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Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa Univer-
sity, Tokat, Turkey
e-mail : mehmet.atceken382@gmail.com

Abstract. The aim of this paper is to study the geometry of contact CR-warped product

submanifolds in a cosymplectic manifold. We search several fundamental properties of

contact CR-warped product submanifolds in a cosymplectic manifold. We also give neces-

sary and sufficient conditions for a submanifold in a cosymplectic manifold to be contact

CR-(warped) product submanifold. After then we establish a general inequality between

the warping function and the second fundamental for a contact CR-warped product sub-

manifold in a cosymplectic manifold and consider contact CR-warped product submanifold

in a cosymplectic manifold which satisfy the equality case of the inequality and some new

results are obtained.

1. Introduction

It is well known that the notations of warped product are widely used in dif-
ferential geometry as well as physics. The study of warped product manifolds was
initiated by R.L. Bishop and B. O’Neill with differential geometric point of view[9].
After then several papers appeared which have dealt with various geometric aspects
of warped product submanifolds[references and their references].

CR-warped product was first introduced by B-Y. Chen. Recently, he studied
warped product CR-submanifolds in Kaehler manifolds and shown that there exist
no warped product CR-submanifolds in the form M⊥×f MT in Kaehler manifolds.
Therefore he considered warped product CR-submanifolds in the form MT ×f M⊥
called CR-warped product by reversing factor manifolds. He established a rela-
tionship between the warping function f and the second fundamental form of CR-
warped product submanifold in Kaehler manifolds[4, 3].

I. Hasegawa and I. Mihai obtained a similarly inequality for the squared norm

Received June 19, 2015; accepted July 6, 2016.
2010 Mathematics Subject Classification: 53C15, 53C42, 53D15.
Key words and phrases: CR-Product, CR-Warped Product, Contact CR-warped Product,
Cosymplectic Manifold and Cosymplectic Space Form.

965



966 Mehmet Atçeken

of the second fundamental form in terms of the warping function for contact CR-
warped products in Sasakian manifolds and some applications were derived[10].

In [5], Authors studied contact CR-warped product submanifolds in Kenmotsu
space forms.

The notion of a contact CR-(warped) product submanifolds of cosymplectic
manifolds have not been to be widely used in the literature and in fact that papers
directly related to the problem are scarce so far. So I would like to study the
geometry of contact CR-warped product submanifolds in a cosymplectic manifold.

In this paper, we consider contact CR-warped product submanifolds which are
in the form M = MT ×fM⊥ in a cosymplectic manifold M̄ , where MT and M⊥ are
invariant and anti-invariant submanifolds of M̄ , respectively. We obtain a sharp
estimation for the squared norm of the second fundamental form and the warping
function for a contact CR-warped product submanifold of cosymplectic manifold M̄ .
We research necessary and sufficient conditions that inequality case to be equality
case and we derive results that product manifolds to be totally geodesic, totally
umbilical, minimal and real space form.

2. Preliminaries

Let M̄ be 2m+ 1-dimensional almost contact manifold with an almost contact
structure (ϕ, ξ, η), i.e., ξ is a global vector field, ϕ is a (1, 1)-type tensor field and η
is a 1-form on M̄ such that

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, ηoϕ = 0,(2.2)

for any X ∈ Γ(TM̄), where Γ(TM̄) denotes the set differentiable vector fields on M̄ .

The almost contact manifold is called an almost contact metric manifold if there
exists a Riemannian metric g satisfying;

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),(2.3)

for any X,Y ∈ Γ(TM̄). Clearly, in this case, η is dual of ξ, i.e., η(X) = g(X, ξ), for
any X ∈ Γ(TM̄).

The fundamental 2-form Ψ on M̄ is defined as Ψ(X,Y ) = g(X,ϕY ), for any
X,Y ∈ Γ(TM̄). The M̄ is called an almost cosymplectic manifold if η and Ψ are
closed, i.e., dη = 0 and dΨ = 0, where d is the exterior differential operator. Also,
an almost contact metric manifold is called normal if Nϕ + dη⊗ ξ = 0, where Nϕ is
the Nijenhuis tensor field which is defined by Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ] −
ϕ[ϕX, Y ] − ϕ[X,ϕY ]. If M̄ is almost cosymplectic and normal, M̄ is said to be
cosymplectic manifold. It is well known that an almost contact metric manifold is
cosymplectic if and only if ∇̄ϕ = 0, where ∇̄ denotes the Levi-Civita connection on
M̄ . These manifolds are locally a product of a Kaehler manifold and a real line or
a circle[8].

