JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **35**, No. 3, August 2022 http://dx.doi.org/10.14403/jcms.2022.35.3.235

EINSTEIN WARPED PRODUCT MANIFOLDS WITH 3– DIMENSIONAL FIBER MANIFOLDS

YOON-TAE JUNG

ABSTRACT. In this paper, we consider the existence of nonconstant warping functions on a warped product manifold $M = B \times_{f^2} F$, where B is a q(> 2)-dimensional base manifold with a nonconstant scalar curvature $S_B(x)$ and F is a 3- dimensional fiber Einstein manifold and discuss that the resulting warped product manifold is an Einstein manifold, using the existence of the solution of some partial differential equation.

1. Introduction

In [2], A.L. Besse studied a new compact Einstein manifold using the warped product. Then A.L. Besse asked the following: "Does there exist an Einstein warped product manifold with a nonconstant warping function?"

In [9],[10], and [11], the authors proved that there does not exist a compact Einstein warped product space with a nonconstant warping function, if the scalar curvature on M is nonpositive or the base is a compact 2-dimensional manifold. Hence here we assume that the base manifold B is a compact q(> 2)-dimensional manifold with the positive scalar curvature somewhere.

DEFINITION 1.1. Let (B, g_B) and (F, g_F) be two manifolds. Let g_B be a metric tensor of B and g_F be a metric tensor of F. We denote by π and σ the projections of $B \times F$ onto B and F, respectively. For a positive smooth function f on B the warped product manifold $M = B \times_{f^2} F$ is the product manifold $M = B \times F$ furnished with the metric tensor g

Received June 12, 2022; Accepted August 25, 2022.

²⁰¹⁰ Mathematics Subject Classification: Primary58E30, 58J05; Secondary 53C21, 53C25.

Key words and phrases: Warping function, Warped product manifold, Einstein manifold, Partial differential equation, Calculus of variation.

This work was supported by Chosun University Research Fund 2019.

Yoon-Tae Jung

defined by $g = \pi^*(g_B) + (f \circ \pi)^2 \sigma^*(g_F)$. We denote by π^* and σ^* the pullback π and σ , respectively. Here *B* is called the base of *M* and *F* the fiber([1,3,4,5,12]).

Now we recall the formula for the Ricci curvature tensor Ric of the warped product manifold $M = B \times_{f^2} F$. We write Ric^B for the pullback by π of the Ricci curvature of B and similarly for Ric^F .

PROPOSITION 1.2. On a warped product manifold $M = B \times_{f^2} F$ with $p = \dim F > 1$, let X, Y be horizontal and V, W vertical. Then (i) $Ric(X,Y) = Ric^B(X,Y) - \frac{p}{f}H^f(X,Y)$, (ii) Ric(X,V) = 0, (iii) $Ric(V,W) = Ric^F(V,W) - g(V,W)(\frac{\Delta f}{f} + (p-1)\frac{g(df,df)}{f^2})$, where H^f and Δf denote by the Hessian of f and the Laplacian of f for g_B .

Proof. See Proposition 9.106 in ([2, p.266]).

COROLLARY 1.3. Let F be a 3 - dimensional manifold. The warped product $M = B \times_{f^2} F$ is an Einstein manifold (with $Ric = \lambda g$) if and only if g_F , g_B and f satisfy

 \square

(i) (F, g_F) is Einstein (with $Ric_F = \lambda_0 g_F$), (ii) $\frac{\Delta f}{f} - 2 \frac{\|df\|^2}{f^2} + \frac{\lambda_0}{f^2} = \lambda$, (iii) $Ric_B - \frac{3}{f}H^f = \lambda g_B$.

Proof. See Corollary 9.107 in [2, p.267]

Obviously, (i) gives a condition on (F, g_F) alone, whereas (ii) and (iii) are two differential equations for f on (B, g_B) .

In this paper, we consider the following question:

Question A : If the base manifold *B* is a compact q(>2)- dimensional manifold and the fiber manifold *F* is a 3 - dimensional Einstein manifold with $Ric_F = \lambda_0 g_F$, then do there exist a constant λ and a nonconstant warping function *f* such that the resulting warped product manifold $M = B \times_{f^2} F$ is an Einstein manifold with $Ric = \lambda g$?

