• Title/Summary/Keyword: power spectra

Search Result 636, Processing Time 0.029 seconds

Analysis of Game Immersion using EEG signal for Computer Smart Interface (스마트 인터페이스를 위한 뇌파의 게임몰입 분석)

  • Ga, Yunhan;Choi, Taejin;Yoon, Gilwon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.392-397
    • /
    • 2015
  • Recently computer games have been widely spread. For the purpose of studying brain activities, EEG was measured during the computer game and analyzed in terms of channels and frequency bands. EEG data were obtained during the resting state and game immersion. Then the power spectra of alpha, beta and theta bands were computed. During game immersion, the ratio between theta / alpha could effectively differentiate between rest and game immersion. Changes in brain activity (26~53%) were observed in the parietal and occipital lobes. Interestingly, immersion shows different features compared to concentration. The state of game immersion could be detected. Therefore, it is possible to utilize the state of immersion as one of the game parameters or to generate a control signal that may be used to provide a warning message or abort the game when the situation of the excessive indulgence in the game reaches. EEG can be applied as smart interface for computer game.

Protection by Methanol Extract of Longan (Dimocarpus Longan Lour.) Peel against Kainic acid-Induced Seizure

  • Jo, Young-Jun;Eun, Jae-Soon;Kim, Hyoung-Chun;Cho, Hwang-Eui;Lee, Mi-Kyeong;Hwang, Bang-Yeon;Hong, Jin-Tae;Moon, Dong-Cheul;Oh, Ki-Wan
    • Natural Product Sciences
    • /
    • v.16 no.2
    • /
    • pp.99-106
    • /
    • 2010
  • This experiment was undertaken to investigate whether methanol extract of fruit peel of Dimocarpus longan Lour. (MEFL) protects against kainic acid (KA)-induced seizure. Oral administration of MEFL (1, 2 and 4 mg/kg) increased KA (50 mg/kg)-induced survival rate and latency of convulsion onset, and deceased seizure scores and weight loss induced by intraperitoneal (i.p) injection of KA in mice. In addition, MEFL protected against cell death in the hippocampus of rat brain after KA-administration as analyzed by using TUNEL assay in rats. MEFL also significantly blocked seizure-form of electroencephalogram (EEG) power spectra induced by KA in rats. MEFL also inhibited elevation of [$Ca^{2+}$]i and increased [$Cl^-$]i induced by KA in cultured neuronal cells. Therefore, it is suggested that MEFL protects against seizure induced by KA, decreasing [$Ca^{2+}$]i.

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

Development of High Damping Alloys for Reduction of Noise and Vibration (소음.진동 제어를 위한 방진합금 개발)

  • Baik, Seung-Han;Kim, Jung-Chul;Han, Dong-Woon;Baik, Jin-Hyun;Kim, Tai-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.565-569
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloys. Also, the alloy has advantages of good mechanical properties and more economical than any other known damping alloys(1/4 times as cost of non-ferrous damping alloy). Thus, the high damping Fe-17%6Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity(SDC, 30%) and mechanical property(T.S 700MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit several such applications.

  • PDF

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

Surface Properties of ACL Thin Films Depending on Process Conditions (공정 조건에 따른 비정질 탄소막 표면 물성분석)

  • Kim, Kwang Pyo;Choi, Jeong Eun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.44-47
    • /
    • 2019
  • Amorphous carbon layer (ACL) is actively used as an etch mask. Recent advances in patterning ACL requires the next level of durability of hard mask in high aspect ratio etch in near future semiconductor manufacturing, and it is worthwhile to know the surface property of ACL thin film to enhance the property of etch hard mask. In this research, ACL are deposited by 6 inch plasma enhanced chemical vapor deposition system with $C_3H_6$ and $N_2$ gas mixture. Surface properties of deposited ACL are investigated depending on gas flow, pressure, RF power. Fourier transform infrared is used for the analysis of surface chemistry, and X-ray photoemission spectra is used for the structural analysis with the consideration of the contents of $sp^2$ and $sp^3$ through fitting of C1s. Also mechanical properties of deposited ACL are measured in order to evaluate hardness.

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

Characteristics of odorous VOCs removal by using electrolytic oxidant (전해 산화제에 의한 악취 원인 VOCs 제거 특성)

  • Lee, Tae Ho;Ryu, Hee Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • In this study, various conditions and phenomena that occur in the process of removing odorous VOCs by using electrolyzed oxidant were examined. The formation of hypochlorous acid, which is an oxidant produced by electrolysis, was investigated and the properties of the oxidizing agent used to decompose toluene, xylene, and cyclohexane were investigated. As a result, it was found that the production rate and the final concentration of the oxidizing agent increased with the current density. It was found that the degree of removal varies depending on the property of each pollutant. Interestingly, in the batch experiments in which the pH of the produced oxidant was controlled, it was found that the degree of elimination varied depending on the pH of the substance. These results suggest that the difference in the concentration and distribution of hypochlorous acid (HOCl) and hypochlorite ($OCl^-$) due to the pH change leads to the difference in oxidizing power on the oxidation characteristics of each substance. Styrene and terpineol showed better degradation characteristics than toluene and xylene in odorous VOC removal experiments by spraying electrolytic oxidant using a lab-scale continuous reactor. In conclusion, the removal of odorous VOCs by the electrolytic oxidant can have various applications in that it can oxidize pollutants of various spectra.

Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution (CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측)

  • Kim, Younghwa;Nam, Hyunjae;Kim, June Mo;Sun, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.457-464
    • /
    • 2021
  • To analyze the buffet phenomenon that causes serious vibration loads on a satellite launch vehicle, the pressure fluctuations on a hammerhead launch vehicle at transonic speeds are predicted by coupling CFD analysis and semi-empirical methods. From the RANS simulation, shock oscillation region, separation region, and separation reattachment region are identified, and the boundary layer thickness, the displacement thickness, and flow properties at boundary layer edge are calculated. The pressure fluctuations and power spectra on the hammerhead fairing are predicted by coupling RANS results and semi-empirical methods considering spatial distribution, and compared with the experimental data.