If a cosymplectic manifold M̄ has constant ϕ-sectional curvature, then it is
called a cosymplectic space form and denoted by M̄(c). Then the Riemannian
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curvature tensor R̄ of M̄(c) is given by

R̄(X,Y )Z =
c

4
{g(ϕY, ϕZ)X − g(ϕX,ϕZ)Y + η(Y )g(X,Z)ξ

− η(X)g(Y, Z)ξ + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY + 2g(X,ϕY )ϕZ},(2.4)

for any X,Y, Z ∈ Γ(TM̄)[8].
Now, let M̄ be an isometrically immersed submanifold in a cosymplectic mani-

fold M̄ . Then the formulas of Gauss and Weingarten for M in M̄ are given by

∇̄XY = ∇XY + h(X,Y )(2.5)

and

∇̄XV = −AVX +∇⊥
XV,(2.6)

for any vector fields X,Y tangent to M and V normal to M , where ∇ denotes
the induced Levi-Civita connection on M , ∇⊥ is the normal connection, AV is the
shape operator of M with respect to V and h is the second fundamental form of M
in M̄ . h and A are related by

g(h(X,Y ), V ) = g(AVX,Y )(2.7)

for any X,Y ∈ Γ(TM) and V ∈ Γ(TM⊥)[1].
Let {e1, e2, ..., en} be an orthonormal basis of the tangent space TxM , x ∈ M .

The mean curvature vector H of M is defined by

H =
1

n

n∑
i=1

h(ei, ei).(2.8)

The submanifold M is called totally geodesic, minimal and totally umbilical in
M̄ if h = 0, H = 0 and h(X,Y ) = g(X,Y )H, respectively, for any X,Y ∈ Γ(TM).

Also we put

hrij = g(h(ei, ej), e
r) and ‖h‖2 =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)),(2.9)

where {er}, 1 ≤ r ≤ s, are orthonormal basis vector fields of (TM⊥).
Furthermore, the equations of Gauss and Codazzi are, respectively, given by

(R̄(X,Y )Z)T = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X(2.10)

and

(R̄(X,Y )Z)⊥ = (∇̄Xh)(Y,Z)− (∇̄Y h)(X,Z),(2.11)
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for any X,Y, Z ∈ Γ(TM̄), where (R̄(X,Y )Z)T and (R̄(X,Y )Z)⊥ denote the tangent
and normal components of R̄(X,Y )Z, respectively, R is the Riemannian curvature
tensor of M . Also the covariant derivative of h is defined by

(∇̄Xh)(Y,Z) = ∇⊥
Xh(Y, Z)− h(∇XY, Z)− h(∇XZ, Y ).(2.12)

For any X ∈ Γ(TM), we can write

ϕX = tX + nX,(2.13)

where tX and nX denote the tangential and normal components of ϕX, respectively.
In the same way, for any vector field V normal to M , we put

ϕV = BV + CV,(2.14)

where BV and CV denote the tangential and normal components of ϕV , respec-
tively.

A submanifold M is said to be invariant if n is identically zero. On the other
hand, M is said to be anti-invariant submanifold if t is identically zero.

For a contact CR-submanifolds, the above definition has been generalized as
follows.

For submanifolds tangent to the structure vector field ξ, there are different
classes of submanifolds. We mention the following.
1.) A submanifold M tangent to ξ is called an invariant submanifold if ϕ preserves
any tangent space of M , i.e., ϕ(TxM) ⊆ TxM , for each x ∈M .
2.) A submanifold M tangent to ξ is called an anti-invariant submanifold if ϕ maps
any tangent space of M into the normal space, that is, ϕ(TxM) ⊆ T⊥

x M , for each
x ∈M .
3.) A submanifold M tangent to ξ is called contact CR-submanifold if it admits an
invariant distribution ξ ∈ D whose orthogonal complementary distribution D⊥ is
anti-invariant, that is, TM = D ⊕D⊥ with ϕDx ⊆ Dx and ϕD⊥

x ⊆ T⊥
x M for each

x ∈M .
In this paper, we are concern with case 3.) as general case. We denote the

orthogonal complementary distribution of ϕD⊥ in T⊥M by ν, then we have

T⊥M = ϕD⊥ ⊕ ν.(2.15)

We can easily to see that ν is an invariant subbundle with respect to ϕ.

