EINSTEIN WARPED PRODUCT MANIFOLDS WITH 3DIMENSIONAL FIBER MANIFOLDS

Yoon-TaE Jung

Abstract

In this paper, we consider the existence of nonconstant warping functions on a warped product manifold $M=B \times_{f^{2}} F$, where B is a $q(>2)$-dimensional base manifold with a nonconstant scalar curvature $S_{B}(x)$ and F is a $3-$ dimensional fiber Einstein manifold and discuss that the resulting warped product manifold is an Einstein manifold, using the existence of the solution of some partial differential equation.

1. Introduction

In [2], A.L. Besse studied a new compact Einstein manifold using the warped product. Then A.L. Besse asked the following: "Does there exist an Einstein warped product manifold with a nonconstant warping function?"

In $[9],[10]$, and $[11]$, the authors proved that there does not exist a compact Einstein warped product space with a nonconstant warping function, if the scalar curvature on M is nonpositive or the base is a compact 2-dimensional manifold. Hence here we assume that the base manifold B is a compact $q(>2)$ - dimensional manifold with the positive scalar curvature somewhere.

Definition 1.1. Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be two manifolds. Let g_{B} be a metric tensor of B and g_{F} be a metric tensor of F. We denote by π and σ the projections of $B \times F$ onto B and F, respectively. For a positive smooth function f on B the warped product manifold $M=B \times{ }_{f^{2}} F$ is the product manifold $M=B \times F$ furnished with the metric tensor g

[^0]defined by $g=\pi^{*}\left(g_{B}\right)+(f \circ \pi)^{2} \sigma^{*}\left(g_{F}\right)$. We denote by π^{*} and σ^{*} the pullback π and σ, respectively. Here B is called the base of M and F the fiber ([1,3,4,5,12]).

Now we recall the formula for the Ricci curvature tensor Ric of the warped product manifold $M=B \times_{f^{2}} F$. We write $R i c^{B}$ for the pullback by π of the Ricci curvature of B and similarly for $R i c^{F}$.

Proposition 1.2. On a warped product manifold $M=B \times{ }_{f^{2}} F$ with $p=\operatorname{dim} F>1$, let X, Y be horizontal and V, W vertical. Then
(i) $\operatorname{Ric}(X, Y)=\operatorname{Ric}^{B}(X, Y)-\frac{p}{f} H^{f}(X, Y)$,
(ii) $\operatorname{Ric}(X, V)=0$,
(iii) $\operatorname{Ric}(V, W)=\operatorname{Ric}^{F}(V, W)-g(V, W)\left(\frac{\Delta f}{f}+(p-1) \frac{g(d f, d f)}{f^{2}}\right)$,
where H^{f} and Δf denote by the Hessian of f and the Laplacian of f for g_{B}.

Proof. See Proposition 9.106 in ([2, p.266]).
Corollary 1.3. Let F be a 3 -dimensional manifold. The warped product $M=B \times_{f^{2}} F$ is an Einstein manifold (with Ric $=\lambda g$) if and only if g_{F}, g_{B} and f satisfy
(i) $\left(F, g_{F}\right)$ is Einstein (with Ric $\operatorname{Ric}_{F}=\lambda_{0} g_{F}$),
(ii) $\frac{\Delta f}{f}-2 \frac{\|d f\|^{2}}{f^{2}}+\frac{\lambda_{0}}{f^{2}}=\lambda$,
(iii) $\operatorname{Ric}_{B}-\frac{3}{f} H^{f}=\lambda g_{B}$.

Proof. See Corollary 9.107 in [2, p.267]
Obviously, (i) gives a condition on (F, g_{F}) alone, whereas (ii) and (iii) are two differential equations for f on $\left(B, g_{B}\right)$.

In this paper, we consider the following question:
Question A : If the base manifold B is a compact $q(>2)-\operatorname{dimensional}$ manifold and the fiber manifold F is a 3 -dimensional Einstein manifold with $\operatorname{Ric}_{F}=\lambda_{0} g_{F}$, then do there exist a constant λ and a nonconstant warping function f such that the resulting warped product manifold $M=B \times_{f^{2}} F$ is an Einstein manifold with Ric $=\lambda g$?

In [6], the author proved that if B is a compact $q(>2)-$ dimensional manifold with a nonconstant scalar curvature and F is a $p(>3)$ - dimensional Einstein manifold, then there exist a constant λ and a
nonconstant warping function f such that the resulting warped product manifold $M=B \times{ }_{f^{2}} F$ is an Einstein manifold with Ric $=\lambda g$.