In [6], the author proved that if B is a compact q(> 2)- dimensional manifold with a nonconstant scalar curvature and F is a p(> 3)-dimensional Einstein manifold, then there exist a constant λ and a

nonconstant warping function f such that the resulting warped product manifold $M = B \times_{f^2} F$ is an Einstein manifold with $Ric = \lambda g$.

In this paper, the similar results are proved in case of 3 - dimensional fiber manifolds, using a partial differential equation.

REMARK 1.4. We denote by $\dim B = q(>2)$ and $\dim F = 3$. Then, using Corollary 1.3 (ii) and (iii), we may replace the unique equation

(1.1)
$$Ric_B - \frac{3}{f}H^f = \frac{1}{2}[S_B + 6\frac{\Delta f}{f} - 6\frac{\|df\|^2}{f^2} + 3\frac{\lambda_0}{f^2} - (1+q)\lambda]g_B,$$

where S_B is a scalar curvature of B (See also (9.108) in [2, p.267]).

In order to solve Question A, we study equation (1.1) on M with $\dim B = q(>2)$ and $\dim F = 3$. Recalling that $Ric_B - \frac{3}{f}H^f = \lambda g_B$ and that S_B is a scalar curvature on B, equation (1.1) implies that we have equation

(1.2)
$$0 = \Delta f - \frac{\|df\|^2}{f} + \frac{\lambda_0}{2f} + \frac{S_B - (3+q)\lambda}{6}f$$

From now on, we study the nonconstant solution of equation (1.2). If $S_B = C$ is constant, then the solution f is maybe also constant. In case that S_B is not a constant, then the solution also is not a constant. So we assume that S_B is not a constant.

Using the change of variable $f = e^{-u}$, equation (1.2) is changed into

(1.3)
$$0 = \Delta u - \frac{S_B(x) - (3+q)\lambda}{6} - \frac{\lambda_0}{2}e^{2u}$$

We put $\frac{\lambda_0}{2} = C_{\lambda_0}$ and $\frac{S_B(x) - (3+q)\lambda}{6} = h_\lambda(x)$ (a function depending on $S_B(x)$ and λ). Then equation (1.3) is changed into

(1.4)
$$0 = \Delta u - h_{\lambda}(x) - C_{\lambda_0} e^{2u},$$

where λ is a constant.

In order to solve equation (1.4), we consider the following functional J_{λ} for a fixed constant λ , i.e.,

$$J_{\lambda}(u) = \frac{\int_{B} |\nabla u|^2 dB - 2 \int_{B} h_{\lambda}(x) u dB}{\int_{B} e^{2u} dB}$$

Yoon-Tae Jung

2. Main results

Let B be a compact connected manifold, which is not necessarily orientable and possesses a given Riemannian structure g. We denote the volume element of this metric by dB, the gradient by ∇ , and the associated Laplacian by Δ (we use the sign convention which gives $\Delta u =$ $-u_{xx} - u_{yy}$ for the standard metric on \mathbb{R}^2). We let $H_{s,r}(B)$ denote the Sobolev space of functions on B whose derivatives through order s are in $L_r(B)$. The norm on $H_{s,r}(B)$ will be denoted by $|| ||_{s,r}$. In the special case $s = 0, H_{s,r}(B)$ is just $L_r(B)$, and we denote the norm by $|| ||_r$. We have the following elementary inequality.

LEMMA 2.1. For all $v \in H_{1,2}(B)$, if $v \neq 0$ and $\int_B v dB = 0$, then

(2.1)
$$\int_{B} e^{v} dB > vol(B),$$

where vol(B) is the volume of B.

Proof. See [7, Theorem 2.5 and Corollary 1, p.3228].