3. Contact CR-Warped Product Submanifolds in a Cosymplectic Mani-
fold

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f is a positive
definite differentiable function on M1. The warped product of manifolds M1 and
M2 is the Riemannian manifold

M = M1 ×f M2 = (M1 ×M2, g),(2.4)
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where g = g1 + f2g2. A warped product manifold M = M1 ×f M2 is characterized
by the fact that M1 and M2 are totally geodesic and totally umbilical submanifolds
of M , respectively.

We recall the general formulae on a warped product

∇ZX = ∇XZ = (X ln f)Z,(2.5)

for any X ∈ Γ(TM1) and Z ∈ Γ(TM2), where ∇ denote the Levi-Civita connection
on M [2].

Definition 3.1. A warped product submanifold M1×fM2 of a cosymplectic man-
ifold M̄ , with M1 is a (2p+ 1)-dimensional invariant submanifold tangent to ξ and
M1 is a q-dimensional anti-invariant submanifold of M̄ , is said to be a contact CR-
warped product submanifold and we shall denote by MT ×f M⊥ in the rest of this
paper.

The following theorems characterize the contact CR-warped product submani-
folds in cosymplectic manifolds.

Theorem 3.2. Let M be a warped product submanifold of a cosymplectic manifold
M̄ . Then M is a contact CR-warped product submanifold of M̄ if and only if nt = 0.

Proof. Let M be a contact CR-warped product submanifold of a cosymplectic man-
ifold M̄ . Then we denote by P and Q the projections on the distributions D and
D⊥, respectively. Then we have

P +Q = I, P 2 = P, Q2 = Q and PQ = QP = 0.(2.6)

For any X ∈ Γ(TM), we can write

X = PX +QX.

From (2.13) and taking into account of D and D⊥ being invariant and anti-invariant,
respectively, we have

ϕX = ϕPX + ϕQX = tPX + nQX.(2.7)

Since D is an invariant distribution, we get

QtP = 0, nP = 0.(2.8)

Again, from (2.13), we also have

ϕQX = tQX + nQX.

Moreover, the invariant of D and the anti-invariant of D⊥ lead to

tP = t and tQ = 0(2.9)
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by Q = I − P . The ambient space M̄ is a cosymplectic manifold and ξ ∈ Γ(D), we
arrive at results

t2 = −I + η ⊗ ξ −Bn and Cn+ nt = 0.(2.10)

Here, applying P from to right to the second equation (2.10) and taking into account
of (2.9) and (2.8), we conclude

nt = 0,(2.11)

which is equivalent to

Cn = 0.(2.12)

Conversely, (2.11) is satisfied. Then for any X ∈ Γ(TM) and V ∈ Γ(TM⊥), we
have

g(X,BV ) = −g(nX, V )

and

g(X,ϕBV ) = g(ϕnX, V )

g(X, tBV ) = g(CnX, V ) = 0,

which gives tB = 0 for Cn = 0. The ambient space M̄ is a cosymplectic manifold,
by direct calculations, we get

nB + C2 = −I and tB +BC = 0.(2.13)

Thus we have BC = 0. Now, applying the operators t and C from the right to the
first equations of (2.10) and (2.13), respectively, we get

t3 + t = 0 and C3 + C = 0.(2.14)

We now set

t2 = −P + η ⊗ ξ and Q = I − P,(2.15)

then it is easily seen that

P +Q = I, P 2 = P, Q2 = Q and PQ = QP = O.

These show that P and Q are orthogonal projections and they define orthogonal
distributions such as D and D⊥, respectively. By using ϕξ = tξ = nξ = 0, (2.14)
and (2.15), we obtain

tP = t and tQ = 0.
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On the other hand, the skew-symmetric of t and symmetric of Q lead to

Qt = 0 and QPt = 0.

Moreover, from the first equation of (2.15), we get

nP = 0.

These equations show that the distributions D and D⊥ are invariant and anti-
invariant distributions with respect to ϕ, respectively. Furthermore, since Pξ = ξ
and Qξ = 0, the invariant distribution D contain ξ. This completes the proof.

Theorem 3.3. Let M be a contact CR-submanifold of a cosymplectic manifold
M̄ . Then M is a contact CR-warped product submanifold if and only if the shape
operator A of M satisfies

AϕZX = (ϕX(µ))Z, X ∈ Γ(D), Z ∈ Γ(D⊥),(2.16)

for some function µ on M satisfying Z(µ) = 0.