In this paper, the similar results are proved in case of 3-dimensional fiber manifolds, using a partial differential equation.

Remark 1.4. We denote by $\operatorname{dim} B=q(>2)$ and $\operatorname{dim} F=3$. Then, using Corollary 1.3 (ii) and (iii), we may replace the unique equation

$$
\begin{equation*}
\operatorname{Ric}_{B}-\frac{3}{f} H^{f}=\frac{1}{2}\left[S_{B}+6 \frac{\Delta f}{f}-6 \frac{\|d f\|^{2}}{f^{2}}+3 \frac{\lambda_{0}}{f^{2}}-(1+q) \lambda\right] g_{B} \tag{1.1}
\end{equation*}
$$

where S_{B} is a scalar curvature of B (See also (9.108) in [2, p.267]).

In order to solve Question A, we study equation (1.1) on M with $\operatorname{dim} B=q(>2)$ and $\operatorname{dim} F=3$. Recalling that $\operatorname{Ric}_{B}-\frac{3}{f} H^{f}=\lambda g_{B}$ and that S_{B} is a scalar curvature on B, equation (1.1) implies that we have equation

$$
\begin{equation*}
0=\Delta f-\frac{\|d f\|^{2}}{f}+\frac{\lambda_{0}}{2 f}+\frac{S_{B}-(3+q) \lambda}{6} f \tag{1.2}
\end{equation*}
$$

From now on, we study the nonconstant solution of equation (1.2). If $S_{B}=C$ is constant, then the solution f is maybe also constant. In case that S_{B} is not a constant, then the solution also is not a constant. So we assume that S_{B} is not a constant.

Using the change of variable $f=e^{-u}$, equation (1.2) is changed into

$$
\begin{equation*}
0=\Delta u-\frac{S_{B}(x)-(3+q) \lambda}{6}-\frac{\lambda_{0}}{2} e^{2 u} \tag{1.3}
\end{equation*}
$$

We put $\frac{\lambda_{0}}{2}=C_{\lambda_{0}}$ and $\frac{S_{B}(x)-(3+q) \lambda}{6}=h_{\lambda}(x)$ (a function depending on $S_{B}(x)$ and λ). Then equation (1.3) is changed into

$$
\begin{equation*}
0=\Delta u-h_{\lambda}(x)-C_{\lambda_{0}} e^{2 u} \tag{1.4}
\end{equation*}
$$

where λ is a constant.
In order to solve equation (1.4), we consider the following functional J_{λ} for a fixed constant λ, i.e.,

$$
J_{\lambda}(u)=\frac{\int_{B}|\nabla u|^{2} d B-2 \int_{B} h_{\lambda}(x) u d B}{\int_{B} e^{2 u} d B}
$$

2. Main results

Let B be a compact connected manifold, which is not necessarily orientable and possesses a given Riemannian structure g. We denote the volume element of this metric by $d B$, the gradient by ∇, and the associated Laplacian by Δ (we use the sign convention which gives $\triangle u=$ $-u_{x x}-u_{y y}$ for the standard metric on R^{2}). We let $H_{s, r}(B)$ denote the Sobolev space of functions on B whose derivatives through order s are in $L_{r}(B)$. The norm on $H_{s, r}(B)$ will be denoted by $\left\|\|_{s, r}\right.$. In the special case $s=0, H_{s, r}(B)$ is just $L_{r}(B)$, and we denote the norm by $\|\| r$. We have the following elementary inequality.

Lemma 2.1. For all $v \in H_{1,2}(B)$, if $v \not \equiv 0$ and $\int_{B} v d B=0$, then

$$
\begin{equation*}
\int_{B} e^{v} d B>\operatorname{vol}(B) \tag{2.1}
\end{equation*}
$$

where $\operatorname{vol}(B)$ is the volume of B.
Proof. See [7, Theorem 2.5 and Corollary 1, p.3228].

