Browse > Article
http://dx.doi.org/10.1007/s13391-018-0082-6

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity  

Li, Lingwei (College of Science, Donghua University)
Xue, Shaolin (College of Science, Donghua University)
Xie, Pei (College of Science, Donghua University)
Feng, Hange (College of Science, Donghua University)
Hou, Xin (College of Science, Donghua University)
Liu, Zhiyuan (College of Science, Donghua University)
Xu, Zhuoting (College of Science, Donghua University)
Zou, Rujia (College of Science, Donghua University)
Publication Information
Electronic Materials Letters / v.14, no.6, 2018 , pp. 739-748 More about this Journal
Abstract
ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.
Keywords
Graphene oxide; ZnS; Hydrothermal method; Microspheres; Photocatalytic degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fang, X.S., Bando, Y., Liao, M.Y., Zhai, T.Y., Gautam, U.K., Li, L., Koide, Y., Golberg, D. : An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Func. Mater. 20, 500-508 (2010)   DOI
2 Liang, Y., Xu, H.Y., Hark, S.K. : Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 114, 8343-8347 (2010)   DOI
3 Pal, B., Pal, B. : Tuning the optical and photocatalytic properties of anisotropic ZnS nanostructures for the selective reduction of nitroaromatics. Chem. Eng. J. 263, 200-208 (2015)   DOI
4 Kavanagh, Y., Alam, M.J., Cameron, D.C. : The characteristics of thin film electroluminescent displays produced using sol-gel produced tantalum pentoxide and Zinc Sulfide. Thin Solid Films 447-448, 85-89 (2004)   DOI
5 Jia, B., Jia, W., Qu, F., Wu, X. : General strategy for self-assembly of mesoporous $SnO_2$ nanospheres and their applications in water purification. RSC Adv. 3, 2140-12148 (2013)
6 Liu, Y., Jiao, Y., Zhang, Z.L., Qu, F.Y., Umar, A., Wu, X. : Hierarchical $SnO_2$ nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces. 6, 2174-2184 (2014)   DOI
7 Jiao, Y., Liu, Y., Yin, B., Zhang, S., Qu, F., Wu, X. : Hybrid ${\alpha}$-$Fe_2O_3$ @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90-98 (2014)   DOI
8 Calandra, P., Longo, A., Liveri, V.T. : Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles. J. Phys. Chem. B 107, 25-30 (2003)
9 Srivastava, M., Uddin, M.E., Singh, J., Kim, N.H., Lee, J.H. : Preparation and characterization of self-assembled layer by $NiCo_2O_4$-reduced graphene oxide nanocomposite with improved elecatalytic properties. J. Alloys. Compd. 590, 266-276 (2014)   DOI
10 Sobhani, A., Salavati-Niasari, M. : CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci. : Mater. Electron. 26, 6831-6836 (2015)   DOI
11 Panda, S.K., Datta, A., Chaudhuri, S. : Nearly monodispersed ZnS nanospheres: synthesis and optical properties. Chem. Phys. Lett. 440, 235-238 (2007)   DOI
12 Yan, Q., Wu, A.P., Yan, H.J., Dong, Y.Y., Tian, C.G., Jiang, B.J., Fu, H.G. : Gelatin-assisted synthesis of ZnS hollow nanospheres: the microstructure tuning, formation mechanism and application for Pt-free photocatalytic hydrogen production. Cryst. Eng. Comm. 19, 461 (2017)   DOI
13 Watanabe, T., Takizawa, T., Honda, K. : Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J. Phys. Chem. 81, 1845-1851 (1977)   DOI
14 Qin, Y.L., Sun, Z., Zhao, W.W., Liu, Z.Y., Ni, D.R., Ma, Z.Y. : Effect of $S^{2-}$ donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite. Appl. Phys. A 123, 355 (2017)   DOI
15 An, X.Q., Yu, J.C. : Graphene-based photocatalytic composites. RSC Adv. 1, 1426-1434 (2011)   DOI
16 Zhang, H., Lv, X.J., Li, Y.M., Wang, Y., Li, J.H. : P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380-386 (2010)   DOI
17 Lee, J.S., You, K.H., Park, C.B. : Highly photoactive, low bandgap $TiO_2$ nanoparticles wrapped by graphene. Adv. Mater. 24, 1084-1088 (2012)   DOI
18 Biswas, S., Kar, S. : Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008)   DOI
19 Salavati-Niasari, M., Davar, F., Loghman-Estarki, M.R. : Controllable synthesis of thioglycolic acid capped $ZnS(Pn)_{0.5}$ nanotubes via simple aqueous solution route at low temperatrures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Compd. 494, 199-204 (2010)   DOI
20 Salavati-Niasari, M., Davar, F., Seyghalkar, H., Esmaeili, E., Mir, N. : Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. Cryst. Eng. Comm. 13, 2948-2954 (2011)   DOI
21 Salavati-Niasari, M., Davar, F., Mazaheri, M. : Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc (II)]. J. Alloys Compd. 470, 502-506 (2009)   DOI
22 She, Y.Y., Yang, J., Qiu, K.Q. : Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and $Na_2S$ under ultrasonic. Trans. Nonferrous Metals Soc. China 20, 211-215 (2010)   DOI