Proof. Let M = MT ×f M⊥ be a contact CR-warped product submanifold of a
cosymplectic manifold M̄ . Then for all X ∈ Γ(TMT ) and Z ∈ Γ(TM⊥), since the
ambient space M̄ is cosymplectic manifold, we have

ϕ∇XZ + ϕh(X,Z) = −AϕZX +∇⊥
XϕZ.(2.17)

By taking the inner product of (2.17) by ϕY , for any Y ∈ Γ(TMT ), we find

g(∇XZ, Y ) = −g(AϕZX,ϕY ) = −g(h(X,ϕY ), ϕZ).(2.18)

Furthermore, since M = MT×fM2 is a warped product and M1 is a totally geodesic
submanifold in M , we get

g(h(X,ϕY ), ϕZ) = 0.

It follows that AϕD⊥D ∈ Γ(D⊥). Thus for any W ∈ TM⊥, we have

g(AϕZX,W ) = g(h(X,W ), ϕZ) = g(∇̄WX,ϕZ) = −g(∇̄WϕX,Z)

= −g(∇WϕX,Z) = −(ϕX ln f)g(Z,W ),

which implies that AϕZX = (−ϕX ln f)Z. Here, setting µ = ln(1/f) and consider-
ing f is a function on MT , we get desired result.

Conversely, we suppose that M is a contact CR-warped product submanifold
of a cosymplectic manifold M̄ satisfying (2.16). From (2.16), we obtain

g(h(X,Y ), ϕZ) = 0, i.e., g(h(D,D), ϕD⊥) = 0(2.19)
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and

g(h(X,W ), ϕZ) = (ϕX(µ))g(Z,W ),(2.20)

for any X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥). The condition in (2.19) implies that the
invariant distribution D is integrable and it is totally geodesic in M . From [8], we
known that the anti-invariant distribution D⊥ of a contact CR-submanifold of a
cosymplectic manifold is always integrable, W (µ) = 0, for any W ∈ Γ(D⊥), imply
that each leaf of D⊥ is an extrinsic sphere in M , that is, it is a totally umbilical
submanifold with parallel mean curvature vector. Thus M is a locally the warped
product M = MT ×f M⊥ of a cosymplectic manifold M̄ , where MT and M⊥ are
invariant and anti-invariant submanifolds of M̄ , respectively, MT and M⊥ denote
the leaf of D and D⊥, respectively and f is also warping function on MT .

The following theorems characterize the contact CR-warped product submani-
fols as well as contact CR-product submanifolds in cosymplectic space forms.

Theorem 3.4. Let M be a submanifold of a cosymplectic space form M̄(c) with
c 6= 0. Then M is a contact CR-(warped)product submanifold if and only if the
maximal invariant subspaces Dx = TxM ∩ ϕ(TxM), for each x ∈ M , define a
non-trivial differentiable distribution D on M such that

K̄(D,D,D⊥, D⊥) = 0,(2.21)

where D⊥ denotes the orthogonal complementary distribution in M and K̄ denotes
the Riemannian Christoffel curvature tensor of M̄ .

Proof. Let M be a contact CR-product submanifold of M̄ . By using (2.4), we get

K̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ) = 0,

for any X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥), that is, (2.21) is satisfied.
Conversely, we assume that the maximal invariant subspace Dx of TxM define

a non-trivial differentiable distribution on M such that (2.21) holds. Then we have

K̄(X,ϕX,Z,W ) = g(R̄(X,ϕX)Z,W ) =
c

2
g(ϕX,ϕX)g(Z,ϕW ) = 0,

for any X ∈ Γ(D) and Z,W ∈ Γ(D⊥). So we conclude g(Z,ϕW ) = 0 because c 6= 0
and D 6= {0}. It follows that ϕD⊥ is orthogonal to D⊥. on the other hand, since
D is an invariant distribution, we also have

g(X,ϕZ) = −g(ϕX,Z) = 0,

for any X ∈ Γ(D) and Z ∈ Γ(D⊥), which implies that ϕD⊥ is orthogonal to
D. Furthermore, one find g(ξ, ϕZ) = 0 for any Z ∈ Γ(D⊥). Finally, we reach
ϕD⊥

x ⊂ TxM⊥, for each x ∈M , that is, D⊥
x is an anti-invariant distribution on M

and M becomes a contact CR-(warped) product submanifold.
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Theorem 3.5. Let M be a submanifold tangent to ξ of a cosymplectic space form
M̄(c) with c 6= 0. Then M is a contact CR-(warped) product submanifold if and
only if anti-invariant subspaces D⊥

x ⊂ TxM , for each x ∈M , on M such that

K̄(D,ϕD, ν,D) = 0,(2.22)

where ν is defined as (2.15) and D is orthogonal complementary distribution of D⊥

in M .