By Lemma 2.1, if we choose a function $v \in H_{1,2}(B)$ and v is not a constant, then $\int_B e^{v-\bar{v}} dB > vol(B)$, where $\bar{v} = \int_B v dB$. Hence we can consider the functional J_{λ} on $V_{\sigma} = \{v \in H_{1,2}(B) | v \neq 0, \int_B v dB = 0, \int_B e^{2v} dB = \sigma\}$ for some constant $\sigma(> vol(B))$,

$$J_{\lambda}(v) = \frac{\int_{B} |\nabla v|^2 \, dB - 2 \int_{B} h_{\lambda}(x)v \, dB}{\int_{B} e^{2v} \, dB}$$
$$= \frac{1}{\sigma} [\int_{B} |\nabla v|^2 \, dB - 2 \int_{B} h_{\lambda}(x)v \, dB].$$

THEOREM 2.2. For a fixed constant λ , let $\{v_i\}$ be a minimizing sequence in V_{σ} such that $J_{\lambda}(v_i) \to C$ for some constant C. If $v_i \to v_0$ in V_{σ} and $J_{\lambda}(v_0) = C$, then equation (1.4) has a solution v_0 for some constant C.

Proof. For a fixed constant λ , let v_0 satisfy

$$J_{\lambda}(v_0) = \frac{\int_B |\nabla v_0|^2 \, dB - 2 \int_B h_{\lambda}(x) v_0 \, dB}{\int_B e^{2v_0} \, dB} = C.$$

Einstein warped product manifolds

$$\begin{split} \text{For all } \psi \in H_{1,2}(B), \\ & \frac{dJ_{\lambda}(v_{0} + t\psi)}{dt} \mid_{t=0} \\ & = \frac{d}{dt} [\frac{\int_{B} (|\nabla v_{0} + t\nabla \psi|^{2} - 2h_{\lambda}(x)(v_{0} + t\psi)) \ dB}{\int e^{2(v_{0} + t\psi)} \ dB}] \mid_{t=0} \\ & = \frac{1}{(\int_{B} e^{2(v_{0} + t\psi)} \ dB)^{2}} [\{\int_{B} 2\nabla v_{0}\nabla \psi \ dB - 2\int_{B} h_{\lambda}(x)\psi \ dB \\ & + 2t\int_{B} |\nabla \psi|^{2} \ dB \ \}\{\int_{B} e^{2(v_{0} + t\psi)} \ dB\} \\ & - \{\int_{B} |\nabla v_{0} + t\nabla \psi|^{2} \ dB - 2\int_{B} h_{\lambda}(x)(v_{0} + t\psi) \ dB\} \\ & \times \{2\int_{B} e^{2(v_{0} + t\psi)}\psi \ dB\}] \mid_{t=0} \\ & = \frac{1}{(\int_{B} e^{2(v_{0})} \ dB)^{2}} [\{2\int_{B} \nabla v_{0}\nabla \psi \ dB - 2\int_{B} h_{\lambda}(x)\psi \ dB\} \\ & \times \{\int_{B} e^{2(v_{0})} \ dB\} - \{\int_{B} |\nabla v_{0}|^{2} \ dB - 2\int_{B} h_{\lambda}(x)v_{0} \ dB\} \\ & \times \{2\int_{B} e^{2(v_{0})} \ dB\} - \{\int_{B} |\nabla v_{0}|^{2} \ dB - 2\int_{B} h_{\lambda}(x)v_{0} \ dB\} \\ & \times \{2\int_{B} e^{2(v_{0})}\psi \ dB\} = 0. \end{split}$$

Therefore

$$\int_{B} \nabla v_0 \nabla \psi \ dB - \int_{B} h_{\lambda}(x) \psi \ dB - C \int_{B} e^{2(v_0)} \psi \ dB = 0,$$
for all $\psi \in H_{1,2}(B)$. Since Δ is the negative Laplacian, we have

(2.2)
$$\Delta v_0 - h_\lambda(x) - Ce^{2v_0} = 0,$$

where C is a constant.

For $v \in H_{1,2}(B)$, let $v^+(x) = max\{0, v(x)\}$ and $v^-(x) = min\{0, v(x)\}$. Then we know easily that $2v^+(x) \le e^{2v^+(x)+2v^-(x)} = e^{2v(x)}$ for each x, hence we have the following key lemma.

LEMMA 2.3. For a fixed constant λ , if $v \in V_{\sigma}$, then $|\int_{B} h_{\lambda}(x)v \, dB| \leq N_{0}\sigma$, where $N_{0} = \max_{x \in B} |h_{\lambda}(x)|$.