23 Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C. : Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Func. Mater. 15, 63-68 (2005)   DOI
24 Park, S., Jin, C., Kim, H., Hong, C., Lee, C. : Enhanced violet emission from ZnS nanowires annealed in an oxygen atmosphere. J. Lumin. 132, 231-235 (2012)   DOI
25 Fang, X.S., Bando, Y.S., Ye, C.H., Shen, G.Z., Golberg, D. : Shape-and size-controlled growth of ZnS nanostructures. J. Phys. Chem. C 111, 8469-8474 (2007)   DOI
26 Ma, Y.R., Qin, L.M., Ma, J., Cheng, H. : Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir 19, 4040-4042 (2003)   DOI
27 Bi, C., Pan, L.Q., Guo, Z.G., Zhao, Y.L., Huang, M.F., Ju, X., Xiao, J.Q. : Facile fabrication of wurtzite ZnS hollow nanospheres using polystyrene spheres as templates. Mater. Lett. 64, 1681-1683 (2010)   DOI
28 Chen, X.J., Xu, H.F., Xu, N.S., Zhao, F.H., Lin, W.J., Lin, G., Fu, Y.L., Huang, Z.L., Wang, H.Z., Wu, M.M. : Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg. Chem. 42, 3100-3106 (2003)   DOI
29 Fang, X.S., Wu, L.M., Hu, L.F. : ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585-598 (2011)   DOI
30 Fang, X.S., Bando, Y., Ye, C.H., Golberg, D. : Crystal orientationordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 29, 3048-3050 (2007)
31 Yin, L.W., Bando, Y., Zhan, J.H., Li, M.S., Golberg, D. : Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972-1977 (2005)   DOI
32 Shao, H.F., Qian, X.F., Huang, B.C. : Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Mater. Lett. 61, 3639-3643 (2007)   DOI
33 Guo, C.F., Zhang, J., Wang, M., Tian, Y., Liu, Q. : A strategy to prepare wafer scale bismuth compound superstructures. Small 9, 2394-2398 (2013)   DOI
34 Guo, C.F., Lan, Y.C., Sun, T.Y., Ren, Z.F. : Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy 8, 110-117 (2014)   DOI
35 Zou, R.J., He, G.J., Xu, K.B., Liu, Q., Zhang, Z.Y., Hu, J.Q. : ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445-8452 (2013)   DOI
36 Geim, A.K., Novoselov, K.S. : The rise of graphene. Nat. Mater. 6, 183-191 (2007)   DOI
37 Mahdiani, M., Sobhani, A., Salavati-Niasari, M. : Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140-148 (2017)   DOI
38 Fu, X., Bei, F., Wang, X., Brien, S.O., Lombardi, J.R. : Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2, 1461-1466 (2010)   DOI
39 Song, H.S., Yang, C., Liu, D.B. : Dielectric properties of graphene/epoxy composites. J. Funct. Mater. 43, 1185-1188 (2012)
40 Zhou, W.K., Xue, S.L., Han, J.W., Xie, P. : Synthesis of grass-like ZnSe nanostructures on graphene oxide and their excellent field eminssion properties. Mater. Lett. 134, 256-258 (2014)   DOI
41 Ho, C.H. : Enhanced photoelectric-conversion yield in niobium incorporated In2S3 with intermediate band. J. Mater. Chem. 218, 10518-10524 (2011)
42 Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., Golberg, D. : ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175-287 (2011)   DOI
43 Jia, W.N., Wu, X., Jia, B.X., Qu, F.Y., Fan, H.J. : Self-Assembled porous ZnS nanospheres with high photocatalytic performance. Sci. Adv. Mater. 5, 1329-1336 (2013)   DOI
44 Jia, W., Jia, B., Wu, X., Qu, F.Y. : Self-assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. Cryst. Eng. Comm. 14, 7759-7763 (2012)   DOI
45 Sobhani, A., Salavati-Niasari, M. : Cobalt selenide nanostructures: hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions. J. Mol. Liq. 219, 1089-1094 (2016)   DOI
46 Sobhani, A., Salavati-Niasari, M. : Morphological control of $MnSe_2/Se$ nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull. 48, 3204-3210 (2013)   DOI
47 Gadzuk, J.W., Plummer, E.W. : Field emission energy distribution. Rev. Mod. Phys. 45, 487-548 (1973)   DOI
48 Sobhani, A., Salavati-Niasari, M. : Single-source molecular precursor for synthesis of CdS nanoparticles and nanoflowers. High Temp. Mater. Processes 31, 157-162 (2012)
49 Sobhani, A., Salavati-Niasari, M. : Hydrothermal synthesis of CoSe nanostructures without using surfactant. J. Mol. Liq. 220, 334-338 (2016)   DOI
50 Sobhani, A., Salavati-Niasari, M. : Chromium selenide nanoparticles: hydrothermal synthesis in the presence of a new selenium source. J. Nanostruct 7, 141-146 (2017)
51 Song, P., Zhang, X.Y., Sun, M.X., Cui, X.L., Lin, Y.H. : Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv. 2, 1168-1173 (2012)   DOI
52 Geng, J., Liu, B., Xu, L., Hu, F.N., Zhu, J.J. : Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 23, 10286-10293 (2007)   DOI
53 Sobhani, A., Salavati-Niasari, M. : Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci. : Mater. Electron. 27, 293-303 (2016)   DOI