Proof. Let M be a contact CR-product submanifold of a cosymplectic space form
M̄(c). From (2.4), we obtain

K̄(X,ϕY, V, Z) = g(R̄(X,ϕY )V,Z) = − c
2
g(ϕX,ϕY )g(ϕV,Z) = 0,

for any X,Y, Z ∈ Γ(D) and V ∈ Γ(ν), that is, (2.22) is satisfied.

Conversely, we suppose that anti-invariant subspaces D⊥
x ⊂ TxM , for each

x ∈ M , define a non-trivial differentiable distribution D⊥ on M such that (2.22)
holds. From (2.4) we obtain

K̄(X,ϕX, V,X) =
c

2
g(ϕX,ϕX)g(ϕX, V ) = 0,(2.23)

for any X ∈ Γ(D) and V ∈ Γ(ν). Thus (2.23) implies that ϕD is orthogonal to
ν. Since D⊥ is an anti-invariant distribution and using (2.3), we also get ϕD is
orthogonal to ξ and ϕD⊥. So we mean that ϕDx ⊂ TxM and ϕDx = Dx, for each
x ∈M , that is, D is an invariant distribution and M becomes a contact CR-product
submanifold. The proof is complete.

Now, we state the following estimation of the squared norm of the second fun-
damental form for a contact CR-warped product submanifolds in a cosymplectic
manifold by the following theorems.

Theorem 3.6. Let M = MT ×f M⊥ be a contact CR-warped product submanifold
of a cosymplectic manifold M̄ such that MT is a (2p + 1)-dimensional invariant
submanifold tangent to ξ and M⊥ is a q-dimensional anti-invariant submanifold of
M̄ . Then
1.) The squared norm of the second fundamental form h of M satisfies

‖h‖2 ≥ 2q‖∇ ln f‖2,(2.24)

where, ∇ ln f is the gradient of ln f .
2.) If the equality sign of (2.24) holds identically, then MT is totally geodesic
invariant submanifold and M⊥ is a totally umbilical anti-invariant submanifold of
M̄ . In this case, M is a minimal contact CR-warped product submanifold of M̄ .
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Proof. Let M = MT ×f M⊥ be a contact CR-warped product submanifold of a
cosymplectic manifold M̄ such that MT is an invariant submanifold tangent to ξ
and M2 is an anti-invariant submanifold of M̄ . Then by using (2.3), (2.5) and (2.5),
we have

g(h(ϕX,Z), ϕW ) = g(∇̄ZϕX,ϕW )

= g(ϕ∇̄ZX,ϕW ) = g(∇̄ZX,W )

= g(∇ZX,W ) = (X ln f)g(Z,W ),(2.25)

for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TM⊥). In the same way, by taking X for ϕX
in (2.25), we get

g(h(X,Z), ϕW ) = (−ϕX ln f)g(Z,W ).(2.26)

On the other hand, since the ambient space M̄ is a cosymplectic manifold, we
can easily to see that

h(ξ, U) = h(ξ, ξ) = 0 and ξ ln f = 0,(2.27)

for any U ∈ Γ(TM). Furthermore, if we denote by h⊥ the second fundamental form
of M⊥ in M̄ , then for any X ∈ Γ(TMT ) and Z,W ∈ Γ(TM⊥), making use of (2.5),
we have

g(h⊥(Z,W ), X) = g(∇WZ,X) = −g(∇WX,Z) = −(X ln f)g(Z,W )

which is also equivalent to

h⊥(Z,W ) = −∇(ln f)g(Z,W ).(2.28)

Now, let {e1, e2, ..., ep, ep+1 = ϕe1, ep+2 = ϕe2, ..., e2p = ϕep, ξ, e
1, e2, ..., eq} be a

local orthonormal frame of Γ(TM) such that ei and ej , 1 ≤ i ≤ p, 1 ≤ j ≤ q, are
tangent to MT and M⊥, respectively. Then we have

‖h‖2 =

2p∑
i,j=1

g(h(ei, ej), h(ei, ej)) + 2

2p∑
i=1

q∑
r=1

g(h(ei, e
r), h(ei, e

r))

+

q∑
r,`=1

g(h(er, e`), h(er, e`)) +

2p∑
i=1

g(h(ei, ξ), h(ei, ξ))