Proof. If $v \in V_{\sigma}$ and $\int_{B} v dB = 0$, then $\int_{B} |v| dB = 2 \int_{B} v^{+} dB$. Hence $\int_{B} |v| dB \leq \int_{B} e^{2v} dB$. Thus

$$\left|\int_{B} h_{\lambda}(x)v \ dB\right| \le N_0 \sigma,$$

239

where $N_0 = max_{x \in B} |h_{\lambda}(x)|$.

240

THEOREM 2.4. On $V_{\sigma} = \{v \in H_{1,2}(B) | v \neq 0, \int_{B} v dB = 0, \int_{B} e^{2v} dB = \sigma\}$ for some constant $\sigma(> vol(B))$, the functional $J_{\lambda}(v)$ is bounded below for a fixed constant λ .

Proof. Since B is compact, $\max_{x \in B} |h_{\lambda}(x)| \leq N_0$ for some positive constant N_0 . If $v \in V_{\sigma}$, then by Lemma 2.3

$$J_{\lambda}(v) \geq \frac{1}{\sigma} [\int_{B} |\nabla v|^2 \ dB - 2N_0 \int_{M} |v| \ dB]$$

$$\geq -2N_0.$$

This means that $J_{\lambda}(v)$ is bounded below on V_{σ} .

We consider the following functional J_{λ} for a fixed constant λ on $V_{\sigma} = \{v \in H_{1,2}(B) | v \neq 0, \int_{B} v dB = 0, \int_{B} e^{2v} dB = \sigma\}$ for some constant $\sigma(> vol(B)),$

$$J_{\lambda}(v) = \frac{\int_{B} |\nabla v|^2 dB - 2 \int_{B} h_{\lambda}(x) v dB}{\int_{B} e^{2v} dB} = \frac{1}{\sigma} \left[\int_{B} |\nabla v|^2 dB - 2 \int_{B} h_{\lambda}(x) v dB \right].$$

THEOREM 2.5. Let $C = \inf_{v \in V_{\sigma}} J_{\lambda}(v)$ for a fixed constant λ and for some constant $\sigma(> vol(B))$. If $C_{\lambda_0} = \frac{\lambda_0}{2} = C$, then there exists a nonconstant solution of equation (1.4) for $C_{\lambda_0} = \frac{\lambda_0}{2} = C$.

Proof. Since $h_{\lambda}(x)$ is smooth on B, Theorem 2.4 implies that J_{λ} is bounded below on V_{σ} . Hence there exists a minimizing sequence $\{v_i\}$ in V_{σ} such that $J_{\lambda}(v_i) \to C$. Because V_{σ} is not empty, there is some $v_1 \in V_{\sigma}$. Hence there is a b > 0 such that $J_{\lambda}(v_1) < b$ and $J_{\lambda}(v_n) \leq b$ for all n.

For $v_n \in V_{\sigma}$,

$$\sigma J_{\lambda}(v_n) = \int_B |\nabla v_n|^2 \ dB - 2 \int_B h_{\lambda}(x) v_n \ dB \ge \int_B |\nabla v_n|^2 \ dB - 2N_0 \sigma.$$

Hence $\int_B |\nabla v_n|^2 dB \leq (b+2N_0)\sigma$. It follows that $||v_n||_{1,2}^2 \leq \text{constant}$ for all n. Since the unit ball in any Hilbert space is weakly compact ([1,p.74]), there exist a subsequence $\{v_i\}$ of $\{v_n\}$ and a function $v_0 \in H_{1,2}(B)$ such that :

i) $v_i \to v_0$ strongly in $L_2(B)$

- ii) $v_i \to v_0$ weakly in $H_{1,2}(B)$
- iii) $v_i \rightarrow v_0$ pointwise almost everywhere.

This implies that $\int_B e^{2v_0} dB = \sigma$, $\int_B v_0 dB = 0$ and $\int_B h_\lambda(x) v_i dB \to \int_B h_\lambda(x) v_0 dB$. Therefore $v_0 \in V_\sigma$. Hence $J_\lambda(v_0) \ge C$.