By Lemma 2.1, if we choose a function $v \in H_{1,2}(B)$ and v is not a constant, then $\int_{B} e^{v-\bar{v}} d B>\operatorname{vol}(B)$, where $\bar{v}=\int_{B} v d B$. Hence we can consider the functional J_{λ} on $V_{\sigma}=\left\{v \in H_{1,2}(B) \mid v \not \equiv 0, \int_{B} v d B=\right.$ $\left.0, \int_{B} e^{2 v} d B=\sigma\right\}$ for some constant $\sigma(>\operatorname{vol}(B))$,

$$
\begin{aligned}
J_{\lambda}(v) & =\frac{\int_{B}|\nabla v|^{2} d B-2 \int_{B} h_{\lambda}(x) v d B}{\int_{B} e^{2 v} d B} \\
& =\frac{1}{\sigma}\left[\int_{B}|\nabla v|^{2} d B-2 \int_{B} h_{\lambda}(x) v d B\right] .
\end{aligned}
$$

Theorem 2.2. For a fixed constant λ, let $\left\{v_{i}\right\}$ be a minimizing sequence in V_{σ} such that $J_{\lambda}\left(v_{i}\right) \rightarrow C$ for some constant C. If $v_{i} \rightarrow v_{0}$ in V_{σ} and $J_{\lambda}\left(v_{0}\right)=C$, then equation (1.4) has a solution v_{0} for some constant C.

Proof. For a fixed constant λ, let v_{0} satisfy

$$
J_{\lambda}\left(v_{0}\right)=\frac{\int_{B}\left|\nabla v_{0}\right|^{2} d B-2 \int_{B} h_{\lambda}(x) v_{0} d B}{\int_{B} e^{2 v_{0}} d B}=C
$$

For all $\psi \in H_{1,2}(B)$,

$$
\begin{aligned}
& \left.\frac{d J_{\lambda}\left(v_{0}+t \psi\right)}{d t}\right|_{t=0} \\
& =\left.\frac{d}{d t}\left[\frac{\int_{B}\left(\left|\nabla v_{0}+t \nabla \psi\right|^{2}-2 h_{\lambda}(x)\left(v_{0}+t \psi\right)\right) d B}{\int e^{2\left(v_{0}+t \psi\right)} d B}\right]\right|_{t=0} \\
& =\frac{1}{\left(\int_{B} e^{2\left(v_{0}+t \psi\right)} d B\right)^{2}}\left[\left\{\int_{B} 2 \nabla v_{0} \nabla \psi d B-2 \int_{B} h_{\lambda}(x) \psi d B\right.\right. \\
& \left.+2 t \int_{B}|\nabla \psi|^{2} d B\right\}\left\{\int_{B} e^{2\left(v_{0}+t \psi\right)} d B\right\} \\
& -\left\{\int_{B}\left|\nabla v_{0}+t \nabla \psi\right|^{2} d B-2 \int_{B} h_{\lambda}(x)\left(v_{0}+t \psi\right) d B\right\} \\
& \left.\times\left\{2 \int_{B} e^{2\left(v_{0}+t \psi\right)} \psi d B\right\}\right]\left.\right|_{t=0} \\
& =\frac{1}{\left(\int_{B} e^{2\left(v_{0}\right)} d B\right)^{2}}\left[\left\{2 \int_{B} \nabla v_{0} \nabla \psi d B-2 \int_{B} h_{\lambda}(x) \psi d B\right\}\right. \\
& \times\left\{\int_{B} e^{2\left(v_{0}\right)} d B\right\}-\left\{\int_{B}\left|\nabla v_{0}\right|^{2} d B-2 \int_{B} h_{\lambda}(x) v_{0} d B\right\} \\
& \left.\times\left\{2 \int_{B} e^{2\left(v_{0}\right)} \psi d B\right\}\right]=0 .
\end{aligned}
$$

Therefore

$$
\int_{B} \nabla v_{0} \nabla \psi d B-\int_{B} h_{\lambda}(x) \psi d B-C \int_{B} e^{2\left(v_{0}\right)} \psi d B=0
$$

for all $\psi \in H_{1,2}(B)$. Since Δ is the negative Laplacian, we have

$$
\begin{equation*}
\Delta v_{0}-h_{\lambda}(x)-C e^{2 v_{0}}=0 \tag{2.2}
\end{equation*}
$$

where C is a constant.

For $v \in H_{1,2}(B)$, let $v^{+}(x)=\max \{0, v(x)\}$ and $v^{-}(x)=\min \{0, v(x)\}$. Then we know easily that $2 v^{+}(x) \leq e^{2 v^{+}(x)+2 v^{-}(x)}=e^{2 v(x)}$ for each x, hence we have the following key lemma.

Lemma 2.3. For a fixed constant λ, if $v \in V_{\sigma}$, then $\left|\int_{B} h_{\lambda}(x) v d B\right| \leq$ $N_{0} \sigma$, where $N_{0}=\max _{x \in B}\left|h_{\lambda}(x)\right|$.

