − (p− 1)

||df ||2

f
+
λ0
f
− λf ]gB.

Lemma 1.6. (See Lemma 9.117 in [1].) On a 2−dimensional manifold
(B, gB) the equation Hf = f ′′gB admits a nonconstant solution f if
and only if, locally at points where df 6= 0, there exist local coordinates
(t, u) such that f is a function of t alone and gB = dt2 + f ′(t)2du2.

Remark 1.7. (See 9.117a in [1].) With the notations of the lemma,
equation (1.2) becomes an ordinary differential equation for f in the
variable t and ‖df‖2 = (f ′)2. Then we have an equation

(1.3) 2f ′′ + (p− 1)
f ′2

f
− λ0

f
+ λf = 0.

If we denote f(t) = u(t)
2
p+1 , where u(t) is a positive function and

dimF = p > 1, then equation (1.3) can be changed into

u′′(t) =
(p+ 1)λ0

4
u(t)1−

4
p+1 − (p+ 1)λ

4
u(t).

By multiplies both side u′(t) and an integration gives, then we obtain

(1.4) (u′(t))2 =
(p+ 1)2 λ0

4(p− 1)
u(t)2−

4
p+1 − (p+ 1)λ

4
(u(t))2.
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We study generally nonconstant warping functions of equation (1.4)
on an Einstein warped product manifoldM = B×f2F with a 2−dimensional

base B and the metric gB = dt2 + f ′(t)2du2.

2. Fiber manifold with λ0 = 0

Let dimF = p > 1. In case that λ0 = 0, we consider to the following
theorem according to the signs of λ.

Theorem 2.1. In case that λ0 = 0. If λ is a constant, then there
exist solutions of equation (1.4).
(i) For λ = 0, u(t) = c, where c is a positive constant.
(ii) For λ > 0, there does not exist a solution of equation (1.4).

(iii) For λ < 0, u(t) = e±
√
−(p+1)λ

4
t+c, where c is a constant.

Proof. For λ0 = 0, equation (1.4) implies that

(2.1) (u′(t))2 = −(p+ 1)λ

4
(u(t))2.

(i) For λ = 0, equation (2.1) implies that (u′(t))2 = 0 and u′(t) = 0.
An integration gives u(t) = c, where c is a positive constant.
(ii) For λ > 0, equation (2.1) implies that (u′(t))2 < 0, which is a
contradiction. Hence there does not exist a solution of equation (1.4).

(iii) For λ < 0, then we get u′(t) = ±
√
−(p+ 1)λ

4
u(t), where u(t) is

a positive function. Multiplying both sides of equation by
1

u(t)
and an

integration gives

ln |u(t)| = ±
√
−(p+ 1)λ

4
t+ c,

where c is a constant. Then we have u(t) = e±
√
−(p+1)λ

4
t+c, where c is a

constant and u(t) is a positive function.

Therefore we have u(t) = e±
√
−(p+1)λ

4
t+c, where c is a constant.

From above Theorem 2.1, the following remark considers that equa-
tion (1.3) satisfies generally nonconstant warping function f(t).
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Remark 2.2. For λ0 = 0, there exist generally nonconstant warping
functions f(t) of equation (1.3) according to the signs of λ :
(i) For λ = 0, f(t) = c, where c is a positive constant. Because c is not
nonconstant, thus f(t) = c is not our nonconstant solution.
(ii) For λ > 0, there does not exist a solution of equation (1.3).

(iii) For λ < 0, f(t) = e
±
√
−λ
p+1

t+ 2c
p+1 , where c is a constant.

The following example shows that our results are satisfied with well-
known special cases of equation (1.3) besides the constant cases.

Example 2.3. Let dimF = p > 1. From Remark 2.2, for the well-
known special cases λ0 and λ, we have a nonconstant warping function
of equation (1.3). For λ0 = 0 and λ = −(p+ 1), then f(t) = e±t when
c = 0.

3. Fiber manifold with λ0 > 0

Let dimF = p > 1. In case that λ0 > 0, we consider to the following
theorem according to the signs of λ.

Theorem 3.1. In case that λ0 > 0. If λ is a constant, then there
exist solutions u(t) of equation (1.4):

(i) For λ = 0, u(t) =
(
±
√

λ0
p−1 t+ 2c

p+1

) p+1
2

,

(ii) for λ > 0, u(t) =
(√

(p−1)λ
(p+1)λ0

sec(±
√

λ
p+1

t−
√

λ
p+1

c )
)− p+1

2

,

(iii) for λ < 0, u(t) =
(√

−(p+1)λ0
(p−1)λ sinh(±

√
−λ
p+1

t+
√
−λ
p+1

c )
) p+1

2

,

where c is a constant.

