EXISTENCE OF A PRODUCT SUBMANIFOLD OF AN LP-SASAKIAN MANIFOLD WITH A COEFFICIENT α

A. K. SENGUPTA, U. C. DE, AND J. B. JUN

ABSTRACT. In this paper, we have proved that there exists a product submanifold of an LP-Sasakian manifold with a coefficient α and the manifold and its product submanifold possess a CR-structure respectively.

0. Introduction

In [1] Matsumoto introduced the notion of Lorentzian paracontact structure and studied its several properties. Then I. Mihai and R. Rosca [2] defined the same notion independently and obtained many results in this manifold. The notion of an LP-Sasakian manifold with a coefficient α is introduced by De et al. [3].

The purpose of this paper is to prove that for an LP-Sasakian manifold with a coefficient α there exists a product submanifold of this manifold. Also it is shown that the LP-Sasakian manifold with a coefficient α and its product submanifold both possess CR-structure.

1. Preliminaries

Let M^n be an n-dimensional real differentiable manifold of differentiability class C^{∞} endowed with a (1,1)-tensor field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g of type (0,2) such that for each point $x \in M^n$, the tensor $g_x : T_x M^n \times T_x M^n \to R$ is a non-degenerate inner product of signature $(-,+,+,\ldots,+)$, where $T_x M^n$ denotes the tangent vector space of M^n at x and R is the real

Received July 9, 2002.

 $^{2000 \} Mathematics \ Subject \ Classification: \ 53C15, \ 53C40.$

Key words and phrases: LP-Sasakian manifold with a coefficient α , product submanifold, CR-structure.

number space, which satisfies

(1.1)
$$\phi^2 X = X + \eta(X)\xi, \quad \eta(\xi) = -1$$

$$(1.2) g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y)$$

$$(1.3) g(X,\xi) = \eta(X)$$

for all vector fields X, Y tangent to M^n . Such a structure (ϕ, ξ, η, g) is termed as Lorentzian paracontact structure [1] and the manifold M^n is known as Lorentzian paracontact manifold.

Also in a Lorentzian paracontact manifold, the following relations hold:

$$\phi \xi = 0$$
, $\eta \circ \phi = 0$, rank $\phi = n - 1$.

If we put

$$\Phi(X,Y) = g(X,\phi Y),$$

then $\Phi(X,Y)$ is a symmetric (0,2)-tensor field [1], that is

$$(1.5) \Phi(X,Y) = \Phi(Y,X).$$

A Lorentzian paracontact manifold M^n is called Lorentzian para-Sasakian (briefly, LP-Sasakian) manifold with a coefficient α [3] if the following relations hold:

(1.6)
$$(\nabla_Z \Phi)(X, Y) = \alpha \Big[\{ g(X, Z) + \eta(X) \eta(Z) \} \eta(Y) + \{ g(Y, Z) + \eta(Y) \eta(Z) \} \eta(X) \Big], \ (\alpha \neq 0)$$

and

(1.7)
$$\Phi(X,Y) = \frac{1}{\alpha}(\nabla_X \eta)(Y),$$

for vector fields X, Y, Z tangent to M^n , where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function.

From (1.6) and (1.7) we have [3]

$$(1.8) \qquad (\nabla_X \phi)(Y) = \alpha \left[g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi \right]$$

and

(1.9)
$$(\nabla_X \eta)(Y) = \alpha \Phi(X, Y) = (\nabla_Y \eta)(X),$$

for vector fields X, Y tangent to M^n .

From (1.9), it follows that 1-form η is closed in M^n and

(1.10)
$$\nabla_X \xi = \alpha \phi X.$$

It is to be noted that for $\alpha = 1$, an LP-Sasakian manifold with a coefficient α reduces to an LP-Sasakian manifold [1].

In an LP-Sasakian manifold with a coefficient α , the torsion tensor N_{ij}^h defined by

$$N_{ij}^{h} = \phi_{i}^{k} \nabla_{k} \phi_{j}^{h} - \phi_{j}^{k} \nabla_{k} \phi_{i}^{h} - \left(\nabla_{i} \phi_{j}^{k} - \nabla_{j} \phi_{i}^{k} \right) \phi_{k}^{h} - \left(\nabla_{i} \eta_{j} - \nabla_{j} \eta_{i} \right) \xi^{h}$$

vanishes [3].

2. Product submanifold of an LP-Sasakian manifold with a coefficient α

In this section, the integrability of certain distributions on an LP-Sasakian manifold with a coefficient α and properties of integral submanifolds are studied.