To conclude that v_0 minimizes J_{λ} for all $v \in V_{\sigma}$, we use the general result that whenever v_n converges to v_0 weakly in a Hilbert space, then $||\nabla v_0||_2 \leq \liminf ||\nabla v_n||_2$. Thus $J_{\lambda}(v_0) \leq J_{\lambda}(v_n)$ for all n and $J_{\lambda}(v_0) \leq C$. Therefore v_0 minimizes J_{λ} in V_{σ} .

THEOREM 2.6. Let $V_{\sigma} = \{v \in H_{1,2}(B) | v \neq 0, \int_{B} v dB = 0, \int_{B} e^{2v} dB = \sigma\}$ for some constant $\sigma(> vol(B))$. For each λ_0 , there exists a constant λ such that

$$\inf_{v\in V_{\sigma}}J_{\lambda}=\frac{\lambda_0}{2},$$

which implies that Question A holds.

Proof. Since B is compact, the scalar curvature $S_B(x)$ is bounded. Hence $h_{\lambda}(x) \to -\infty$ as $\lambda \to \infty$. And $0 < \delta \leq inf_{v \in V_{\sigma}} \frac{\int_{B} |v| dB}{\int_{B} e^{2v} dB} \leq 1$, where δ is a positive constant (If $inf_{v \in V_{\sigma}} \frac{\int_{B} |v| dB}{\int_{B} e^{2v} dB} = 0$, then $\lim \int_{B} |v_n| dB = 0$, which means a contradiction to the fact that $\sigma = \int_{B} e^{2v_n} dB \to vol(B)$.). Therefore $inf_{v \in V_{\sigma}} J_{\lambda} \to -\infty$ as $\lambda \to \infty$. Similarly $inf_{v \in V_{\sigma}} J_{\lambda} \to +\infty$ as $\lambda \to -\infty$. Since J_{λ} is linear with respect to λ , for each λ_0 there exists a constant λ such that

$$inf_{v\in V_{\sigma}}J_{\lambda}=\frac{\lambda_0}{2}.$$

Therefore Theorem 2.5 implies that there exists a nonconstant warping function v_0 such that v_0 is a solution of equation (1.4), which implies that the warped product manifold $M = B \times_{f^2} F$ is an Einstein manifold.

Yoon-Tae Jung

References

- [1] T. Aubin, Nonlinear analysis on manifolds, Springer-Verlag, New York, 1982.]
- [2] A. L. Besse, *Einstein manifolds*, Springer-Verlag, New York, 1987.
- [3] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, 67 Dekker, New York, 1981.
- [4] J. K. Beem, P. E. Ehrlich and K.L. Easley, Global Lorentzian Geometry (2nd ed.), Marcel Dekker, Inc., New York, 1996.

[5] J. K. Beem, P. E. Ehrlich and Th.G. Powell, Warped product manifolds in relativity, Selected Studies (Th.M.Rassias, eds.), North-Holland, 1982, 41-56.

- [6] Y. T. Jung, Einstein warped product manifolds with p(> 3)- dimensional fiber manifolds, submitted
- [7] Y. T. Jung, S. Y. Lee, and E. H. Choi, *Ricci curvature of conformal deformation on compact 2-manifolds*, Commun. Pure Appl. Anal., **19**, (2020), no. 6, 3223-3231.
- [8] J. L. Kazdan, Some applications of partial differential equations to problems in geometry, 1983.
- [9] D. S. Kim, Einstein warped product spaces, Honam Mathematical J., 22 (2000), no.1, 7-111.
- [10] D. S. Kim, Compact Einstein warped product spaces, Trends in Mathematics Information center for Mathematical Sciences. 5 (2002), no. 2, December, 1-5.

[11] D. S. Kim and Y. H. Kim, Compact Einstein warped product spaces with non-

positive scalar curvature, Proc. Amer. Math. Soc., **131** (2003), no.8, 2573-2576.

[12] B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.

Yoon-Tae Jung Department of Mathematics Chosun University Kwangju, 61452, Republic of Korea *E-mail*: ytajung@chosun.ac.kr