Proof. If $v \in V_{\sigma}$ and $\int_{B} v d B=0$, then $\int_{B}|v| d B=2 \int_{B} v^{+} d B$. Hence $\int_{B}|v| d B \leq \int_{B} e^{2 v} d B$. Thus

$$
\left|\int_{B} h_{\lambda}(x) v d B\right| \leq N_{0} \sigma
$$

where $N_{0}=\max _{x \in B}\left|h_{\lambda}(x)\right|$.

Theorem 2.4. On $V_{\sigma}=\left\{v \in H_{1,2}(B) \mid v \not \equiv 0, \int_{B} v d B=0, \int_{B} e^{2 v} d B=\right.$ $\sigma\}$ for some constant $\sigma(>\operatorname{vol}(B))$, the functional $J_{\lambda}(v)$ is bounded below for a fixed constant λ.

Proof. Since B is compact, $\max _{x \in B}\left|h_{\lambda}(x)\right| \leq N_{0}$ for some positive constant N_{0}. If $v \in V_{\sigma}$, then by Lemma 2.3

$$
\begin{aligned}
J_{\lambda}(v) & \geq \frac{1}{\sigma}\left[\int_{B}|\nabla v|^{2} d B-2 N_{0} \int_{M}|v| d B\right] \\
& \geq-2 N_{0}
\end{aligned}
$$

This means that $J_{\lambda}(v)$ is bounded below on V_{σ}.

We consider the following functional J_{λ} for a fixed constant λ on $V_{\sigma}=\left\{v \in H_{1,2}(B) \mid v \not \equiv 0, \int_{B} v d B=0, \int_{B} e^{2 v} d B=\sigma\right\}$ for some constant $\sigma(>\operatorname{vol}(B))$,
$J_{\lambda}(v)=\frac{\int_{B}|\nabla v|^{2} d B-2 \int_{B} h_{\lambda}(x) v d B}{\int_{B} e^{2 v} d B}=\frac{1}{\sigma}\left[\int_{B}|\nabla v|^{2} d B-2 \int_{B} h_{\lambda}(x) v d B\right]$.

Theorem 2.5. Let $C=\inf _{v \in V_{\sigma}} J_{\lambda}(v)$ for a fixed constant λ and for some constant $\sigma(>\operatorname{vol}(B))$. If $C_{\lambda_{0}}=\frac{\lambda_{0}}{2}=C$, then there exists a nonconstant solution of equation (1.4) for $C_{\lambda_{0}}=\frac{\lambda_{0}}{2}=C$.

Proof. Since $h_{\lambda}(x)$ is smooth on B, Theorem 2.4 implies that J_{λ} is bounded below on V_{σ}. Hence there exists a minimizing sequence $\left\{v_{i}\right\}$ in V_{σ} such that $J_{\lambda}\left(v_{i}\right) \rightarrow C$. Because V_{σ} is not empty, there is some $v_{1} \in V_{\sigma}$. Hence there is a $b>0$ such that $J_{\lambda}\left(v_{1}\right)<b$ and $J_{\lambda}\left(v_{n}\right) \leq b$ for all n.

For $v_{n} \in V_{\sigma}$,

$$
\sigma J_{\lambda}\left(v_{n}\right)=\int_{B}\left|\nabla v_{n}\right|^{2} d B-2 \int_{B} h_{\lambda}(x) v_{n} d B \geq \int_{B}\left|\nabla v_{n}\right|^{2} d B-2 N_{0} \sigma
$$

Hence $\int_{B}\left|\nabla v_{n}\right|^{2} d B \leq\left(b+2 N_{0}\right) \sigma$. It follows that $\left\|v_{n}\right\|_{1,2}^{2} \leq$ constant for all n. Since the unit ball in any Hilbert space is weakly compact ($[1, \mathrm{p} .74]$), there exist a subsequence $\left\{v_{i}\right\}$ of $\left\{v_{n}\right\}$ and a function $v_{0} \in$ $H_{1,2}(B)$ such that :
i) $v_{i} \rightarrow v_{0}$ strongly in $L_{2}(B)$
ii) $v_{i} \rightarrow v_{0}$ weakly in $H_{1,2}(B)$
iii) $v_{i} \rightarrow v_{0}$ pointwise almost everywhere.

This implies that $\int_{B} e^{2 v_{0}} d B=\sigma, \int_{B} v_{0} d B=0$ and $\int_{B} h_{\lambda}(x) v_{i} d B \rightarrow$ $\int_{B} h_{\lambda}(x) v_{0} d B$. Therefore $v_{0} \in V_{\sigma}$. Hence $J_{\lambda}\left(v_{0}\right) \geq C$.