Let M^n be an LP-Sasakian manifold with a coefficient α with the structure (ϕ, ξ, η, g) . The tensor ϕ has constant eigenvalues 1,-1 and 0. Let s,t be the multiplicities of the eigenvalues 1 and -1 respectively. The eigenvalue 0 has multiplicity 1. $M^n(n=s+t+1)$ has an orthonormal frame $\{e_1,\ldots,e_s,e_{s+1},\ldots,e_{s+t},e_n=\xi\}$ such that $\phi(e_i)=e_i,\phi(e_{s+v})=-e_{s+v}$ and $\phi(e_n)=0$, for $i=1,2,\ldots,s$ and $v=1,2,\ldots,t$.

We define the following distributions on an LP-Sasakian manifold M^n with a coefficient α :

$$(2.1)_1 D^+ = \{X \in T(M^n) : \phi X = X\} \text{ with } \dim(D^+) = s$$

$$(2.1)_2 D^- = \{X \in T(M^n) : \phi X = -X\} \text{ with } \dim(D^-) = t$$

(2.1)₃
$$D^0 = \{X \in T(M^n) : \phi X = 0\} \text{ with } \dim(D^0) = 1$$

$$(2.1)_4 D = \{ X \in T(M^n) : \eta(X) = 0 \}.$$

Here

(2.2)
$$D = D^+ \oplus D^- \text{ and } T(M^n) = D \oplus D^0.$$

THEOREM 2.1. In an LP-Sasakian manifold with a coefficient α , the distributions D^+, D^- and D are integrable.

Proof. For $X, Y \in D^+$, by using the definition of D^+ and (1.8) we have by virtue of $\eta \circ \phi = 0$

(2.3)
$$\phi[X,Y] = (\nabla_Y \phi)(X) - (\nabla_X \phi)(Y) + [X,Y]$$
$$= \alpha[\eta(X)Y - \eta(Y)X] + [X,Y]$$
$$= [X,Y].$$

Similarly, for $X,Y\in D^-,$ by using the definition of D^- and (1.8) we have

(2.4)
$$\phi[X,Y] = -[X,Y].$$

Next, let $X,Y\in D$. Then as η is closed, using the definition of D we get

$$(2.5) \quad \eta[X,Y] = -\{X\eta(Y) - Y\eta(X) - \eta[X,Y]\} = -2d\eta(X,Y) = 0.$$

Hence from (2.3), (2.4) and (2.5) the theorem follows.

On the other hand we give a definition.

DEFINITION 2.1. A distribution D' on an LP-Sasakian manifold M^n with a coefficient α is said to be *parallel* if for $X \in D'$ and $Y \in T(M^n)$, $\nabla_Y X \in D'$.

THEOREM 2.2. In an LP-Sasakian manifold M^n with a coefficient α , if N, N^+ and N^- be the maximal integral submanifolds of the distributions D, D^+ and D^- respectively, then N is locally a Riemannian direct product $N^+ \times N^-$.

Proof. From Theorems 2.1 and (2.2), it follows that D, D^+ and D^- are integrable and D is the direct sum of D^+ and D^- . We will now prove that both D^+ and D^- are parallel.

For $X \in D$, we put

(2.6)
$$\phi X = PX + FX$$
, where $PX \in D$ and $FX \in D^0$.

Using $\eta \circ \phi = 0$ and the definition of D, we have from (2.6) $\eta(FX) = 0$, which shows that FX = 0, for $X \in D$.

Then from (2.6), we get

$$\phi X = PX, \text{ for } X \in D.$$

Now from (2.7) it follows from (1.1) that

(2.8)
$$P^2X = P(\phi X) = \phi^2 X = X$$
, for $X \in D$.

Thus P is an almost product structure on N [4].

Let ∇ be the operator of covariant differentiation on N and h be the second fundamental tensor of N.

Then Gauss formula is given by

(2.9)
$$\nabla_X Y = \bar{\nabla}_X Y + h(X, Y)$$
, for $X, Y \in D$ and $h(X, Y) \in D^0$.
As $h(X, Y) \in D^0$, we have

(2.10)
$$\phi h(X, Y) = 0$$
, for $X, Y \in D$.