+

q∑
r=1

g(h(er, ξ), h(er, ξ)) + g(h(ξ, ξ), h(ξ, ξ))

=

2p∑
i,j=1

g(h(ei, ej), h(ei, ej)) +

q∑
r,`=1

g(h(er, e`), h(er, e`))

+ 2

2p∑
i=1

q∑
r=1

g(h(ei, e
r), h(ei, e

r)).(2.29)
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Thus, by using (2.25), (2.26) and (2.27), we arrive at

‖h‖2 ≥ 2

2p∑
i=1

q∑
r=1

g(h(ei, e
r), h(ei, e

r)) = 2

p∑
i=1

q∑
r=1

(ei ln f)2g(er, er)

+ 2

p∑
i=1

q∑
r=1

(ϕei ln f)2g(er, er),

or

‖h‖2 ≥ 2q‖∇ ln f‖2.(2.30)

This proves the assertion (2.24). If equality sign in (2.30) holds identically, then by
using (2.25) and (2.29), we obtain

h(TMT , TMT ) = 0, h(TM⊥, TM⊥) = 0,(2.31)

and

h(TMT , TM⊥) ∈ Γ(ϕ(TM⊥)).(2.32)

The first condition in (2.31) implies that MT is totally geodesic submanifold in M̄
because MT is a totally geodesic submanifold in M . Since M⊥ is a totally umbilical
submanifold in M , the second condition in (2.31) and (2.28) imply that M⊥ is
totally umbilical submanifold in M̄ . Moreover by (2.31) and (2.32) it follow that
contact CR-warped product submanifold M is a minimal in M̄ .

Theorem 3.7. Let M = MT ×f M⊥ be a contact CR-warped product submani-
fold in cosymplectic space form M̄(c) of constant ϕ-sectional curvature c. If (2.24)
equality is satisfied, then we
1.) MT is totally geodesic invariant submanifold of M̄(c). Thus MT is a cosym-
plectic space form of constant ϕ-sectional curvature c.
2.) M⊥ is a totally umbilical anti-invariant submanifold of M̄(c). Thus M⊥ is a
real space form of sectional curvature ε = c

4 + ‖∇ ln f‖2.
3.) If q > 1, then the warping function f satisfies ‖∇f‖2 = 1

4 (4ε− c)f2.

Proof. If (2.24) is satisfied, then MT is totally geodesic submanifold of M̄(c). So one
conclude that MT is also cosymplectic space form of constant ϕ-sectional curvature
c.

In the same way, if (2.24) is satisfied, then M⊥ is totally umbilical anti-invariant
submanifold of M̄(c). If we denote the Riemannian curvature tensor of M⊥ by R⊥,
then by direct calculations, we can derive

R⊥(Z,W )U = (
c

4
+ ‖∇ ln f‖2){g(Z,U)W − g(W,U)Z},

for any Z,W,U ∈ Γ(TM⊥). This prove that M⊥ is a real space form of sectional
curvature ε = c

4 + ‖∇ ln f‖2. Furthermore, if dim(M⊥) > 1, then the warping
function f satisfies the condition ‖∇f‖2 = 1

4 (4ε− c)f2.
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We note that the square of the length of the mean curvature of a totally umbilical
submanifold is constant.

Theorem 3.8. Let M = MT ×f M⊥ be a contact CR-warped product submanifold
of a cosymplectic space form M̄(c) such that MT is a (2p+1)-dimensional invariant
submanifold tangent to ξ and M⊥ is a q-dimensional anti-invariant submanifold of
M̄ . Then
1.) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ cpq

4
− q

2
‖∇ ln f‖2 − q

2
∆ ln f,(2.33)

where ∆ ln f denote the Laplacian of ln f .
2.) The equality sign of (2.33) holds if and only if
2a.)MT is a totally geodesic invariant submanifold of M̄(c). Hence, MT is cosym-
plectic space form of constant ϕ-sectional curvature.
2b.) M⊥ is a totally umbilical anti-invariant submanifold of M̄(c). Hence M⊥ is a
real space form of sectional curvature ε = ‖∇ ln f‖2 + c

4 .

Proof. In [7], it was proved that

p∑
i=1

q∑
j=1

‖hν(ei, e
j)‖2 =

c.p.q

4
− q

2
‖∇ ln f‖2 − q

2
∆ ln f,(2.34)

where hν denotes the component of h in ν. Thus combining (2.24) and (2.34), we
obtain the inequality (2.33). If we consider the equality case of inequality, then
form Theorem 3.6 we reach desired results.
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