Proof. (i) For λ = 0, equation (1.4) implies that we have equation

(u′(t))2 =
(p+ 1)2λ0
4(p− 1)

u(t)2−
4
p+1 .

Here we get u′(t) = ±

√
(p+ 1)2λ0
4(p− 1)

u(t)1−
2
p+1 . Multiplying both sides

of equation by u(t)−1+
2
p+1 and an integration gives
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p+ 1

2
u(t)

2
p+1 = ±

√
(p+ 1)2λ0
4(p− 1)

t+ c,

where c is a constant. Then we obtain u(t)
2
p+1 = ±

√
λ0
p− 1

t+
2c

p+ 1
,

where c is a constant. Therefore we have

u(t) =

(
±

√
λ0
p− 1

t+
2c

p+ 1

) p+1
2

,

where c is a constant.
(ii) For λ > 0, first of all, equation (1.4) simplifies that we rewritten as

(3.1)

∫
1

u(t)
√

(p+1)2 λ0
4(p−1) u(t)−

4
p+1 − (p+1)λ

4

du = ±
∫
dt.

Putting
(p+ 1)2λ0
4(p− 1)

= a > 0 and
(p+ 1)λ

4
= b > 0, then we have∫

1

u(t)

√
a u(t)

−4
p+1 − b

du = ±
∫
dt.

By using trigonometric substitution, u(t)
−2
p+1 =

√
b√
a

sec θ, then we get∫
−p+ 1

2

1√
b
dθ = ±

∫
dt.

Upon integration, we obtain −p+ 1

2

1√
b
θ = ±t+ c, where c is a con-

stant. Now we have

u(t)
−2
p+1 =

√
b√
a

sec(± 2
√
b

p+ 1
t− 2

√
b

p+ 1
c ),

where c is a constant. Then we become

u(t) =

( √
b√
a

sec(± 2
√
b

p+ 1
t− 2

√
b

p+ 1
c )

)− p+1
2

,
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where c is a constant. Therefore we have

u(t) =

( √
(p− 1)λ

(p+ 1)λ0
sec(±

√
λ

p+ 1
t−

√
λ

p+ 1
c )

)− p+1
2

,

where c is a constant.

(iii) For λ < 0, by a proof similar to Theorem 3.1 (ii), putting
(p+ 1)2λ0
4(p− 1)

=

a > 0 and −(p+ 1)λ

4
= b > 0, equation (3.1) implies that we have the

equation ∫
1

u(t)

√
a u(t)

−4
p+1 + b

du = ±
∫
dt.

By using trigonometric substitution, u(t)
−2
p+1 =

√
b√
a

tan θ, then we ob-

tain ∫
−p+ 1

2

1√
b

csc θdθ = ±
∫
dt.

Upon integration, we become ln | csc θ + cot θ| = ± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ,

where c is a constant. Here we obtain

ln |

√
a+ b u(t)

4
p+1

√
a

+

√
b u(t)

2
p+1

√
a

| = ± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ,

where c is a constant. Now we get

|
√
a+ b u(t)

4
p+1 +

√
b u(t)

2
p+1 | = e±

2
√
b

p+1
t+ 2
√
b

p+1
c+ln

√
a,

where c is a constant and e±
2
√
b

p+1
t+ 2
√
b

p+1
c+ln

√
a are positive functions.

Hence we have

u(t)
2
p+1 =

√
a√
b

sinh(± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ),
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where c is a constant. Therefore we have

u(t) =

(√
−(p+ 1)λ0

(p− 1)λ
sinh(±

√
−λ
p+ 1

t+

√
−λ
p+ 1

c )

) p+1
2

,

where c is a constant.

Remark 3.2. For λ0 > 0, there exist generally nonconstant warping
functions f(t) of the equation (1.3) according to the signs of λ:

(i) For λ = 0, then f(t) = ±

√
λ0
p− 1

t+
2c

p+ 1
,

(ii) for λ > 0, then f(t) =

√
(p+ 1)λ0
(p− 1)λ

cos(±

√
λ

p+ 1
t−

√
λ

p+ 1
c ),

(iii) for λ < 0, then f(t) =

√
−(p+ 1)λ0

(p− 1)λ
sinh(±

√
−λ
p+ 1

t+

√
−λ
p+ 1

c ),

where c is a constant.