Now for $X \in D^+$ and $Y \in D$, using (1.8), (2.7), (2.8), (2.9) and (2.10) and the definition of D^+ , we get

$$P(\bar{\nabla}_Y X) = \phi(\bar{\nabla}_Y X) = \phi(\nabla_Y X) = \phi(\nabla_Y (\phi X))$$
$$= \phi^2(\nabla_Y X) = \phi^2(\bar{\nabla}_Y X) = P^2(\bar{\nabla}_Y X) = \bar{\nabla}_Y X,$$

which shows that D^+ is parallel. Similarly it can be proved that D^- is also parallel. Hence the theorem follows.

COROLLARY 2.1. In an LP-Sasakian manifold M^n with a coefficient α , there exists a submanifold N which is locally a product Riemannian manifold.

COROLLARY 2.2. In an LP-Sasakian manifold, there exists a product submanifold.

3. CR-structure on an LP-Sasakian manifold with a coefficient α

It is known that a differentiable manifold with a Riemannian metric admits a CR-structure if and only if there is a differentiable distribution D and a (1,1)-tensor field J on M such that for all vector fields X and Y in D [5],

$$J^{2}X = -X,$$

$$[J, J](X, Y) \equiv [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY] = 0,$$

$$[JX, JY] - [X, Y] \in D.$$

In an analogous way, a Lorentzian paracontact manifold M is said to admit a CR-structure if and only if there is a differentiable distribution D and a (1,1)-tensor field ϕ on M such that for all vector fields X and Y in D,

$$\phi^2 X = X,$$

$$(3.2) \quad [\phi, \phi](X, Y) \equiv [\phi X, \phi Y] + [X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y] = 0,$$

$$[\phi X, \phi Y] + [X, Y] \in D.$$

PROPOSITION 3.1. An LP-Sasakian manifold M^n with a coefficient α possesses a CR-structure.

Proof. Let us consider the distribution D given by (2.1) and (2.2) on M^n . Then for $X \in D$, we have from (2.8), $\phi^2 X = X$.

As the torsion tensor $[\phi, \phi]$ vanishes identically in an LP-Sasakian manifold with coefficient α [3], we have

$$[\phi, \phi](X, Y) = 0$$
, for $X, Y \in T(M^n)$

which gives

(3.4)
$$[\phi X, \phi Y] + [X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + \eta([X, Y])\xi = 0$$
, where we have used (1.1).

By the definition of D and using the integrability of D, we have

(3.5)
$$\eta([X, Y]) = 0, \text{ for } X, Y \in D.$$

From (3.4) and (3.5), we obtain

(3.6)
$$[\phi X, \phi Y] + [X, Y] - \phi[\phi X, Y] - \phi[X, \phi Y] = 0$$
, for all $X, Y \in D$.

Also as D is integrable, for all $X, Y \in D$, by (2.7) we have

$$[\phi X, \phi Y] + [X, Y] = [PX, PY] + [X, Y] \in D.$$

Hence the proposition is proved.

Owing to corollary 2.1, we have the following:

PROPOSITION 3.2. The product submanifold N of an LP-Sasakian manifold M^n with a coefficient α possesses CR-structure.

Proof. For $X \in D^+$, from (2.8) we have

$$P^2X = X$$
.

Also for $X, Y \in D^+$, we have from (3.6) by using (2.7)

$$[PX, PY] + [X, Y] - P[PX, Y] - P[X, PY] = 0.$$

As D^+ is parallel, for $X, Y \in D^+$, we have

$$\phi[X,Y] = \phi \nabla_X Y - \phi \nabla_Y X = \nabla_X Y - \nabla_Y X = [X,Y],$$

which shows that

$$[X,Y] \in D^+$$
, for $X,Y \in D^+$.

Now by definition of D^+ , we have

$$[PX, PY] + [X, Y] = [X, Y] + [X, Y] \in D^+, \text{ for } X, Y \in D^+.$$

This proves the proposition.

References

- [1] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ., Natur. Sci. 12 (1989), 151–156.
- [2] I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publishing, Singapore, (1992), 155–169.
- [3] U. C. De, A. A. Shaikh and A. Sengupta, On LP-Sasakian Manifolds with a coefficient α, Kyungpook Math. J. 42 (2002), 177–186.
- [4] K. Yano, Differential Geometry on complex and almost complex spaces, Pergamon Press, New York, 219.
- [5] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Co., Holland, 1986, pp.128–129.
- A. K. Sengupta and U. C. De, Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal, India E-mail: ucde@klyuniv.ernet.in
- J. B. Jun, Department of Mathematics, College of Natural Science, Kookmin University, Seoul 136-702, Korea *E-mail*: jbjun@kookmin.ac.kr