To conclude that v_{0} minimizes J_{λ} for all $v \in V_{\sigma}$, we use the general result that whenever v_{n} converges to v_{0} weakly in a Hilbert space, then $\left\|\nabla v_{0}\right\|_{2} \leq \lim \inf \left\|\nabla v_{n}\right\|_{2}$. Thus $J_{\lambda}\left(v_{0}\right) \leq J_{\lambda}\left(v_{n}\right)$ for all n and $J_{\lambda}\left(v_{0}\right) \leq$ C. Therefore v_{0} minimizes J_{λ} in V_{σ}.

Theorem 2.6. Let $V_{\sigma}=\left\{v \in H_{1,2}(B) \mid v \not \equiv 0, \int_{B} v d B=0, \int_{B} e^{2 v} d B=\right.$ $\sigma\}$ for some constant $\sigma(>\operatorname{vol}(B))$. For each λ_{0}, there exists a constant λ such that

$$
i n f_{v \in V_{\sigma}} J_{\lambda}=\frac{\lambda_{0}}{2},
$$

which implies that Question A holds.
Proof. Since B is compact, the scalar curvature $S_{B}(x)$ is bounded. Hence $h_{\lambda}(x) \rightarrow-\infty$ as $\lambda \rightarrow \infty$. And $0<\delta \leq i n f_{v \in V_{\sigma}} \frac{\int_{B}|v| d B}{\int_{B} e^{2 v} d B} \leq 1$, where δ is a positive constant (If $\operatorname{in} f_{v \in V_{\sigma}} \frac{\int_{B}|v| d B}{\int_{B} e^{2 v} d B}=0$, then $\lim \int_{B}\left|v_{n}\right| d B=$ 0 , which means a contradiction to the fact that $\sigma=\int_{B} e^{2 v_{n}} d B \rightarrow$ $\operatorname{vol}(B)$.). Therefore $\inf f_{v \in V_{\sigma}} J_{\lambda} \rightarrow-\infty$ as $\lambda \rightarrow \infty$. Similarly $\operatorname{in} f_{v \in V_{\sigma}} J_{\lambda} \rightarrow$ $+\infty$ as $\lambda \rightarrow-\infty$. Since J_{λ} is linear with respect to λ, for each λ_{0} there exists a constant λ such that

$$
i n f_{v \in V_{\sigma}} J_{\lambda}=\frac{\lambda_{0}}{2} .
$$

Therefore Theorem 2.5 implies that there exists a nonconstant warping function v_{0} such that v_{0} is a solution of equation (1.4), which implies that the warped product manifold $M=B \times_{f^{2}} F$ is an Einstein manifold.

References

1 T. Aubin, Nonlinear analysis on manifolds, Springer-Verlag, New York, 1982
2] A. L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987.
3] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, 67 Dekker, New York, 1981.
4] J. K. Beem, P. E. Ehrlich and K.L. Easley, Global Lorentzian Geometry (2nd ed.), Marcel Dekker, Inc., New York, 1996.
5] J. K. Beem, P. E. Ehrlich and Th.G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M.Rassias, eds.), North-Holland, 1982, 41-56.
[6] Y. T. Jung, Einstein warped product manifolds with $p(>3)-$ dimensional fiber manifolds, submitted
[7] Y. T. Jung, S. Y. Lee, and E. H. Choi, Rıccı curvature of conformal deformatıon on compact 2-manifolds, Commun. Pure Appl. Anal., 19, (2020), no. 6, 32233231.
[8] J. L. Kazdan, Some applications of partial differential equations to problems in geometry, 1983.
[9] D. S. Kim, Einstein warped product spaces, Honam Mathematical J., 22 (2000), no.1, 7-111.
10] D. S. Kim, Compact Einstein warped product spaces, Trends in Mathematics Information center for Mathematical Sciences. 5 (2002), no. 2, December, 1-5.
11] D. S. Kim and Y. H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc., 131 (2003), no.8, 2573-2576.
[12] B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.

Yoon-Tae Jung
Department of Mathematics
Chosun University
Kwangju, 61452, Republic of Korea
E-mail: ytajung@chosun.ac.kr

[^0]: Received June 12, 2022; Accepted August 25, 2022.
 2010 Mathematics Subject Classification: Primary58E30, 58J05; Secondary 53C21, 53C25.

 Key words and phrases: Warping function, Warped product manifold, Einstein manifold, Partial differential equation, Calculus of variation.

 This work was supported by Chosun University Research Fund 2019.