Example 3.3. Let dimF = p > 1. From the Remark 3.2, we have
nonconstant warping functions f(t) of equation (1.3) depending on well-
known special constants λ0 and λ when c = 0.
(i) For λ0 = p− 1 and λ = 0, then f(t) = ±t.
(ii) For λ0 = p− 1 and λ = p+ 1, then f(t) = cos t.
(iii) For λ0 = p− 1 and λ = −(p+ 1), then f(t) = ± sinh t.

4. Fiber manifold with λ0 < 0

Let dimF = p > 1. In case that λ0 < 0, we consider to the following
theorem according to the signs of λ.

Theorem 4.1. In case that λ0 < 0. If λ is a constant, then there
exists a solution equation (1.4):
(i) For λ ≥ 0, there does not exist a solution of equation (1.4).

(ii) For λ < 0, u(t) =

(√
(p+ 1)λ0
(p− 1)λ

cosh(±

√
−λ
p+ 1

t+

√
−λ
p+ 1

c )

) p+1
2

,

where c is a constant.
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Proof. (i) For λ ≥ 0, equation (1.4) implies that (u′(t))2 < 0. There-
fore there does not exist a solution of equation (1.4).
(ii) For λ < 0, by a proof similar to Theorem 3.1 (ii) and (iii), putting

−(p+ 1)2λ0
4(p− 1)

= a > 0 and −(p+ 1)λ

4
= b > 0, equation (3.1) implies

that we get the equation∫
1

u(t)

√
−a u(t)

−4
p+1 + b

du = ±
∫
dt.

By using trigonometric substitution, u(t)
−2
p+1 =

√
b√
a

sin θ, then we ob-

tain ∫
−p+ 1

2

1√
b

csc θdθ = ±
∫
dt.

Upon integration, we have ln | csc θ + cot θ| = ± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ,

where c is a constant. Here we become

ln |
√
b u(t)

2
p+1

√
a

+

√
−a+ b u(t)

4
p+1

√
a

| = ± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ,

where c is a constant. Here we get

|
√
b u(t)

2
p+1 +

√
−a+ b u(t)

4
p+1 | = e±

2
√
b

p+1
t+ 2
√
b

p+1
c+ln

√
a,

where c is a constant and e±
2
√
b

p+1
t+ 2
√
b

p+1
c+ln

√
a are positive functions. Then

we have

u(t)
2
p+1 =

√
a√
b

cosh(± 2
√
b

p+ 1
t+

2
√
b

p+ 1
c ),

where c is a constant. Therefore we have

u(t) =

(√
(p+ 1)λ0
(p− 1)λ

cosh(±

√
−λ
p+ 1

t+

√
−λ
p+ 1

c )

) p+1
2

,

where c is a constant.
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Remark 4.2. For λ0 < 0, there exists generally nonconstant warping
function f(t) of equation (1.3) for the signs of λ:
(i) For λ ≥ 0, there does not exist a positive solution of equation (1.3).

(ii) For λ < 0, then f(t) =

√
(p+ 1)λ0
(p− 1)λ

cosh(±

√
−λ
p+ 1

t+

√
−λ
p+ 1

c ),

where c is a constant.

Example 4.3. Let dimF = p > 1. From the Remark 4.2, for the
well-known special cases λ0 = −(p− 1), λ = −(p+ 1), and c = 0, then
f(t) = cosh(t).

From above Remark 2.2, Remark 3.2, and Remark 4.2, the following
remark shows that equation (1.3) satisfies nonconstant warping functions
f(t).

Remark 4.4. If M = B×f2F is an Einstein warped product manifold
with a 2−dimensional base B and a metric gB = dt2 + f ′(t)2 du2,
then there exist generally nonconstant warping functions f(t) of equation
(1.3). The behavior of the solutions depends on the signs of λ0 and λ.
We are reduced to the following five cases (besides the constant case),
where c = 0:

(i) For λ0 = 0 and λ < 0, then f(t) = e
±
√
−λ
p+1

t
.

(ii) For λ0 > 0 and λ = 0, then f(t) = ±
√

λ0
p−1 t .

(iii) For λ0 > 0 and λ > 0, then f(t) =
√

(p+1)λ0
(p−1)λ cos(±

√
λ
p+1

t ) .

(iv) For λ0 > 0 and λ < 0, then f(t) =
√
−(p+1)λ0
(p−1)λ sinh(±

√
−λ
p+1

t ) .

(v) For λ0 < 0 and λ < 0, then f(t) =
√

(p+1)λ0
(p−1)λ cosh(±

√
−λ
p+1

t ) .

Thus main theorem is verified.
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