DOI QR코드

DOI QR Code

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma

수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구

  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 조성일 (강원대학교 대학원 신소재공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Received : 2021.12.15
  • Accepted : 2021.12.28
  • Published : 2021.12.31

Abstract

In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

Keywords

Acknowledgement

이 논문은 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2018R1D1A1B07048870). 본 연구에서 분석의 일부는 강원대학교 공동실험실습관에서 진행되었음.

References

  1. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8 (2008) 3498. https://doi.org/10.1021/nl802558y
  2. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater., 6 (2007) 652. https://doi.org/10.1038/nmat1967
  3. S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, K. P. Loh, High mobility, printable, and solution-processed graphene electronics, Nano Lett., 10 (2010) 92. https://doi.org/10.1021/nl9028736
  4. S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors, Adv. Mater., 21 (2009) 3488-3491. https://doi.org/10.1002/adma.200803812
  5. X. Wang, L. J. Zhi, K. Mullen, Transparent, cond uctive graphene electrodes for dye-sensitized solar cells, Nano Lett., 8 (2008) 323. https://doi.org/10.1021/nl072838r
  6. Z. H. Sheng, H. L. Gao, W. J. Bao, F. B. Wang, X. H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 22 (2012) 390. https://doi.org/10.1039/c1jm14694g
  7. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping, ACS Nano, 4 (2010) 2689-2694. https://doi.org/10.1021/nn1005478
  8. Y. C. Lin, C. Y. Lin, P. W. Chiu, Controllable graphene N-doping with ammonia plasma, Appl. Phys. Lett., 96 (2010) 133110. https://doi.org/10.1063/1.3368697
  9. Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano, 4 (2010) 1790-1798. https://doi.org/10.1021/nn100315s
  10. H. Park, S. J. You, W. Choe, Correlation between excitation temperature and electron temperature with two groups of electron energy distributions, Phys. Plasmas, 17 (2010) 103501. https://doi.org/10.1063/1.3486093
  11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006) 187401. https://doi.org/10.1103/physrevlett.97.187401
  12. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473 (2009) 51. https://doi.org/10.1016/j.physrep.2009.02.003
  13. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett., 98 (2007) 166802. https://doi.org/10.1103/PhysRevLett.98.166802
  14. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol., 3 (2008) 210. https://doi.org/10.1038/nnano.2008.67
  15. M. Brunglinghaus, Mean free path, European Nuclear Society (2011).
  16. P. W. J. M. Boumans, Inductively coupled plasma emission spectroscopy part 2, Wiley, New york (1987) Chap. 10.
  17. W. Lochte-Holtgreven, Plasma Diagnostics, AIP, New york (1995).
  18. S. Y. Moon, W. Choe, H. S. Uhm, Y. S. Hwang, and J. J. Choi, Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube, Phys. Plasmas, 9 (2002) 4045. https://doi.org/10.1063/1.1495872
  19. NIST, Atomic spectra database, https://www.nist.gov/pml/atomic-spectra-database
  20. Y. Nakayama, F. Soeda, A. Ishitani, XPS study of the carbon fiber matrix interface Carbon, 28 (1990) 21. https://doi.org/10.1016/0008-6223(90)90088-G